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Introduction

Motivation

Huge Eulerian And Lagrangian
Data Sets
@ Large amounts of data
@ Blending with sophisticated
PDE models will lead to:
@ Better weather forecasting

@ Better understanding of
ocean flows
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Introduction

Motivation

Examplle Of Lagrangian Data
Huge Eulerian And Lagrangian Collection
Data Sets -

@ Large amounts of data 1
@ Blending with sophisticated / s /
PDE models will lead to:

@ Better weather forecasting .

@ Better understanding of "' |
ocean flows

and salinity as it rises
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Introduction

General Setup

@ Observation operator G on input to the dynamical system
@ Finite dimensional data given by

y=6(u+¢ €~N(0,X)

@ Use MCMC to make inference about u
@ ucanbe
@ u = Vv initial condition of dynamical system
e u = (v, f) initial condition and time-dependent forcing
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Introduction

The (Navier) Stokes Equation

@ Stokes operator A = —PA, where projection P puts us
into an appropriate divergence-free function space

@ For u € H, (Navier) Stokes flow can also be given by an
ODE on H = L2 n {Divergence-free fields}:

av

= Pf
T + Av +~B(v,v) Pf,

V(O) = YeH.

@ Theory developed for v = 0, 1. Numerics for v = 0:
o A fully spectral method can be implemented
e Code much less computationally expensive
e Given vy and f, solution calculable by FFT. For now let
f=0.
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Introduction

The Observation Operators

Eulerian Case: Gg(v)

Given a set of observation points in space
{x}._; C T?, and set of observations

times {t}K_,, then

Ge(vo. ) = {v(x, 1)},

where v is the solution of the Stokes
equation with initial condition vy.
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Introduction

The Observation Operators

Lagrangian Case: Gy (u = v)

Eulerian Case: Gg(v)

Given a set of observation points in space
{x}._; C T?, and set of observations

times {t}K_,, then

Ge(v0, f) = {v (X, 1)} ey

where v is the solution of the Stokes
equation with initial condition vy.

Simon Cotter

Given a set of initial positions for J passive
tracers {xj}jJ:1 C T2, we consider the
paths of the tracers governed by the ODEs

de
i v(z(t),t), Vt>D0,
Z(0) = x,

where v is the solution of the Stokes
equation with initial condition vy. Given a

set of observation times {tk}k:1 , we define

G(vo, 1) = {Z(t)}/a -
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Observational Noise

@ As stated before, y € R2/K satisfies
y=6G(w, f)+¢& &~N(0,X).

@ Likelihood that y was created with v(x,0) = vy € H:

1
P(yIve) < oxp 51y — Gl NIE )
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e Prior and Posterior Measures on v
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Prior and Posterior Measures on v,

Bayes’ Theorem and the Posterior

@ Prior distribution pp = P(vp).
@ Likelihood:

1
P(yIv) < oxp (—5lIy — Gl NIE ).

@ Posterior distribution ;o = P(vply)
@ Bayes Theorem:

du 1 o
o (~3ly - G0, NIE) J
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Prior and Posterior Measures on v,

Prior Measure

@ Prior distribution: Gaussian random field
Vo N./\/-(O,.A_a), acRT.

@ Construct a sample vy ~ N (0, A~%) via Karhunen-Loeve
expansion:

o= NP0tk & ~N(0,1)iid,

keK
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Prior and Posterior Measures on v,

Absolute Continuity of the Posterior

Assume that f € L2(0, T, H") for some r > 0. Define a
Gaussian measure g on H, with mean v, € H* and covariance
operator A=%. If for any o > 1, then the density

d 1
Ty xoxp (—5ly - eV ) 0

is po-a.s. non-zero, uo—measurable and g integrable. Thus
the posterior measure . on H, defined by the Radon-Nikodym
derivative (1), is absolutely continuous with respect to the prior
measure . 2

@Data Assimilation Problems In Fluid Mechanics: Bayesian Formulation In
Function Space SC,MD,JR,AS
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Metropolis-Hastings in Function Space

Metropolis-Hastings in Function Space

@ We seek to create a Markov chain of samples from the
posterior distribution. Given accepted state of the initial
condition u, we propose

v=_1-8)"2u+Bw, w~pug=N(0,A).

@ We accept this sample with probability given by
Metropolis-Hastings formula:

a(u,v) =1 nexp(e(u) - &(v)), ()= %Ilg(') ~yI%.

@ Acceptance probability independent of g3

@ Appropriate version of random walk in infinite dimensions
with Gaussian priors

@ Goldilocks’ principle

@ Adaptive burn-in to find sensible 5
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Metropolis-Hastings in Function Space

MCMC Results

; -
9 paths i
1601 | — — — 36 paths il 1
100 paths \:‘
140+ | _ _ 900 paths \“ B
(peaks at =~ 1111.5) H‘
1201 ~ —Re(uy ) ! |
> i
) l
§ 100 i 1
a I
= il
2 sor ! )
Qo
<3 |
& eof ! i
I
a0t il B
il
i -
20+ ~ 4
1R N
8 AN
-, =T . ~ -

0 ! N T .
0.3 0.3: 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 05
Re(uoy 1)

mon Cotter Data Assimilation in an Incompressible



Metropolis-Hastings in Function Space

MCMC Results
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Model Error

General Setup

@ Observation operator G on initial condition of system AND
forcing f(x, t)
@ Data given by

y=6G(u=Ww,f)+¢& &£~N(,X)

@ Use data to infer on v(0) = vy, initial condition of system
AND forcing or “Model Error” f
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Model Error

Metropolis-Hastings for Model Error

@ Very similar proposal:
(g) = (-2 (5) + (i),
() ~ 1o = N(O.A) x vo(w)

@ 1y is space-time GRF prior
@ Identical acceptance probability with (-) = %Hg() —y|:

a((7)-(g)) =1new(o(7) - (g))

@ Need sufficient regularity in the prior to ensure we can
make sense of G with probability 1
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Model Error

What on Earth do these things look like?

n((xy).1)
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Model Error

Eulerian Inference on Model Error

Theorem

Suppose our observation operator returns observations at a
sequence of times0 < 4 < b < ... < ty < T. Then given an
initial condition and forcing (vo,n) € H x L2((0, T), H), there
exists an infinite number of alternative f € xL?((0, T), H) with
n # n' almost everywhere, such that

Ge(vo,n') = Ge(vo,m).-
@ Can only infer on:
t.
Fit) = / ERARLIOLE
0

foreach k € {1...N}.
@ Not applicable in Lagrangian case
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Summary

Summary

@ Data assimilation formulated on function space
@ This leads to MCMC methods on function space
@ These sampling methods are robust under discretization

@ We can use data to infer on both the initial condition and
forcing of the system

@ We require minimum amounts of regularity in the prior
distribution to make sense of the observation operator G

@ MCMC methods allow us to sample from well-defined
posterior distributions
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