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Limitations of MCMC
O

B slow: error is (N ~1/2), correlation between successive steps.

B ocal exploration: how to assess convergence if posterior is not
unimodal?

B tedious to tune = these algorithms are not robust.

B bugs are difficult to detect.
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Alternatives
O

B fast approximations: variational Bayes, Expectation-Propagation,
INLA (see Havard’s talk).

B adaptive MCMC;

adaptive biasing; e.g. Wang-Landau.
B Sequential Monte Carlo, see e.g. Doucet et al. (2006).
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First case study

Gaussian Mixture model:

p(yil6) = qu\/—eXP{ (- )}

Ui, e, UK~ N(m,sz), v1,...,0g ~ G(a,b)

qi,...,qx ~ Dir(1,...,1)

or equivalently

qk:wk/((,(]l—l—...‘l'CUK), wl/”'/wKNExp(:l)’
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Hidalgo stamps dataset
——
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Quotes
O

Jasra et al. (2005): “ We feel that the Gibbs sampler run with completion is
often not worth programming [...] since the chance of it falling to
converge is too high.”

Celeux et al. (2000): “Although somewhat presumptuous, we consider

that almost the entirety of MCMC implemented for mixture models has
failed to converge.”
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Molecular simulation
I

Concerns simulation of some continuous-time dynamics, e.g.
dX; = —VV(Xp)dt + (B/2) V24w,
with associated Boltzmann-Gibbs density:

p(x) ccexp{—BV(x)}

(In practice, approximated by long runs of random walk
Hastings-Metropolis.)

EPSRC MCMC Symp’09 — p. 7



Metastability
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Adaptive blased sampling
]

Aim is to sample from biased potential function
V=V-FE@)
where F is the free energy, i.e.
px) < exp { —BV |

is such that the margin of ¢ is uniform.
At iteration t, perform Hastings-Metropolis move w.r.t.

Vi =V —F(¢)

and adjust F; on the fly.
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Wang-Landau (ABP)

At each iteration t, compute, for ¢ in small bin [e, ey 1]

0) = L HEG) € e ecal)

i.e. penalises progressively already visited regions, see e.g. Atchadé and
Liu (2004).
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Adaptive Biasing Force (ABF)

oV  OF
EV[aé _6§] -

Progressively adapt the “force” ag i.e. for ¢ € |eg, exi1]
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Back to mixture problems
c— ]

Our findings:
1. ABF outperforms ABP.

2. ‘temperature’ not necessarily the best ¢; certainly not the easiest to
interpret.

3. seems much easier to find ‘stable” directions, i.e. all symmetric
functions of 0 are “stable’.

4. but careful with metaphors.
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1. not symmetric;
2. constrained to [0, 1];

3. Forcing g1 close to one empty other components, and helps
component switching, in a symmetric way;

4. Forcing g close to zero: more later.
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Hidalgo, K = 7 (Ill)
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Hidalgo, K =7 (IV)

free energy (bias)
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Hidalgo, K = 3 ()
]
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Hidalgo, K = 3 (ll)
]
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Hidalgo, K = 3 (lll)
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p

In the prior for inverse-variances:

vi ~G(a,pB), B~ G(gh)

1. symmetric;
2. constrained to [0, 10 x b];

3. Large values of 8 penalise small variances.
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Hidalgo, K =3,¢ = f
c
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Visiting g; ~ 0 regions
c

allows us to estimate p(y|K)/p(y|K —1):

”;y(’yf) — E; [exp{F(O))]

plylK—1) _ Pio)
5 21’5 Si6lg — oy SPFE)

using importance sampling, or reversible jump (with birth-death steps).
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Second case study
c— ]

Nonparametric inference from long memory Gaussian processes:

Y[f ~N(0,T(f))

Tl =k =1) = [ Df(w) do

— 7T

with a nonparametric prior for f, e.g. (Rousseau et al., 2009)

—2d K
exp { 0; cos(jw) }
=0

J

flw) = [1- e

withd ~ U(0,1/2),0; ~ N(0,1/j) , K ~ Poisson(1).
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Computational difficulties

plf) = @) 2 TP exp { ~347T(7) 1y}

where |T(f)| is easy to approximate, and

TR T(E), 8= g

but we still have n integrals to compute, fork =1, ..., n;

7T,
/ e o (w) dw
—7T
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Interpolation
]

077r 0

If ¢ is replaced by a linear interpolation, all the integrals can be computed
exactly using one FFT of the points g(wy), k =1, ..., M; the number of
bins M must be > 4N. Costis O(M).
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Seqguential Monte Carlo
]

Consider the ‘intermediate” likelihood functions p,(y|f) corresponding to

0 otherwise

Tulk 1] = { T(g)k, 1] iflk—1] <2™

then apply SMC to sequence:

pe(f) o p(F)pm ) prra (yl )7

fort =am+r,r € (0,a—1].
(Additional benefit: use Divide and Conquer structure of FFT.)

EPSRC MCMC Symp’09 — p. 27



SMC steps

0. Draw f; ~p(f),j=1,...,N.Sett =0, w; = 1.

1. Re-weight

" :w'Pt-l—l(fj)
o ()

1. If Variance(weights)>y,
(@) resample

(b) apply MCMC step w.r.t. p;1.
2. t—t+1. Gotol.

EPSRC MCMC Symp’09 - p. 28



Automatic tuning of MCMC
—

B Conditional on K, random walk HM steps, with proposal
covariance tuned to current particle system.

B To move K, use reversible jump with Green (2003, HSS book)’s
proposal.

B Orjust use positive discrimination (Chopin, 2007), i.e.
Wang-Landau biasing w.r.t. K.
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A simulated example
c— ]

y posterior of d
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A simulated example (lI)
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A simulated example (lI1)

with RJ

no RJ
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Conclusions
I

B thriving to provide automatic/robust algorithms.

B SMC, together with biasing methods, seem excellent candidate for
this purpose:
1. Biasing (a) makes target easier to explore the target (b)
facilitates construction of proposals

2. in SMC, tuning proposals is trivial.

B Currently working on a SMC version of ABF.
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