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Limitations of MCMC

� slow: error is 0(N−1/2), correlation between successive steps.

� local exploration: how to assess convergence if posterior is not

unimodal?

� tedious to tune⇒ these algorithms are not robust.

� bugs are difficult to detect.
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Alternatives

� fast approximations: variational Bayes, Expectation-Propagation,

INLA (see Havard’s talk).

� adaptive MCMC;

� adaptive biasing; e.g. Wang-Landau.

� Sequential Monte Carlo, see e.g. Doucet et al. (2006).
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First case study

Gaussian Mixture model:

p(yi|θ) =
K

∑
k=1

qk

√
vk
2π

exp
{
−
vk
2

(yi − µk)
2
}

µ1, . . . , µK ∼ N(m, s2), v1, . . . , vK ∼ G(a, b)

q1, . . . , qK ∼ Dir(1, . . . , 1)

or equivalently

qk = ωk/(ω1 + . . . + ωK), ω1, . . . ,ωK ∼ Exp(1).
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Hidalgo stamps dataset
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Quotes

Jasra et al. (2005): “ We feel that the Gibbs sampler run with completion is

often not worth programming [...] since the chance of it falling to

converge is too high.”

Celeux et al. (2000): “Although somewhat presumptuous, we consider

that almost the entirety of MCMC implemented for mixture models has

failed to converge.”
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Molecular simulation

Concerns simulation of some continuous-time dynamics, e.g.

dXt = −∇V(Xt)dt + (β/2)−1/2dWt

with associated Boltzmann-Gibbs density:

p(x) ∝ exp {−βV(x)}

(In practice, approximated by long runs of random walk

Hastings-Metropolis.)
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Metastability
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Adaptive biased sampling

Aim is to sample from biased potential function

Ṽ = V − F(ξ)

where F is the free energy, i.e.

p̃(x) ∝ exp
{
−βṼ

}

is such that the margin of ξ is uniform.

At iteration t, perform Hastings-Metropolis move w.r.t.

Ṽt = V − Ft(ξ)

and adjust Ft on the fly.
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Wang-Landau (ABP)

At each iteration t, compute, for ξ in small bin [ek, ek+1]

Ft(ξ) =
1

N

n

∑
i=1

I{ξ(xi) ∈ [ek, ek+1]}

i.e. penalises progressively already visited regions, see e.g. Atchadé and

Liu (2004).
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Adaptive Biasing Force (ABF)

EṼ

[
∂V

∂ξ
−

∂F

∂ξ

]
= 0

Progressively adapt the ‘force’ ∂F
∂ξ , i.e. for ξ ∈ [ek, ek+1]

∂Ft
∂ξ

(ξ) =
1

N

n

∑
i=1

∂V

∂ξ
(xi)I{ξ(xi) ∈ [ek, ek+1]}
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Back to mixture problems

Our findings:

1. ABF outperforms ABP.

2. ‘temperature’ not necessarily the best ξ; certainly not the easiest to

interpret.

3. seems much easier to find ‘stable’ directions, i.e. all symmetric

functions of θ are ‘stable’.

4. but careful with metaphors.
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ξ = q1

1. not symmetric;

2. constrained to [0, 1];

3. Forcing q1 close to one empty other components, and helps

component switching, in a symmetric way;

4. Forcing q1 close to zero: more later.
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Hidalgo, K = 7 (I)
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Hidalgo, K = 7 (II)
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Hidalgo, K = 7 (III)
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Hidalgo, K = 7 (IV)
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Hidalgo, K = 3 (I)
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Hidalgo, K = 3 (II)

0.2 0.4 0.6 0.8 1.0�

1e8

-765

-760

-755

-750

-745

-740

-735

-730
biased log-density

EPSRCMCMC Symp’09 – p. 19



Hidalgo, K = 3 (III)
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ξ = β

In the prior for inverse-variances:

vi ∼ G(a, β), β ∼ G(g, h)

1. symmetric;

2. constrained to [0, 10 ∗ b];

3. Large values of β penalise small variances.
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Hidalgo, K = 3, ξ = β
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Visiting qi ≈ 0 regions

allows us to estimate p(y|K)/p(y|K − 1):

p(y|K)

p̃(y)
= EṼ [exp{F(ξ)}]

p(y|K − 1)

p̃(y)
=

1

K

K

∑
i=1

EṼ

[
p(y|θ)

p(y|θ[qi = 0])
exp{F(ξ)}

]

using importance sampling, or reversible jump (with birth-death steps).
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Second case study

Nonparametric inference from long memory Gaussian processes:

Y| f ∼ N (0, T( f ))

T( f )[k, l] = γ(k− l) =
∫ π

−π
ei(k−l)ω f (ω) dω

with a nonparametric prior for f , e.g. (Rousseau et al., 2009)

f (ω) =
∣∣∣1− eiω

∣∣∣
−2d

exp

{
K

∑
j=0

θj cos(jω)

}

with d ∼ U(0, 1/2), θj ∼ N(0, 1/j) , K ∼ Poisson(1).
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Computational difficulties

p(y| f ) = (2π)−n/2 |T( f )|−1/2 exp

{
−
1

2
yTT( f )−1y

}

where |T( f )| is easy to approximate, and

T( f )−1 ≈ T(g), g =
1

4π2 f

but we still have n integrals to compute, for k = 1, . . . , n;

∫ π

−π
eikωg(ω) dω
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Interpolation

If g is replaced by a linear interpolation, all the integrals can be computed

exactly using one FFT of the points g(ωk), k = 1, . . . ,M; the number of

bins M must be ≥ 4N. Cost is O(M).
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Sequential Monte Carlo

Consider the ‘intermediate’ likelihood functions pm(y| f ) corresponding to

Tm[k, l] =





T(g)[k, l] if|k− l| ≤ 2m

0 otherwise

then apply SMC to sequence:

pt( f ) ∝ p( f )pm(y| f )r/apm+1(y| f )
1−r/a

for t = am + r, r ∈ [0, a− 1].

(Additional benefit: use Divide and Conquer structure of FFT.)
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SMC steps

0. Draw f j ∼ p( f ), j = 1, . . . ,N. Set t = 0, wj = 1.

1. Re-weight

wj = wj

pt+1( f j)

pt( f j)

1. If Variance(weights)>γ,

(a) resample

(b) apply MCMC step w.r.t. pt+1.

2. t← t + 1. Go to 1.
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Automatic tuning of MCMC

� Conditional on K, random walk HM steps, with proposal

covariance tuned to current particle system.

� To move K, use reversible jump with Green (2003, HSS book)’s

proposal.

� Or just use positive discrimination (Chopin, 2007), i.e.

Wang-Landau biasing w.r.t. K.
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A simulated example
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A simulated example (II)
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A simulated example (III)
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Conclusions

� thriving to provide automatic/robust algorithms.

� SMC, together with biasing methods, seem excellent candidate for

this purpose:

1. Biasing (a) makes target easier to explore the target (b)

facilitates construction of proposals

2. in SMC, tuning proposals is trivial.

� Currently working on a SMC version of ABF.
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