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Introduction

Metropolis-Hastings

@ Objective: Sample distribution 7, : R” — RT.
@ Method: Construct Markov chain reversible w.r.t. 7, and
simulate up to stationarity.

1. Propose move X — Y according to user-specified
gn(X,dY) = gn(X, Y)dY
2. Accept Y with probability

mn(Y)an(Y, X)

(X, Y) = 1A R an(X, Y)

otherwise stay at X.

3. Simulate X", X . up to equilibrium.



Local MCMC Algorithms

@ Proposed move could be:
Y=X++vhZ, Z~ N(,lIp)
giving Random-Walk Metropolis (RWM) algorithm.

@ It could also be: b
Y =X+ E”vmgﬂ,,()() +vhn Z

giving Metropolis-adjusted Langevin algorithm (MALA).

@ Goldilocks Principle:
Step-size h, should neither be "too small" or "too big".



Introduction

Goldilocks Principle

hy =100, a; = 0.085 hy =0.01, a1 = 0.975
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Introduction

Some Questions

@ What is the "optimal" choice of h,, a,?
@ What is the limiting behaviour of MCMC as n — oo?

@ Adaptive schemes have tried to address hj, selection
dynamically (e.g. Haario, Atchad, Roberts, Rosenthal,
Andrieu, Moulines).

@ Here we look at non-dynamic setting.
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Overview

Results

@ Consider iid target distribution
7n(X) = NP4 £(x)
and apply RWM, MALA for h, = | x At.
@ Scale step-size as:
RWM: At=n"" MALA: At=n"'3

and bring MCMC points close:

At Trejectory of first co-ordinate
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Results

@ Theorem (Roberts et al., 97; Roberts & Rosenthal, 98)

Continuous time process x{[t/A1]) converges weakly to:

‘;’; = 3 5(/) (log f)' (x) + \/s(/) ddl/tV

for speed function:
s(l) = PPa(l)

where a(/) is limiting acceptance probability:

all) = Iirrp Elan(x,y)] €(0,1)



Overview
Remarks

@ MCMC similar (for large n) to Euler scheme on diffusion.

@ Speed function s(/) is maximised for

RWM : a(/) = 0.234
MALA : a(l) = 0.574

@ ‘Mixing’ cost of algorithms is O(At~"), so:

RWM : n
MALA : n'/3



Remarks: Optimality

@ Efficiency can be compared in terms of
integrated autocorrelation time:

g(hn) =1+ Corr(g(x(), g(xV))
j=1
so that:

Y g(x(’)))  Varlg(x)]

Var( 7 A 7

XTg

@ Because of diffusion limit we can factorise:

(rg(hn)) " ~ s(I) cq x At
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Recent Results

Generalizing

@ We considered targets:

() ox exp(~91(X))

where .
_H 1 Xi ) ik
o i—1 )‘if(Ai), =

@ RWM: h,=1xn2~1 MALA: hy =[x n=2-=1/3
@ We use mean square jump:

M(n) = E |xU+1) — x()}2



Recent Results

Results

e Consider the norm || X|s = (27:1 25x2)

@ Assume that ¢, is such that:
Op(X) > M
[n(Y) — n(X)| < L(IX][s, I Y1ls)
[®n(X)] < C(1 + ([ X]ls~)

|X* YHs'

for L continuous, and s,s’,s" < k —1/2.
@ Then, we can factorise out s(/):

MALA : M(n) = s(l) x n=2~=1/3
RWM : M(n) = s(l) x n=2<"



Recent Results
More Results

@ Target is on Hilbert space:

o
dmo

with 79 ~ N(0, C).

(X) = exp{—(X)}

o Ce,- = A,?e,-, A= i~
@ MCMC trajectory on discretised space converges to SPDE:

ax aw

= 88 (~X = CVe(X)) + V/s() C ~-

@ Pillai & Stuart, 09.
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Examples

Conditioned Diffusions

@ Sample X = X(u):

aX dw

U =9(X)+~ U

@ Conditioned on:
o Diffusion bridge: X(0) and X (1) (Molecular Dynamics)
e Interpolate data: X(iA)fi0 (Econometrics)

o Noisy observation of X(u) (Signal Filtering)



Examples

Data Assimilation

@ Navier-Stokes inverse problem for fluid dynamics.
@ Sample X, € L?(Q, R?) initial condition for PDE:

X
%—G—X-VX:I/AX—I-Q, X(0)=Xp .

@ Conditioned on (Lagrangian) observations:

az;
71{ :X(Zja t)a Zj(o):Zj,O 5
Yik = Zj(tc) + N(O, %) -

@ (Assuming Gaussian prior on Xj.)
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Summary

@ We studied complexity of Local MCMC algorithms in high
(sometimes infinite!) dimensions.

@ Obtained interpretation of RWM and MALA as Euler
approximations of a diffusion.

@ Diffusion limit allows for uniform optimization.
@ Results can be extended to non-trivial targets.

@ Non-product targets can give SPDE limits.



Some Further Directions

@ Proving SPDE led to development of new framework for
proving convergence.

@ New framework avoids enormous complexities with using
generators.

@ In the case of RWM and MALA it avoids many of the
conditions required in previous works.

@ We are currently applying new framework to Hybrid
Monte-Carlo algorithm, with evidence of hypoelliptic
diffusion limit.



References

@ Bédard, M. (07)
Weak Convergence of Metropolis Algorithms for Non-iid Target Distributions, Ann. Appl. Probab. 17,
1222-44.

@ Beskos, A., Pillai, N., Roberts, G., Stuart, A. (09)
Optimal Tuning of Hybrid Monte Carlo, in progress.

@ Beskos, A., Roberts, G., Stuart, A. (09)
Optimal scalings for local Metropolis-Hastings chains on non-product targets in high dimensions, to appear
in Ann. Appl. Probab..

@ Pillai, N., Stuart, A. (09)
SPDE Limits of Rescaled Random Walk Metropolis Algorithm in Hilbert Spaces, in progress.

@ Roberts, G., Gelman, A., Gilks, W. (97)
Weak convergence and optimal scaling of random walk Metropolis algorithms, Ann. Appl. Probab., 7,
110-120.

@ Roberts, G., Rosenthal, J. (98)
Optimal scaling of discrete approximations to Langevin diffusions, JRSSB, 60, 255-268.



	Introduction
	Overview
	Recent Results
	Examples
	Sum Up

