Siddhartha Chib, Srikanth Ramamurthy

Introduction

Setup

Approach TaB-MH

Marg Lik

DSGE Applicatio

DSGE application: Ireland04 Example: SW07 TaBMJ AS07

Conclusion

Tailored Multiple-block MCMC Methods for Analysis of DSGE and Other Models

Siddhartha Chib Srikanth Ramamurthy

Washington University in St. Louis

March 2009

Introduction

murthy Introduction

Estimation of DSGE Models

Siddhartha Chib, Srikanth Rama-

Setup

Approach

TaB-MH Marg Lik

DSGE Application

DSGE application: Ireland04 Example: SW07 TaBMJ AS07

Conclusion

- DSGE models are arguably the dominant framework for dealing with macro-economic dynamics
- From our perspective, provide a perfect setting for exploring a number of different MCMC issues because
 - highly nonlinear in the parameters
 - · parameters subject to several linear and nonlinear constraints
 - intensive computation required to calculate the likelihood
 - occurrence of multiple modes
- Maximum likelihood estimates can be unreasonable
- Has led to an interest in Bayesian fitting (for example, Lubik and Schorfheide (2004), Fernandez-Villaverde and Rubio-Ramirez (2004), Smets and Wouters (2007))
- Based on single-block MCMC sampling: neither efficient nor scaleable

Siddhartha Chib, Srikanth Ramamurthy

Introduction

Setup

- Approach
- TaB-MH Marg Lik
- DSGE Application
- DSGE application: Ireland04 Example: SW07 TaBMJ AS07

Conclusion

- We discuss new approaches for simulating the posterior
- Address the blocking problem that is central to this and other MCMC problems

- Approach to handle multiple modes
- Illustrate the ideas in the context of non-DSGE and DSGE models

Siddhartha Chib, Srikanth Ramamurthy

Introduction

Setup

Approach

TaB-MH Marg Lik

DSGE Application

DSGE application: Ireland04 Example: SW07 TaBMJ AS07

Conclusion

Outline of presentation

Setup

- Proposed methods
- Various applications
- Conclusion

Setup

Srikanth Ramamurthy

Estimation of DSGE Models

Siddhartha Chib.

Introductio

Setup

Approach TaB-MH Marg Lik

DSGE Application

DSGE application: Ireland04 Example: SW07 TaBMJ AS07 $\bullet\,$ To understand the context, consider the model in Ireland (2004)

• This model after linearization around the steady state has the form

 $\begin{aligned} \hat{x}_{t} &= \alpha_{x} \hat{x}_{t-1} + (1 - \alpha_{x}) \mathbb{E}_{t} \hat{x}_{t+1} - (\hat{r}_{t} - \mathbb{E}_{t} \hat{\pi}_{t+1}) + (1 - \omega)(1 - \rho_{a}) \hat{a}_{t} \\ \hat{\pi}_{t} &= \beta \alpha_{\pi} \hat{\pi}_{t-1} + \beta (1 - \alpha_{\pi}) \mathbb{E}_{t} \hat{\pi}_{t+1} + \psi \hat{x}_{t} - \hat{e}_{t} \\ \hat{g}_{t} &= \hat{y}_{t} - \hat{y}_{t-1} + \hat{z}_{t} \\ \hat{x}_{t} &= \hat{y}_{t} - \omega \hat{a}_{t} \\ \hat{r}_{t} &= \rho_{r} \hat{r}_{t-1} + \rho_{\pi} \hat{\pi}_{t} + \rho_{g} \hat{g}_{t} + \rho_{x} \hat{x}_{t} + \varepsilon_{r,t} \\ \hat{a}_{t} &= \rho_{a} \hat{a}_{t-1} + \varepsilon_{a,t} \\ \hat{e}_{t} &= \rho_{e} \hat{e}_{t-1} + \varepsilon_{e,t} \\ \hat{z}_{t} &= \varepsilon_{z,t} \end{aligned}$

Siddhartha Chib, Srikanth Ramamurthy

Introduction

Setup

Approach

TaB-MH Marg Lik

DSGE Application

DSGE application: Ireland04 Example: SW07 TaBMJ AS07 Parameters of interest are

 $\boldsymbol{\theta} = (\omega, \alpha_x, \alpha_\pi, \rho_\pi, \rho_g, \rho_x, \rho_a, \rho_e, \sigma_a, \sigma_e, \sigma_z, \sigma_r)$

which are subject to

- the linear constraints S_L : $\{\omega, \alpha_x, \alpha_\pi\} \in (0, 1), \{\rho_\pi, \rho_g, \rho_x\} \in (0, \infty), \{\rho_a, \rho_e\} \in (0, 1)$
- non linear constraints $1 S_{\Omega}$: σ_i^2 lie in the region that satisfy the usual positivity and positive definiteness constraints

6 / 53

• the determinacy constraint S_D (of a unique stable solution)

Conclusion

Siddhartha Chib, Srikanth Ramamurthy

Introduction

Setup

Approach TaB-MH Marg Lik

DSGE Applicatio

DSGE application: Ireland04 Example: SW07 TaBMJ AS07

Conclusion

- To proceed, it is first necessary to solve the model for the endogenous variables and the expectational variables
- This requires that one first express the given model in the form

 $\mathbf{G}_0(\boldsymbol{\theta})\mathbf{s}_t = \mathbf{G}_1(\boldsymbol{\theta})\mathbf{s}_{t-1} + \mathbf{G}_2(\boldsymbol{\theta})\boldsymbol{\varepsilon}_t + \mathbf{G}_3(\boldsymbol{\theta})\boldsymbol{\eta}_t$

イロト イロト イヨト イヨト 二座

where $\mathbf{G}_{j=0}^3$ are matrices of appropriate dimensions involving the parameters $\boldsymbol{\theta}$ of the model

Siddhartha Chib, Srikanth Ramamurthy

Setup

Marg Lik

DSGE ap-

plication: Ireland04 Example: SW07

AS07

• For instance in the Ireland model if we define

$$\begin{aligned} \mathbf{s}_t &= [\hat{y}_t, \hat{r}_t, \hat{\pi}_t, \hat{g}_t, \hat{x}_t, \hat{a}_t, \hat{e}_t, \hat{z}_t, \mathbb{E}_t \hat{\pi}_{t+1}, \mathbb{E}_t \hat{x}_{t+1}] \\ \boldsymbol{\varepsilon}_t &= [\varepsilon_{a,t}, \varepsilon_{e,t}, \varepsilon_{z,t}, \varepsilon_{R,t}]' \\ \boldsymbol{\eta}_t &= [\hat{\pi}_t - \mathbb{E}_{t-1} \hat{\pi}_t, \hat{x}_t - \mathbb{E}_{t-1} \hat{x}_t] \end{aligned}$$

then it can be written as

 $\mathbf{G}_0(\boldsymbol{\theta})\mathbf{s}_t = \mathbf{G}_1(\boldsymbol{\theta})\mathbf{s}_{t-1} + \mathbf{G}_2(\boldsymbol{\theta})\boldsymbol{\varepsilon}_t + \mathbf{G}_3(\boldsymbol{\theta})\boldsymbol{\eta}_t$

イロト イヨト イヨト イヨト 二日

8 / 53

for suitable choices of matrices $G_{i=0}^3$

Siddhartha Chib, Srikanth Ramamurthy

Introduction

Setup

Approach TaB-MH Marg Lik

DSGE Applicatio

DSGE application: Ireland04 Example: SW07 TaBMJ AS07

Conclusion

• One can then solve the model (by a series of computationally intensive steps) to produce a SSM for the state variables of the form

 $\begin{aligned} \mathbf{y}_t &= \mathbf{a}(\theta) + \mathbf{B}(\theta) \mathbf{s}_t \\ \mathbf{s}_t &= \mathbf{D}(\theta) \mathbf{s}_{t-1} + \mathbf{F}(\theta) \varepsilon_t \end{aligned}$

(日) (四) (E) (E) (E) 三

9/53

where $D(\theta)$ and $F(\theta)$ are awkward implicit functions of the model parameters, obtained from the solution, and $\varepsilon_t \sim \mathcal{N}(\mathbf{0}, \Omega)$, Ω p.d.

Siddhartha Chib, Srikanth Ramamurthy

Introduction

Setup

Approach TaB-MH

Marg Lik

DSGE Applicatio

DSGE application: Ireland04 Example: SW07 TaBMJ AS07

Conclusion

• For example, in the Ireland model the SSM has the form

$$\underbrace{\begin{bmatrix} \hat{g}_t \\ \hat{\pi}_t \\ \hat{r}_t \end{bmatrix}}_{\mathbf{y}_t} = \underbrace{\begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \mathbf{s}_t = \mathbf{D}(\theta)\mathbf{s}_{t-1} + \mathbf{F}(\theta)\varepsilon_t \end{bmatrix}}_{\mathbf{B}}$$

where $\boldsymbol{\varepsilon}_t \sim \mathcal{N}_4(\boldsymbol{0}, \boldsymbol{\Omega})$

Siddhartha Chib, Srikanth Ramamurthy

Introduction

- Setup
- Approach TaB-MH
- Marg Lik
- Applicatio
- DSGE application: Ireland04 Example: SW07 TaBMJ AS07

Conclusion

- The modeling, the canonical representation, the solve step and the SSM form, can involve a large number of variables and parameters
- For example, the model of Smets and Wouter (2007) comprises 14 equations in 14 endogenous variables and 7 exogenous driving processes and 36 parameters
- Setting this up in canonical form for the solve step requires a 53 dimensional state vector

Inference

murthy Introduction

Estimation of DSGE Models

Siddhartha Chib, Srikanth Rama-

Setup

Approach

TaB-MH Marg Lik

DSGE Applicatio

DSGE application: Ireland04 Example: SW07 TaBMJ AS07

Conclusion

• Given the SSM, the joint density of the data $\mathbf{y}_{n \times T} = {\mathbf{y}_t}, t = 1, \dots, T$, is, of course calculable as

$$f(\mathbf{y}|\boldsymbol{\theta}) = \prod_{t=1}^{T} \left[\frac{1}{(2\pi)^{n/2} |\boldsymbol{\Sigma}_{t|t-1}|^{1/2}} \times \exp\left\{ -\frac{1}{2} y_{t|t-1}^{\prime} \boldsymbol{\Sigma}_{t|t-1}^{-1} y_{t|t-1} \right\} \right] \mathbf{I}_{\mathcal{S}_{L}}(\boldsymbol{\theta}) \mathbf{I}_{\mathcal{S}_{\Omega}}(\boldsymbol{\theta}) \mathbf{I}_{\mathcal{S}_{D}}(\boldsymbol{\theta})$$

Siddhartha Chib, Srikanth Ramamurthy

Introduction

Setup

Approach TaB-MH Marg Lik

DSGE Applicatio

DSGE application: Ireland04 Example: SW07 TaBMJ AS07 • In the Bayesian context, we focus on the posterior density of ${\pmb heta}$

$\pi(\boldsymbol{ heta}|\mathbf{y}) \propto f(\mathbf{y}|\boldsymbol{ heta}) imes \pi(\boldsymbol{ heta})$

イロト イロト イヨト イヨト 二座

and the question is how this complex distribution should be efficiently summarized

Siddhartha Chib, Srikanth Ramamurthy

Introduction

Setup

TaB-MH

Marg Lik

DSGE Application

DSGE application: Ireland04 Example: SW07 TaBMJ AS07

Conclusion

Tailored Block-MH (TaB-MH) algorithm

- Because of the intensity of the solve step, existing methods have relied on a single block RW-MH sampling approach
- Not efficient or scaleable
- We examine an alternative in which parameters are updated within each MCMC cycle by a sequence of M-H steps over (randomly) constructed blocks
- Blocks are constructed randomly because there is no natural blocking scheme in these models
- In addition, tailored proposal densities are used (following Chib and Greenberg (1994, 1995))
- To account for possible irregularities, tailoring is done by simulated annealing (Chib and Ergashev (2008))

Siddhartha Chib, Srikanth Ramamurthy

Introductio

occup

TaB-MH

DSGE Applicatio

DSGE application: Ireland04 Example: SW07 TaBMJ AS07

Conclusion

Algorithm: TaB-MH

- Initialize $\theta^{(0)} \in S_L \cap S_\Omega \cap S_D$ and fix n_0 (the burn-in) and M (the MCMC sample size)
- **2** Randomly generate blocks $(\theta_{j,1}, \theta_{j,2}, \dots, \theta_{j,p_j})$
- **③** Sample each block $\theta_{j,l}$, $l = 1, ..., p_j$, by a M-H step with a tailored proposal density
- Repeat Steps 2-3 n₀ + M times, discard the draws from the first n₀
 iterations and save the subsequent M draws θ^(n₀+1),...,θ^(n₀+M)

Marginal Likelihood

murthy Introduction

Estimation of DSGE Models

Siddhartha Chib, Srikanth Rama-

Setup

Approach TaB-MH

Marg Lik

DSGE Application

DSGE application: Ireland04 Example: SW07 TaBMJ AS07

Conclusion

- Interestingly, the framework of Chib (1995), and its M-H version in Chib and Jeliazkov (2001), can be applied in this setting, with suitable modifications to accommodate randomized blocking
- Starting point is the identity

$$m(\mathbf{y}) = rac{f(\mathbf{y}|oldsymbol{ heta}^*)\pi(oldsymbol{ heta}^*)}{\pi(oldsymbol{ heta}^*|\mathbf{y})},$$

where the terms in the numerator are readily available

• Posterior ordinate estimated from a marginal-conditional decomposition

Siddhartha Chib, Srikanth Ramamurthy

Introduction

Setup

Approach

Marg Lik

DSGE Applicatio

DSGE application: Ireland04 Example: SW07 TaBMJ AS07

Conclusion

Example: Dynamic Factor Model

Suppose

 $\begin{aligned} \mathbf{y}_t &= \mathbf{a} + \mathbf{B}\mathbf{s}_t + \mathbf{u}_t \\ \mathbf{s}_t &= \mathbf{G}\mathbf{s}_{t-1} + \varepsilon_t \end{aligned}$

where \mathbf{y}_t is a 10 × 1 vector of observables at time t, \mathbf{s}_t is a 5 × 1 vector of time-t unobserved (latent) states, **a**, **B** and **G** are matrices of appropriate dimensions, $\mathbf{u}_t \sim \mathcal{N}_{10}(\mathbf{0}, \mathbf{\Sigma})$ and $\boldsymbol{\varepsilon}_t \sim \mathcal{N}_{5}(\mathbf{0}, \mathbf{\Omega})$.

Siddhartha Chib, Srikanth Ramamurthy

Introduction

Approacl

TaB-MH Marg Lik

DSGE Applicatio

DSGE application: Ireland04 Example: SW07 TaBMJ AS07 Identification restrictions and parameter constraints

- G is diagonal
- $\mathbf{B}_{i,i} = 1$ for i = 1, ..., 5, $\mathbf{B}_{i,j} = 0$ for i, j = 1, ..., 5, j > i,
- $\boldsymbol{\Sigma} = \text{diag}\{\sigma_i^2\}_{i=1}^{10}$
- $\bullet \ \Omega = I_5.$
- reparameterize Σ as

$$\mathbf{\Sigma}^* = \mathsf{diag}\{\sigma_i^{2*}\}_{i=1}^{10}; \qquad \sigma_i^{2*} \in \mathcal{R}$$

where $\sigma_i^2 = \exp\left(\sigma_i^{2*}\right)$

- stationarity restriction: $\Theta_{\mathcal{S}} = \{ \theta : abs(eig(G)) < 1 \}$
- This leads to 60 unknown parameters that we collect in the vector ${m heta}$

Estimation	
of DSGE	
Models	

Siddhartha Chib, Srikanth Ramamurthy

Introduction

Setup

Approach

TaB-MH

Marg Lik

DSGE

DSGE application: Ireland04

Example: SW07 TaBMJ

Conclusion

Param.			DGP		
$\mathbf{G}_{1,1},\ldots,\mathbf{G}_{5,5}$	0.80	0.20	0.75	0.60	0.10
$a_1,, a_5$	0.20	1.40	1.80	0.10	0.90
a_6,\ldots,a_{10}	1.00	2.00	0.10	2.20	1.50
В	1.00	—	—	—	_
	0.50	1.00	_	_	_
	0.60	0.00	1.00	_	_
	0.00	0.20	-0.10	1.00	_
	-0.20	0.00	-0.70	0.00	1.00
	0.00	0.00	-0.40	-0.50	0.00
	0.30	0.20	0.00	0.00	-0.30
	-0.50	0.00	0.00	0.60	0.00
	0.00	-0.50	0.30	-0.10	0.00
	0.00	0.00	0.20	0.00	-0.40
$\sigma_1^2,, \sigma_5^2$	1.00	0.30	1.00	0.20	0.60
$\sigma_6^2,\ldots,\sigma_{10}^2$	0.50	1.00	1.00	0.75	0.60

Table 1-DGP for parameters in SSM example

Note: Prior variance in paranthesis.

Siddhartha Chib, Srikanth Ramamurthy

• For notational convenience, denote

Introduction

Setup

Approach

TaB-MH Marg Lik

DSGE

Application DSGE application: Ireland04

Example SW07 TaBMJ AS07

Conclusion

 $\begin{aligned} &\theta_1 = \mathsf{vecr}(\{\mathsf{G}_{i,i}\}) \\ &\theta_2 = \mathsf{a} \\ &\theta_3 = \mathsf{vecr}(\{\mathsf{B}_{i,j}\}), i, j = 2, \dots, 5, j < i \\ &\theta_4 = \mathsf{vecr}(\{\mathsf{B}_{i,j}\}), i = 6, \dots, 10, j = 1, \dots, 5 \\ &\theta_5 = \{\sigma_i^{2*}\}_{i=1}^{10} \end{aligned}$

and let

$$\begin{split} \pi(\boldsymbol{\theta}) &= \mathcal{N}(\boldsymbol{\theta}_1 | \mathbf{g}_0, \mathbf{V}_g) \mathcal{N}(\boldsymbol{\theta}_2 | \mathbf{a}_0, \mathbf{V}_a) \mathcal{N}(\boldsymbol{\theta}_3 | \boldsymbol{\theta}_{30}, \mathbf{V}_{\theta_3}) \times \\ & \mathcal{N}(\boldsymbol{\theta}_4 | \boldsymbol{\theta}_{40}, \mathbf{V}_{\theta_4}) \mathcal{N}(\boldsymbol{\theta}_5 | \boldsymbol{\sigma}_0^*, \mathbf{V}_{\boldsymbol{\sigma}^*}) \mathbf{I}_{\boldsymbol{\Theta}_S}. \end{split}$$

・ロ 、 () , () , (

Three MCMC schemes compared

murthy Introduction

Estimation of DSGE Models

Siddhartha Chib, Srikanth Rama-

Jetup

T₂R₋MF

Marg Lik

DSGE Application

DSGE application: Ireland04 Example: SW07 TaBMJ AS07

Conclusion

- TaB-MH: fully randomized blocks run for 1,000 + 10,000 iterations
- FBTab-MH: fixed blocks with $\theta = (\theta'_1, \theta'_2, \theta'_3, \theta'_4, \theta'_5)'$ run for 1,000 + 10,000 iterations
- RW-MH: single block sampler tuned to generate an acceptance rate of 30% run for 250,000 + 1 million iterations

Siddhartha Chib, Srikanth Ramamurthy

Introduction

Setup

Approach

Marg Lik

DSGE Applicatio

DSGE application: Ireland04 Example: SW07 TaBMJ AS07

Conclusion

Summary of results: inefficiency factors

- TaB-MH: inefficiency factors between 2 and 42, average of 10
- FBTaB-MH: inefficiency factors between 3 and 168, average of 38
- RW-MH: inefficiency factors between 632 and 5000, average of 2130

Siddhartha Chib, Srikanth Ramamurthy

Introduction

Setup

Approach

TaB-MH

Marg Lik

DSGE Applicatio

DSGE application: Ireland04 Example: SW07 TaBMJ AS07

Conclusion

ク Q (や 23 / 53

-2

・ロト ・四ト ・ヨト ・ヨト

Example: Ireland04

24 / 53

murthy Introduction

Estimation of DSGE Models

Siddhartha Chib, Srikanth Rama-

Setup

TaB-MH Marg Lik

DSGE Application

DSGE application: Ireland04

Example SW07 TaBMJ AS07

Conclusion

- First, we start three different RW chains, each of length 250,000 following a burn-in of 50,000 iterations
- One at the prior mean, one at a local mode and the third at the dominant mode
- Also three different variance-covariance matrices for the proposal $k \times I_{12}$ for chain I and k times the variance at the modes for chains II and III.

Siddhartha Chib, Srikanth Ramamurthy

Introduction

Setup

Approach

TaB-MH Marg Lik

DSGE Applicat

DSGE application: Ireland04 Example: SW07

SW07 TaBMJ AS07

Conclusion

Table 1–Summary of results from three RW-MH chains for the parameters in Ireland (2004) model

	Ch	Chain I		Chain II		ain III
Parameter	start	post mean	start	post mean	start	post mean
ω	0.2000	0.0701	0.0589	0.1498	0.1058	0.1046
α_x	0.1000	0.0651	0.0612	0.0823	0.0629	0.0792
α_{π}	0.1000	0.0825	0.0443	0.0809	0.0605	0.0800
ρ_{π}	0.3000	0.6079	0.2934	0.5886	0.5515	0.5471
$ ho_g$	0.3000	0.4022	0.3201	0.3722	0.3593	0.3767
ρ_x	0.2500	0.1825	0.2742	0.1979	0.1760	0.2034
ρ_a	0.8500	0.9583	0.5179	0.8694	0.9334	0.9340
$ ho_e$	0.8500	0.8843	0.8858	0.8838	0.8874	0.8629
$10000\sigma_{a}^{2}$	30.0000	29.4853	0.3627	4.8860	13.6777	16.2229
$10000\sigma_e^2$	0.0800	0.0077	0.0037	0.0066	0.0060	0.0069
$10000\sigma_{z}^{2}$	5.0000	3.6314	0.4287	0.7947	0.6977	0.7657
$10000\sigma_{r}^{2}$	0.5000	0.1041	0.1088	0.0967	0.0857	0.0982

Siddhartha Chib, Srikanth Ramamurthy

Introduction Setup

Approach TaB-MH Marg Lik

DSGE Applicatio

DSGE application: Ireland04

Example: SW07 TaBMJ AS07

1 30.6 1 6 30.1 .8 .8 4 29.6 .6 .6 .4 29.1 .4 28.6 .2 .2 50k 150k 250k 50k 150k 250k 0 50k 150k 250k 250k 50k 150k(b) $10^4 \times \sigma_a^2$ (d) $10^4 \times \sigma_a^2$ (a) ρ_{π} (c) *ρ*_π _ 1 1 1 .75 .75 .75 .75 .5 .5 .5 .5 .25 .25 .25 .25 0 0 0 0 200 100 200 200 100 200 100 100 đ đ d Ó (f) $10^4 \times \sigma_a^2$ (h) $10^4 \times \sigma_a^2$ (e) ρ_π (g) ρ_π

Results from Tab-MH

(日) (部) (注) (注) (三)

murthy Introduction

Estimation of DSGE Models

Siddhartha Chib, Srikanth Rama-

Setup

- Approach TaB-MH Marg Lik
- DSGE Applicatio

DSGE application: Ireland04

Example SW07 TaBMJ AS07

Conclusion

- Chain initialized at prior mean
- Degrees of freedom for *t*-proposal: $\nu = 15$
- Simulation length 11,000; first 1000 draws discarded as burn-ins

Siddhartha Chib, Srikanth Ramamurthy

Introduction

Setup

A	p	р	o	a	с
	_	-			

TaB-MH Marg Lik

DSGE Applicat

DSGE application: Ireland04 Example: SW07

TaBM. AS07

Conclusion

Table 2–Posterior sampling results using the TAB-MH algorithm for the Ireland (2004) model

	I	Prior Posterior				
		Standard		Numerical	90 percent	Inefficiency
Parameter	Mean	deviation	Mean	S.E.	interval	factors
ω	0.20	0.10	0.1089	0.0010	[0.0381,0.2036]	5.2791
α_x	0.10	0.05	0.0778	0.0006	[0.0186,0.1669]	2.7625
α_{π}	0.10	0.05	0.0807	0.0009	[0.0184,0.1819]	4.9731
$ ho_{\pi}$	0.30	0.10	0.5522	0.0023	[0.3341,0.7767]	4.1913
ρ_g	0.30	0.10	0.3747	0.0011	[0.2751,0.4867]	3.9146
ρ_x	0.25	0.0625	0.2001	0.0016	[0.1108,0.3134]	9.2058
$ ho_a$	0.85	0.10	0.9310	0.0008	[0.8814,0.9662]	15.013
$ ho_e$	0.85	0.10	0.8674	0.0016	[0.7582,0.9555]	9.7198
$10000\sigma_{a}^{2}$	30.00	30.00	15.7994	0.3784	[6.0171,38.228]	15.814
$10000\sigma_{e}^{2}$	0.08	1.00	0.0068	0.0000	[0.0041,0.0107]	6.2913
$10000\sigma_{z}^{2}$	5.00	15.00	0.7633	0.0030	[0.4785,1.1145]	3.1988
$10000\sigma_{r}^{2}$	0.50	2.00	0.0969	0.0005	[0.0635,0.1443]	6.3380

Siddhartha Chib, Srikanth Ramamurthy

Introduction Setup

Approach TaB-MH Marg Lik

DSGE Applicatio

DSGE application: Ireland04 Example: SW07

SW07 TaBMJ AS07 0.08 300 2.5 25 2 20 0.06 225 1.5 15 0.04 150 10 1 0.02 75 .5 5 0 0 0 0 0 25 50 75 100 0 .025 .05 .075 .1 0 2.5 5 7.5 10 0 .25 .5 .75 1 (a) $10^4 \times \sigma_a^2$ (c) $10^4 \times \sigma_z^2$ (d) $10^4 \times \sigma_r^2$ (b) $10^4 \times \sigma_e^2$ 1 1 1 .75 .75 .75 .75 .5 .5 .5 .5 .25 .25 .25 .25 0 0 0 0 100 200 0 100 200 100 200 100 200 0 0 0 (e) $10^4 \times \sigma_a^2$ (f) $10^4 \times \sigma_e^2$ (g) $10^4 \times \sigma_z^2$ (h) $10^4 \times \sigma_r^2$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Marginal likelihood

30 / 53

murthy Introduction

Estimation of DSGE Models

Siddhartha Chib, Srikanth Rama-

Setup

Approach TaB-MH Marg Lik

DSGE Applicatio

DSGE application: Ireland04

Example SW07 TaBMJ AS07

Conclusion

- We consider the effect of varying the number of blocks (stages), as well as the sample size (n_1) in the reduced MCMC runs, on the marginal likelihood estimate (and the resulting numerical standard error)
- Report results from both two stage and 3 stage decompositions of the posterior ordinate
 - Based on 5,000, 10,000 and 15,000 draws in the reduced runs
- Also compare the results to the estimate of the marginal likelihood under the RW-MH algorithm (1 stage)

Based on 75,000, 150,000 and 250,000 draws

Siddhartha Chib, Srikanth Ramamurthy

Introduction

Setup

Approact

TaB-MH Marg Lik

DSGE

Application DSGE ap-

plication: Ireland04 Example: SW07

TaBMJ AS07

Conclusion

Table – Log marginal likelihood estimates (with numerical standard errors) for the Ireland (2004) model based on the output from the TaB-MH and RW-MH algorithms

TaB-MH		RW	-MH
2 stage	3 stage	n_1	1 stage
1170.08	1170.26	75,000	1169.89
(0.0324)	(0.0400)		(0.6121)
1170.18	1170.29	150,000	1170.55
(0.0268)	(0.0302)		(0.5884)
1170.15	1170.33	250,000	1170.84
(0.0216)	(0.0250)		(0.4839)
	TaB-MH 2 stage 1170.08 (0.0324) 1170.18 (0.0268) 1170.15 (0.0216)	TaB-MH 2 stage 3 stage 1170.08 1170.26 (0.0324) (0.0400) 1170.18 1170.29 (0.0268) (0.0302) 1170.15 1170.33 (0.0216) (0.0250)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Example: SW07

murthy Introduction

Estimation of DSGE Models

Siddhartha Chib, Srikanth Rama-

Setup

Approach

Marg Lik

DSGE Application

DSGE application: Ireland04

Example: SW07 TaBMJ

Conclusion

• Large scale model: 53 dimensional state vector and 36 parameters

- Locating the posterior mode is challenging to say the least
 - Modal ordinate found using SA is around -877.72 in the log scale
 - In contrast, the modal ordinate reported in SW07 is around -906.29
 - TaB-MH explores even higher regions

Posterior sampling

33 / 53

murthy Introduction

Estimation of DSGE Models

Siddhartha Chib, Srikanth Rama-

Setup

- Approach TaB-MH Marg Lik
- Application

DSGE application: Ireland04

Example: SW07 TaBMJ AS07

Conclusion

- Similar values chosen for SA parameters as in Ireland model
- Degrees of freedom in t proposal density set to 10
- Sampler initialized at prior mean and run for 10,000 iterations following a burn-in of 1,000 iterations

SW07: Results

34 / 53

murthy Introduction

Estimation of DSGE Models

Siddhartha Chib, Srikanth Rama-

Setup

Approach TaB-MH Marg Lik

- DSGE
- DSGE application: Ireland04

Example: SW07 TaBMJ AS07

Conclusion

- Posterior ordinate at mean of TaB-MH sample substantially higher than that at the mean of the SW07 RW-MH sample (-871.66 compared to -888.84)
- In effect, $\bar{\pi}$ and \bar{l} significantly different
- 90 percent intervals of the TaB-MH sample wider than that of the RW-MH sample
- Autocorrelations among the sample draws orders of magnitude higher in the RW-MH sample

Siddhartha Chib, Srikanth Ramamurthy

Introduction

Setup

Approach

Marg Lik

DSGE

Applicatio

DSGE application: Ireland04

Example: SW07

AS07

Conclusion

Table – Summary of posterior ordinates at the mode and mean in the Smets and Wouters (2007) model

	SW07	SA/TaB-MH
Mode	-906.29	-877.72
Mean	-888.84	-871.66

Siddhartha Chib, Srikanth Ramamurthy

Introduction

Approac

TaB-MH Marg Lik

DSGE

DSGE ap-

plication: Ireland04

Example: SW07 TaBMJ AS07

Conclusion

Table - Posterior summary: structural parameters in SW07 model

	SW0	7 Posterior		TaB-MH Posterior			
		90 percent		90 percent Ineff			
Parameter	Mean	interval	Mean	interval	factors		
φ	5.74	[3.97,7.42]	5.77	[3.69 ,8.06]	9.73		
σ_c	1.38	[1.16, 1.59]	1.36	[1.03 ,1.71]	12.14		
h	0.71	[0.64,0.78]	0.75	[0.66 ,0.82]	15.64		
ξ_w	0.70	[0.60,0.81]	0.65	[0.52 ,0.79]	54.28		
σ_l	1.83	[0.91,2.78]	1.98	[0.96 ,3.21]	28.79		
ξ_p	0.66	[0.56,0.74]	0.62	[0.49 ,0.75]	45.22		
ι_w	0.58	[0.38,0.78]	0.59	[0.31 ,0.83]	8.65		
ι_p	0.24	[0.10,0.38]	0.23	[0.08 ,0.41]	18.13		
ψ	0.54	[0.36,0.72]	0.59	[0.36 ,0.81]	5.93		
Φ	1.60	[1.48,1.73]	1.57	[1.42,1.74]	6.44		
r_{π}	2.04	[1.74,2.33]	2.00	[1.64 ,2.37]	11.21		
ho	0.81	[0.77,0.85]	0.80	[0.75 ,0.85]	11.42		
r_y	0.08	[0.05,0.12]	0.08	[0.03 ,0.13]	26.12		
$r_{\Delta y}$	0.22	[0.18,0.27]	0.23	[0.17 ,0.29]	5.68		
$\bar{\pi}$	0.78	[0.61,0.96]	0.66	[0.48 ,0.85]	3.81		
$100(\beta^{-1}-1)$	0.16	[0.07,0.26]	0.16	[0.06 ,0.29]	6.09		
ī	0.53	[-1.3,2.32]	0.95	[-0.07,2.56]	9.39		
$ar{\gamma}$	0.43	[0.40,0.45]	0.41	[0.37 ,0.46]	9.51		
α	0.19	[0.16,0.21]	0.19	[0.15 ,0.23]	4.68		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

36 / 53

Siddhartha Chib, Srikanth Ramamurthy

Introductior

Setup

TaB-MH

Marg Lik

Application

DSGE application: Ireland04

Example: SW07 TaBMJ AS07

Conclusio

Table - Posterior summary: shock parameters in SW07 model

	SW07	7 Posterior		TaB-MH Posterior			
		90 percent		90 percent	Inefficiency		
Parameter	Mean	interval	Mean	interval	factors		
σ_a	0.45	[0.41,0.50]	0.46	[0.41,0.53]	4.17		
σ_b	0.23	[0.19,0.27]	0.25	[0.18,0.30]	15.23		
σ_{g}	0.53	[0.48,0.58]	0.53	[0.47,0.59]	2.57		
σ_{I}	0.45	[0.37,0.53]	0.43	[0.34,0.55]	33.14		
σ_r	0.24	[0.22,0.27]	0.25	[0.22,0.28]	4.30		
σ_p	0.14	[0.11,0.16]	0.14	[0.10,0.18]	14.89		
σ_w	0.24	[0.20,0.28]	0.26	[0.21,0.32]	11.62		
$ ho_a$	0.95	[0.94,0.97]	0.96	[0.93,0.98]	6.15		
ρ_b	0.22	[0.07,0.36]	0.21	[0.04,0.49]	24.42		
ρ_g	0.97	[0.96,0.99]	0.98	[0.96,0.99]	7.53		
ρ_I	0.71	[0.61,0.80]	0.74	[0.61,0.86]	37.54		
ρ_r	0.15	[0.04,0.24]	0.15	[0.04,0.30]	6.64		
$ ho_p$	0.89	[0.80,0.96]	0.89	[0.75,0.98]	48.92		
ρ_w	0.96	[0.94,0.99]	0.98	[0.96, 1.00]	21.80		
μ_p	0.69	[0.54,0.85]	0.66	[0.38,0.84]	38.23		
μ_w	0.84	[0.75,0.93]	0.83	[0.63,0.94]	43.72		
$ ho_{ga}$	0.52	[0.37,0.66]	0.50	[0.32,0.69]	2.61		

Siddhartha Chib, Srikanth Ramamurthy

Introduction

Setup

TaB-MH Marg Lik

DSGE

DSGE application: Ireland04

Example: SW07 TaBMJ AS07

Conclusion

ク Q (や 38 / 53

Siddhartha Chib, Srikanth Ramamurthy

Introduction

Setup

Approach TaB-MH Marg Lik

DSGE Application

DSGE application: Ireland04 Example: SW07

TaBMJ AS07

Conclusion

Extension to multi-modal problems

- For simplicity, consider sampling a bimodal distribution
- Assume that the modal values have been found by initial optimization
- Let the location of the two modes be μ_1 and μ_2
- $\bullet\,$ Also, let ${\sf V}_1$ and ${\sf V}_2$ denote the inverse of the negative Hessian at the two modes

Siddhartha Chib, Srikanth Ramamurthy

Introduction

Setup

Approach TaB-MH Marg Lik

DSGE Applicatio

DSGE application: Ireland04 Example: SW/07

 α

TaBMJ AS07

Conclusion

• Now TaB-MH algorithm is used as above

• But every few (say a 100) iterations we generate a proposal θ^{\dagger} from the mixture density

$$q(\boldsymbol{\theta}|\mathbf{y}) = p t(\boldsymbol{\theta}|\boldsymbol{\mu}_1, \mathbf{V}_1, \nu_1) + (1-p) t(\boldsymbol{\theta}|\boldsymbol{\mu}_2, \mathbf{V}_2, \nu_2),$$

which we accept with probability

$$\begin{aligned} & (\boldsymbol{\theta}, \boldsymbol{\theta}^{\dagger} | \mathbf{y}) = \\ & \min \left\{ \frac{f(\mathbf{y} | \boldsymbol{\theta}^{\dagger}) \pi(\boldsymbol{\theta}^{\dagger})}{f(\mathbf{y} | \boldsymbol{\theta}) \pi(\boldsymbol{\theta})} \frac{p \, t(\boldsymbol{\theta} | \boldsymbol{\mu}_{1}, \mathbf{V}_{1}, \boldsymbol{\nu}_{1}) + (1 - p) \, t(\boldsymbol{\theta} | \boldsymbol{\mu}_{2}, \mathbf{V}_{2}, \boldsymbol{\nu}_{2})}{p \, t(\boldsymbol{\theta}^{\dagger} | \boldsymbol{\mu}_{1}, \mathbf{V}_{1}, \boldsymbol{\nu}_{1}) + (1 - p) \, t(\boldsymbol{\theta}^{\dagger} | \boldsymbol{\mu}_{2}, \mathbf{V}_{2}, \boldsymbol{\nu}_{2})}, 1 \right\} \end{aligned}$$

Siddhartha Chib, Srikanth Ramamurthy

Introduction

Setup

Approach TaB-MH Marg Lik

DSGE Applicatio

DSGE application: Ireland04 Example: SW07

TaBMJ AS07

Conclusion

Example: Two component mixture of six dimensional normals

• Pick a modal value (μ_1) from AS07 model and set the other mode (μ_2) to $15\times\mu_1$

 μ_1 : (1.41, 0.81, 0.49, 0.80, 1.07, 0.30) μ_2 : (21.15, 12.15, 7.35, 12.00, 16.05, 4.50)

- Also variance equated to the reduced variance at the two modes in AS07 model
- Target density

 $f_X(x) = 0.2 \mathcal{N}(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1) + 0.8 \mathcal{N}(\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2)$

Siddhartha Chib, Srikanth Ramamurthy

Introduction

Setup

Approach TaB-MH Marg Lik

DSGE Applicatio

DSGE application: Ireland04

Example: SW07 TaBMJ

AS07

Conclusion

- TaBMJ-MH algorithm sampler initialized at μ_2
- p = 0.5, $\nu = 5$ in usual TaB-MH step, $\nu = 5$ in mode jumping step
- Sampler run for 25,000 iterations without any burn-ins (for illustration purposes)

(日) (部) (注) (注) (三)

42 / 53

Siddhartha Chib, Srikanth Ramamurthy

Introduction Setup

Approad

TaB-MH Marg Lik

DSGE Applicatio

DSGE application: Ireland04 Example: SW07

TaBMJ AS07

Conclusion

Example: AS07

44 / 53

murthy Introduction

Estimation of DSGE Models

Siddhartha Chib, Srikanth Rama-

Setup

Approach TaB-MH Marg Lik

DSGE Application

DSGE application: Ireland04 Example: SW07 TaBMJ AS07

Conclusion

• 13 parameter model

- Possibly multi-modal posterior two distinct separated modal regions
- Difference in (unnormalized) posterior ordinate 8 in log scale
- RW-MH sampler only explores the posterior locally in individual modal regions even when run for a million iterations

Siddhartha Chib, Srikanth Ramamurthy

• The output growth version of the DSGE model in AS07 is given by

$$\begin{split} \hat{y}_{t} &= \mathbb{E}_{t} \hat{y}_{t+1} + \hat{g}_{t} - \mathbb{E}_{t} \hat{g}_{t+1} - \frac{1}{\tau} (\hat{r}_{t} - \mathbb{E}_{t} \hat{\pi}_{t+1} - \mathbb{E}_{t} \hat{z}_{t+1}) \\ \hat{\pi}_{t} &= \beta \mathbb{E}_{t} \hat{\pi}_{t+1} + \kappa (\hat{y}_{t} - \hat{g}_{t}) \\ \hat{c}_{t} &= \hat{y}_{t} - \hat{g}_{t} \\ \hat{r}_{t} &= \rho_{r} \hat{r}_{t-1} + (1 - \rho_{r}) \psi_{1} \hat{\pi}_{t} + (1 - \rho_{r}) \psi_{2} (\triangle \hat{y}_{t} + \hat{z}_{t}) + \varepsilon_{r,t} \\ \hat{g}_{t} &= \rho_{g} \hat{a}_{t-1} + \varepsilon_{g,t} \\ \hat{z}_{t} &= \rho_{z} \hat{z}_{t-1} + \varepsilon_{z,t} \end{split}$$

イロト イロト イヨト イヨト 二座

45 / 53

Example: SW07 TaBMJ AS07

Marg Lik

DSGE application:

. . .

Siddhartha Chib. Srikanth Ramamurthy

- Marg Lik
- DSGE ap-AS07

- n = 80 observations simulated from the model
- Outcomes assumed to be guarterly observations on
 - per capita GDP growth rates $\hat{Y}_t = \gamma^Q + 100(\hat{y}_t \hat{y}_{t-1} + \hat{z}_t)$ annualized inflation rates $\pi_t = \pi^A + 400\hat{\pi}_t$

 - **3** annualized nominal interest rate $r_t = \pi^A + r^A + 4\gamma Q + 400\hat{r}_t$

where γ^Q , r^A , and π^A are related to the steady states of the relevant variables

Conclusion

Siddhartha Chib, Srikanth Ramamurthy

Introduction

Setup

A	PI	or		C	h	
1	Га	В	- 1	Л	Н	

DSGE

Application DSGE application: Ireland04 Example: SW07 TaBMJ AS07

Conclusion

Table – DGP and prior distribution for the model parameters in An and Schorfheide (2007)

		Prior				
				Standard		
Parameter	DGP	Density	Mean	deviation		
au	2.00	Gamma	2.00	0.50		
κ	0.15	Gamma	0.20	0.10		
ψ_1	1.50	Gamma	1.50	0.25		
ψ_2	1.00	Gamma	0.50	0.25		
$ ho_r$	0.60	Beta	0.50	0.20		
$ ho_g$	0.95	Beta	0.80	0.10		
ρ_z	0.65	Beta	0.66	0.15		
r^A	0.40	Gamma	0.50	0.50		
π^A	4.00	Gamma	7.00	2.00		
γ^Q	0.50	Normal	0.40	0.20		
σ_r	0.20	Inverse Gamma	0.50	0.26		
σ_g	0.80	Inverse Gamma	1.25	0.65		
σ_z	0.45	Inverse Gamma	0.63	0.33		

Posterior sampling

49 / 53

murthy Introduction

Estimation of DSGE Models

Siddhartha Chib, Srikanth Rama-

Setup

- Approach TaB-MH
- Marg Lik
- DSGE Application
- DSGE application: Ireland04 Example: SW07 TaBMJ AS07

Conclusion

- Sampler initialized at low mode
- TaB-MH step: $\nu = 2$
- TaBMJ-MH step
 - $\nu = 5$
 - Equal probability assigned to both modes
 - Called every 100th iteration
- Sampler run for 10,000 iterations without any burn-in

Siddhartha Chib, Srikanth Ramamurthy

Introduction

Marg Lik

DSGE ap-

AS07

Summary of results

- Jump from the low to the high mode through the TaBMJ-MH step at the 200th iteration
- Reverse jump from the high to the low mode through TaBMJ-MH only once in the 300th iteration
- Occasional visits to the low mode in the TaB-MH steps
- Global exploration of posterior

Siddhartha Chib, Srikanth Ramamurthy

Marg Lik

DSGE application: Ireland04 Example: SW07 TaBMJ AS07

	Posteric	or modes		Posterior			
				Numerical	90 percent	Inefficiency	
Parameter	Mode 1	Mode 2	Mean	S.E.	interval	factors	
au	2.05	1.41	2.12	0.0392	[1.04,3.74]	29.91	
κ	0.16	0.18	0.17	0.0059	[0.03,0.42]	34.54	
ψ_1	1.55	1.57	1.66	0.0149	[1.12,2.42]	19.88	
ψ_2	0.96	0.81	1.00	0.0101	[0.70,1.35]	36.38	
ρ_r	0.59	0.49	0.59	0.0054	[0.41,0.72]	49.38	
ρ_q	0.94	0.97	0.92	0.0033	[0.79,0.98]	41.57	
ρ_z	0.58	0.80	0.54	0.0094	[0.21,0.83]	31.57	
r^A	0.64	0.62	0.68	0.0083	[0.07,1.43]	5.54	
π^A	4.06	4.00	4.16	0.0212	[3.28,5.52]	14.48	
γ^Q	0.50	0.54	0.48	0.0050	[0.11,0.80]	8.655	
σ_r	0.22	0.24	0.23	0.0012	[0.18,0.32]	11.61	
σ_q	0.76	1.07	0.76	0.0120	[0.45,1.33]	28.57	
σ_z	0.54	0.30	0.61	0.0111	[0.30,1.01]	38.86	

Table – Posterior sampling results using the TaBMJ-MH algorithm for the An-Schorfheide (2007) model

Siddhartha Chib, Srikanth Ramamurthy

Introduction Setup

Approach

TaB-MH Marg Lik

DSGE Applicatio

DSGE application: Ireland04 Example: SW07 TaBMJ AS07

Conclusion

murthy Introduction

Estimation of DSGE Models

Siddhartha Chib, Srikanth Rama-

Secup

Approach TaB-MH

Marg Lik

Application

DSGE application: Ireland04 Example: SW07 TaBMJ AS07

Conclusion

• Has opened up the possibility of fitting even larger DSGE models than those currently being fit

- Approach can be applied to Bayesian problems in general
- For example, we have applied it successfully to a 168 dimensional theory-driven yield curve model with multiple change points
- Other applications are ongoing