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Metropolis-Hastings

Objective: Sample distribution πn : Rn 7→ R+.
Method: Construct Markov chain reversible w.r.t. πn and
simulate up to stationarity.

1. Propose move X → Y according to user-specified

qn(X ,dY ) = qn(X ,Y )dY

2. Accept Y with probability

an(X ,Y ) = 1 ∧ πn(Y )qn(Y ,X )

πn(X )qn(X ,Y )

otherwise stay at X .

3. Simulate X (1),X (2), . . . up to equilibrium.



Introduction Overview Recent Results Examples Sum Up

Local MCMC Algorithms

Proposed move could be:

Y = X +
√

hn Z , Z ∼ N(0, In)

giving Random-Walk Metropolis (RWM) algorithm.

It could also be:

Y = X +
hn

2
∇ logπn(X ) +

√
hn Z

giving Metropolis-adjusted Langevin algorithm (MALA).

Goldilocks Principle:
Step-size hn should neither be "too small" or "too big".
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Goldilocks Principle

h1 = 100, a1 = 0.085 h1 = 0.01, a1 = 0.975
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Some Questions

What is the "optimal" choice of hn, an?

What is the limiting behaviour of MCMC as n→∞?

Adaptive schemes have tried to address hn selection
dynamically (e.g. Haario, Atchad, Roberts, Rosenthal,
Andrieu, Moulines).

Here we look at non-dynamic setting.
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Results

Consider iid target distribution

πn(X ) = Πn
i=1f (xi)

and apply RWM, MALA for hn = l ×∆t .

Scale step-size as:

RWM : ∆t = n−1, MALA : ∆t = n−1/3

and bring MCMC points close:

Trejectory of first co−ordinate

(0)

(1)

(2)

x

x

x
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Results

Theorem (Roberts et al., 97; Roberts & Rosenthal, 98)

Continuous time process x ([ t/∆t ]) converges weakly to:

dx
dt

= 1
2 s(l) (log f )

′
(x) +

√
s(l)

dW
dt

for speed function:
s(l) = l2a(l)

where a(l) is limiting acceptance probability:

a(l) = lim
n

E [ an(x , y) ] ∈ (0,1)
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Remarks

MCMC similar (for large n) to Euler scheme on diffusion.

Speed function s(l) is maximised for

RWM : a(l) = 0.234
MALA : a(l) = 0.574

‘Mixing’ cost of algorithms is O(∆t−1), so:

RWM : n

MALA : n1/3
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Remarks: Optimality

Efficiency can be compared in terms of
integrated autocorrelation time:

τg(hn) = 1 +
∞∑

j=1

Corr(g(x (0)),g(x (j)))

so that:

Var(

∑J
j=1 g(x (j))

J
) ≈ Var [g(x)]

J
× τg

Because of diffusion limit we can factorise:

(τg(hn))−1 ≈ s(l) cg ×∆t



Introduction Overview Recent Results Examples Sum Up

Outline

1 Introduction

2 Overview

3 Recent Results

4 Examples

5 Sum Up



Introduction Overview Recent Results Examples Sum Up

Generalizing

We considered targets:

dπ
dπ0

(X ) ∝ exp(−Φn(X ))

where

π0 =
n∏

i=1

1
λi

f
( xi

λi

)
; λi = i−κ

RWM: hn = l × n−2κ−1, MALA: hn = l × n−2κ−1/3

We use mean square jump:

M(n) = E |x (j+1) − x (j)|2
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Results

Consider the norm ‖X‖s =
(∑n

i=1 i2sx2
i
)

Assume that Φn is such that:

Φn(X ) ≥ M

|Φn(Y )− Φn(X )| ≤ L(‖X‖s, ‖Y‖s)‖X − Y‖s′

|Φn(X )| ≤ C(1 + ‖X‖s′′ )

for L continuous, and s, s
′
, s

′′
< κ− 1/2.

Then, we can factorise out s(l):

MALA : M(n) = s(l)× n−2κ−1/3

RWM : M(n) = s(l)× n−2κ−1
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More Results

Target is on Hilbert space:

dπ
dπ0

(X ) = exp{−Φ(X )}

with π0 ∼ N(0,C).

C ei = λ2
i ei , λi = i−κ

MCMC trajectory on discretised space converges to SPDE:

dX
dt

= 1
2 s(l)

(
−X − C∇Φ(X )

)
+
√

s(l) C
dW
dt

Pillai & Stuart, 09.



Introduction Overview Recent Results Examples Sum Up

Outline

1 Introduction

2 Overview

3 Recent Results

4 Examples

5 Sum Up



Introduction Overview Recent Results Examples Sum Up

Conditioned Diffusions

Sample X = X (u):

dX
du

= g(X ) + γ
dW
du

Conditioned on:

Diffusion bridge: X (0) and X (1) (Molecular Dynamics)

Interpolate data: X (i∆)N
i=0 (Econometrics)

Noisy observation of X (u) (Signal Filtering)
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Data Assimilation

Navier-Stokes inverse problem for fluid dynamics.

Sample X0 ∈ L2(Ω,R2) initial condition for PDE:

∂X
∂t

+ X · ∇X = ν∆X + g, X (0) = X0 .

Conditioned on (Lagrangian) observations:

dzj

dt
= X (zj , t), zj(0) = zj,0 ,

yj,k = zj(tk ) + N(0,Σj,k ) .

(Assuming Gaussian prior on X0.)
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Summary

We studied complexity of Local MCMC algorithms in high
(sometimes infinite!) dimensions.

Obtained interpretation of RWM and MALA as Euler
approximations of a diffusion.

Diffusion limit allows for uniform optimization.

Results can be extended to non-trivial targets.

Non-product targets can give SPDE limits.
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Some Further Directions

Proving SPDE led to development of new framework for
proving convergence.

New framework avoids enormous complexities with using
generators.

In the case of RWM and MALA it avoids many of the
conditions required in previous works.

We are currently applying new framework to Hybrid
Monte-Carlo algorithm, with evidence of hypoelliptic
diffusion limit.
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