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Huge Eulerian And Lagrangian
Data Sets

Large amounts of data
Blending with sophisticated
PDE models will lead to:
Better weather forecasting
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ocean flows

Example Of Lagrangian Data
Collection

Simon Cotter Data Assimilation in an Incompressible Viscous Fluid



Introduction
Prior and Posterior Measures on v0

Metropolis-Hastings in Function Space
Model Error

Summary

Motivation

Huge Eulerian And Lagrangian
Data Sets

Large amounts of data
Blending with sophisticated
PDE models will lead to:
Better weather forecasting
Better understanding of
ocean flows

Example Of Lagrangian Data
Collection

Simon Cotter Data Assimilation in an Incompressible Viscous Fluid



Introduction
Prior and Posterior Measures on v0

Metropolis-Hastings in Function Space
Model Error

Summary

General Setup

Observation operator G on input to the dynamical system
Finite dimensional data given by

y = G(u) + ξ, ξ ∼ N (0,Σ)

Use MCMC to make inference about u
u can be

u = v0 initial condition of dynamical system
u = (v0, f ) initial condition and time-dependent forcing
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The (Navier) Stokes Equation

Stokes operator A = −P∆, where projection P puts us
into an appropriate divergence-free function space
For u ∈ H, (Navier) Stokes flow can also be given by an
ODE on H = L2 ∩ {Divergence-free fields}:

dv
dt

+Av + γB(v , v) = Pf ,

v(0) = v0 ∈ H.

Theory developed for γ = 0,1. Numerics for γ = 0:
A fully spectral method can be implemented
Code much less computationally expensive
Given v0 and f , solution calculable by FFT. For now let
f ≡ 0.
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The Observation Operators

Eulerian Case: GE(v0)

Given a set of observation points in space
{xj}J

j=1 ⊂ T2, and set of observations

times {tk}K
k=1, then

GE(v0, f ) = {v(xj , tk )}J,K
j,k=1,

where v is the solution of the Stokes
equation with initial condition v0.

Lagrangian Case: GL(u = v0)

Given a set of initial positions for J passive
tracers {xj}J

j=1 ⊂ T2, we consider the
paths of the tracers governed by the ODEs

dzj

dt
= v(zj (t), t), ∀t > 0,

zj (0) = xj ,

where v is the solution of the Stokes
equation with initial condition v0. Given a
set of observation times {tk}K

k=1, we define

GL(v0, f ) = {zj (tk )}J,K
j,k=1.
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Observational Noise

As stated before, y ∈ R2JK satisfies

y = G(v0, f ) + ξ, ξ ∼ N (0,Σ).

Likelihood that y was created with v(x ,0) = v0 ∈ H:

P(y |v0) ∝ exp
(
−1

2
‖y − G(v0, f )‖2Σ

)
.
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Bayes’ Theorem and the Posterior

Prior distribution µ0 = P(v0).
Likelihood:

P(y |v0) ∝ exp
(
−1

2
‖y − G(v0, f )‖2Σ

)
.

Posterior distribution µ = P(v0|y)

Bayes Theorem:

dµ
dµ0

∝ exp
(
−1

2
‖y − G(v0, f )‖2Σ

)
.
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Prior Measure

Prior distribution: Gaussian random field

v0 ∼ N (0,A−α), α ∈ R+.

Construct a sample v0 ∼ N (0,A−α) via Karhunen-Loeve
expansion:

v0 =
∑
k∈K

λ
−α/2
k φkξk , ξk ∼ N (0,1)iid ,
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Absolute Continuity of the Posterior

Theorem

Assume that f ∈ L2(0,T ,H r ) for some r > 0. Define a
Gaussian measure µ0 on H, with mean vb ∈ Hα and covariance
operator A−α. If for any α > 1, then the density

dµ
dµ0

(v) ∝ exp
(
−1

2
|y − GE (v)|2Σ

)
(1)

is µ0-a.s. non-zero, µ0−measurable and µ0 integrable. Thus
the posterior measure µ on H, defined by the Radon-Nikodym
derivative (1), is absolutely continuous with respect to the prior
measure µ0. a

aData Assimilation Problems In Fluid Mechanics: Bayesian Formulation In
Function Space SC,MD,JR,AS
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Metropolis-Hastings in Function Space
We seek to create a Markov chain of samples from the
posterior distribution. Given accepted state of the initial
condition u, we propose

v = (1− β2)1/2u + βw , w ∼ µ0 = N (0,A−α).

We accept this sample with probability given by
Metropolis-Hastings formula:

a(u, v) = 1 ∧ exp(Φ(u)− Φ(v)), Φ(·) =
1
2
‖G(·)− y‖2Σ.

Acceptance probability independent of β
Appropriate version of random walk in infinite dimensions
with Gaussian priors
Goldilocks’ principle
Adaptive burn-in to find sensible β
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MCMC Results
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MCMC Results
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General Setup

Observation operator G on initial condition of system AND
forcing f (x , t)
Data given by

y = G(u = (v0, f )) + ξ, ξ ∼ N (0,Σ)

Use data to infer on v(0) = v0, initial condition of system
AND forcing or “Model Error” f
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Metropolis-Hastings for Model Error

Very similar proposal:(v
g
)

= (1− β2)1/2
(u

f
)

+ β
(w
ψ

)
,(w

ψ

)
∼ µ0 = N (0,A−α)× ν0(ψ)

ν0 is space-time GRF prior
Identical acceptance probability with Φ(·) = 1

2‖G(·)− y‖2Σ:

a
((u

f
)
,
(v

g
))

= 1 ∧ exp
(

Φ
(u

f
)
− Φ

(v
g
))

.

Need sufficient regularity in the prior to ensure we can
make sense of G with probability 1
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What on Earth do these things look like?
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Results
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Eulerian Inference on Model Error

Theorem
Suppose our observation operator returns observations at a
sequence of times 0 < t1 ≤ t2 ≤ . . . ≤ tN ≤ T . Then given an
initial condition and forcing (v0, η) ∈ H × L2((0,T ),H), there
exists an infinite number of alternative η′ ∈ ×L2((0,T ),H) with
η 6= η′ almost everywhere, such that

GE (v0, η
′) = GE (v0, η).

Can only infer on:

Fk (tj) =

∫ tj

0
e−A(tj−s)η(s)ds

for each k ∈ {1 . . .N}.
Not applicable in Lagrangian case
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Summary

Data assimilation formulated on function space
This leads to MCMC methods on function space
These sampling methods are robust under discretization
We can use data to infer on both the initial condition and
forcing of the system
We require minimum amounts of regularity in the prior
distribution to make sense of the observation operator G
MCMC methods allow us to sample from well-defined
posterior distributions
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