Approximate Bayesian Inference in Spatial GLMMs with Skew Gaussian Latent Variables

Fatemeh Hosseini¹, Jo Eidsvik² and Mohsen Mohammadzadeh¹

- 1. Department of Statistics, Tarbiat Modares University, Tehran, Iran
- 2. Department of Mathematical Science, Norwegian University of Science and Technology, Norway

Spatial Generalized linear mixed models (Spatial GLMMs)

- Likelihood: $\pi(\boldsymbol{y}|\boldsymbol{x})$, exponential family. $\boldsymbol{y} = (y_1, \dots, y_k)$.
- Prior for latent spatial variable: $\pi(\boldsymbol{x}|\boldsymbol{\eta})$. $\boldsymbol{x} = (x_1, \dots, x_n), n \geq k$.
- Prior for model parameters: $\pi(\boldsymbol{\eta})$.

GOALS:

- Present model with (closed) skew Normal $\pi(\boldsymbol{x}|\boldsymbol{\eta})$.
- Perform approximate Bayesian inference: $\hat{\pi}(\boldsymbol{x}|\boldsymbol{y},\boldsymbol{\eta}), \, \hat{\pi}(\boldsymbol{\eta}|\boldsymbol{y}), \, \hat{\pi}(x_i|\boldsymbol{y}).$

(Closed) skew Normal generalization of Rue and Martino (2007), Eidsvik et al. (2009), Rue et al. (2009), who use Normal $\pi(\boldsymbol{x}|\boldsymbol{\eta})$.

Examples

Figure 1: (a) Precipitation data. (b) Trout data.

 \boldsymbol{y} : Counts/Proportions \boldsymbol{x} : Latent variables/Logit field $\boldsymbol{\eta}$: Cov/Mean/Skewness GOALS:: $\hat{\pi}(x_i|\boldsymbol{y}), \ \hat{\pi}(\boldsymbol{\eta}|\boldsymbol{y})$ Examples

Figure 2: North Sea well log and synthetic seismic data (Karimi, Omre and Mohammadzadeh, 2009)

- \boldsymbol{y} : Seismic data, Gaussian/linear
- \boldsymbol{x} : Latent variables/elastic properties
- $\boldsymbol{\eta}$: Cov/Mean/Skewness GOALS:: $\hat{\pi}(x_i|\boldsymbol{y}), \, \hat{\pi}(\boldsymbol{\eta}|\boldsymbol{y})$

- Azzalini (1985) introduced the skew normal (SN) distribution.
- SN i) is larger class than Normal. ii) SN includes Normal with an extra skewness parameter
- Dominguez-Molina *et al.* (2003) introduced the closed skew normal (CSN) distribution.
- CSN i) is larger class than SN. ii) CSN includes SN with extra skewness parameters. iii) CSN is conjugate with Normal likelihood.

Skew Normal

• $\boldsymbol{x} \sim SN(\boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\lambda})$

$$f(\boldsymbol{x}|\boldsymbol{\lambda},\boldsymbol{\mu},\boldsymbol{\Sigma}) = 2\phi_n(\boldsymbol{x};\boldsymbol{\mu},\boldsymbol{\Sigma})\Phi(\boldsymbol{\lambda}'\boldsymbol{\Sigma}^{-\frac{1}{2}}(\boldsymbol{x}-\boldsymbol{\mu})), \quad (1)$$

- $\lambda \in \mathbb{R}^n$ is a skewness parameter.
- If $\boldsymbol{\lambda} = \boldsymbol{0} \Rightarrow$ SN reduces to Normal: $\boldsymbol{x} \sim N_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.

Skew Normal

Figure 3: Contour plots of SN distribution.

Closed Skew Normal

• $\boldsymbol{x} \sim CSN_{n,q}(\boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{D}, \boldsymbol{\nu}, \boldsymbol{\Delta})$

$$f_{n,q}(\boldsymbol{x}|\boldsymbol{\mu},\boldsymbol{\Sigma},\boldsymbol{D},\boldsymbol{\nu},\boldsymbol{\Delta}) = \Phi_q^{-1}(\boldsymbol{0};\boldsymbol{\nu},\boldsymbol{\Delta}+\boldsymbol{D}\boldsymbol{\Sigma}\boldsymbol{D}') \phi_n(\boldsymbol{x};\boldsymbol{\mu},\boldsymbol{\Sigma}) \ \Phi_q(\boldsymbol{D}(\boldsymbol{x}-\boldsymbol{\mu});\boldsymbol{\nu},\boldsymbol{\Delta}).$$
(2)

• If
$$\boldsymbol{\nu} = 0$$
, $\Delta = \boldsymbol{I}$ and $\boldsymbol{q} = 1$, CSN reduces to SN:
 $CSN_{n,1}(\boldsymbol{\mu}, \Sigma, D, 0, 1) = SN(\boldsymbol{\mu}, \Sigma, \boldsymbol{\lambda}), D = \boldsymbol{\lambda}' \Sigma^{-1/2}.$

- If D = 0, CSN reduces to Normal, $\boldsymbol{x} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.
- Expectation of CSN is $E(\mathbf{X}) = \boldsymbol{\mu} + \Sigma D' \psi$,

$$\psi = \psi(0, \Sigma, D, \nu, \Delta) = \frac{\Phi_q^*(r, \nu, \Delta + D\Sigma D')}{\Phi_q(0, \nu, \Delta + D\Sigma D')}|_{r=0}, \quad \Phi_q^*(r; \nu, \Omega) = [\nabla \Phi_q(r; \nu, \Omega)]'$$

Skew and Closed Skew Normal Distributions

Figure 4: Contour plots of CSN distribution.

Closed Skew Normal

- The CSN distribution is closed under:
 - Linear transformations: Let \boldsymbol{x} be CSN, then $A\boldsymbol{x} + b$ is

 $CSN_{k,q}(A\boldsymbol{\mu}+b,A\boldsymbol{\Sigma}A',D\boldsymbol{\Sigma}A'(A\boldsymbol{\Sigma}A')^{-1},\boldsymbol{\nu},\Delta+D\boldsymbol{\Sigma}D'-D\boldsymbol{\Sigma}A'(A\boldsymbol{\Sigma}A')^{-1}A\boldsymbol{\Sigma}D'),$

- Marginalization: Let $\boldsymbol{x} = (\boldsymbol{x}_1', \boldsymbol{x}_2')', \boldsymbol{x}_1$ size k, \boldsymbol{x}_2 size n k, then $\boldsymbol{x}_1 \sim CSN_{k,q}(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_{11}, D^*, \boldsymbol{\nu}, \Delta^*),$
- Conditioning: $oldsymbol{x}_2|oldsymbol{x}_1$

$$CSN_{n-k,q}(\boldsymbol{\mu}_2 + \Sigma_{21}\Sigma_{11}^{-1}(\boldsymbol{x}_1 - \boldsymbol{\mu}_1), \Sigma_{22\cdot 1}, D_2, \boldsymbol{\nu} - D^*(\boldsymbol{x}_1 - \boldsymbol{\mu}_1), \Delta).$$

where

•

$$D^* = D_1 + D_2 \Sigma_{21} \Sigma_{11}^{-1}, \Delta^* = \Delta + D_2 \Sigma_{22 \cdot 1} D'_2, \Sigma_{22 \cdot 1} = \Sigma_{22} - \Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}$$
$$\boldsymbol{\mu} = \begin{pmatrix} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{pmatrix}, \quad \boldsymbol{\Sigma} = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}, \quad \boldsymbol{D} = (D_1, \ D_2)$$

Closed Skew Normal

A Normal / conditioning formulation of CSN:

$$\begin{pmatrix} \boldsymbol{x} \\ \boldsymbol{x}_0 \end{pmatrix} \sim N_{n+q} \left(\begin{pmatrix} \boldsymbol{\mu} \\ -\boldsymbol{\nu} \end{pmatrix}, \begin{pmatrix} \Sigma & \Sigma D' \\ D\Sigma & \Delta + D\Sigma D' \end{pmatrix} \right).$$

Then, $(\boldsymbol{x}|\boldsymbol{x}_0 > \boldsymbol{0}) \sim CSN_{n,q}(\boldsymbol{\mu}, \boldsymbol{\Sigma}, D, \boldsymbol{\nu}, \Delta)$. Sample CSN by rejection sampling.

Spatial GLMM with SN prior

Spatial GLMM defined at three levels:

- $\pi(y_i|x_i) = \exp\{y_ix_i b(x_i) + c(y_i)\}, i = 1, \dots, k$. Conditionally independent.
- $\boldsymbol{x} = (\boldsymbol{x}^{obs}, \boldsymbol{x}^{pred}), \, \boldsymbol{x}^{obs} = A\boldsymbol{x} \text{ at } k \text{ observation sites, } \boldsymbol{x}^{pred} \text{ at } (n-k)$ prediction sites. $\pi(\boldsymbol{x}|\boldsymbol{\eta}) = SN(H\boldsymbol{\beta}, \Sigma_{\boldsymbol{\theta}}, \boldsymbol{\lambda}), \, \boldsymbol{\lambda} = \lambda_0 \mathbf{1}.$

$$\pi(\boldsymbol{x}|\boldsymbol{\eta}) = \frac{2}{(2\pi)^{n/2}|\Sigma_{\theta}|^{1/2}} \exp\left(-\frac{1}{2}(\boldsymbol{x}-H\boldsymbol{\beta})'\Sigma_{\theta}^{-1}(\boldsymbol{x}-H\boldsymbol{\beta})\right)$$
$$\cdot \Phi(\boldsymbol{\lambda}'\Sigma_{\theta}^{-\frac{1}{2}}(\boldsymbol{x}-H\boldsymbol{\beta}))$$

•
$$\Sigma_{\theta}(i,j) = \sigma^2 \exp(-\frac{|i-j|}{\varphi}), \ \boldsymbol{\theta} = (\sigma,\varphi).$$

• Model parameters $\boldsymbol{\eta} = (\boldsymbol{\beta}, \boldsymbol{\theta}, \lambda_0)$. Proper prior density $\pi(\boldsymbol{\eta})$.

Spatial GLMM with SN prior

• Joint:

$$\pi(\boldsymbol{y}, \boldsymbol{x}, \boldsymbol{\eta}) = \pi(\boldsymbol{y}|\boldsymbol{x})\pi(\boldsymbol{x}|\boldsymbol{\eta})\pi(\boldsymbol{\eta})$$

=
$$\frac{2}{(2\pi)^{n/2}|\Sigma_{\theta}|^{1/2}}\exp\left(\sum_{i=1}^{k}[y_{i}x_{i}-b(x_{i})+c(y_{i})]-\frac{1}{2}(\boldsymbol{x}-H\boldsymbol{\beta})'\Sigma_{\theta}^{-1}(\boldsymbol{x}-H\boldsymbol{\beta})\right)$$

$$\times\Phi(\boldsymbol{\lambda}'\Sigma_{\theta}^{-\frac{1}{2}}(\boldsymbol{x}-H\boldsymbol{\beta}))\pi(\boldsymbol{\eta}), \qquad (3)$$

- Full conditional $\pi(\boldsymbol{x}|\boldsymbol{y},\boldsymbol{\eta})$ not generally available.
- If Gaussian likelihood $b(x_i) = b_0 x_i^2$, then $\pi(\boldsymbol{x}|\boldsymbol{y},\boldsymbol{\eta})$ is CSN.

Approximation Bayesian Inference

• Linearize full conditional for \boldsymbol{x} :

$$\pi(\boldsymbol{x}|\boldsymbol{y},\boldsymbol{\eta}) \approx CSN_{n,1}(\boldsymbol{\mu}_{x|y,\eta}, \boldsymbol{\Sigma}_{x|y,\eta}, \boldsymbol{D}_{x|y,\eta}, \boldsymbol{\nu}_{x|y,\eta}, 1),$$

$$\succ \boldsymbol{\mu}_{x|y,\eta} = Z\boldsymbol{\beta} + \Sigma_{\theta}A'R^{-1}(z(\boldsymbol{y}, \boldsymbol{x}^{obs}) - AZ\boldsymbol{\beta}),$$

$$z_{i}(y_{i}, x_{i}) = [y_{i} - b'(x_{i}) + x_{i}b''(x_{i})]/b''(x_{i}).$$

$$R = A\Sigma_{\theta}A' + P \text{ and } P_{ii} = 1/b''(x_{i}), i = 1, \cdots, k.$$

$$\triangleright \Sigma_{x|y,\eta} = \Sigma_{\theta} - \Sigma_{\theta} A' R^{-1} A \Sigma_{\theta}.$$

$$\triangleright D_{x|y,\eta} = \lambda' \Sigma_{\theta}^{-\frac{1}{2}}, \qquad \triangleright \nu_{x|y,\eta} = \lambda' \Sigma_{\theta}^{-\frac{1}{2}} (Z\beta - \mu_{x|y,\eta}).$$

Approximate Bayesian Inference

- Iterative algorithm for fitting a CSN approximation:
 - 1. Choose starting value $\mathbf{x}^{(0)}$, set m = 0.
 - 2. Calculate $\hat{\pi}(\boldsymbol{x}|\boldsymbol{y},\boldsymbol{\eta}) = CSN_{n,1}(\boldsymbol{x}; \hat{\boldsymbol{\mu}}_{x|y,\eta}(\boldsymbol{x}^{(m)}), \hat{\Sigma}_{x|y,\eta}(\boldsymbol{x}^{(m)}), D_{x|y,\eta}, \hat{\boldsymbol{\nu}}_{x|y,\eta}(\boldsymbol{x}^{(m)}), 1).$
 - 3. Calculate

$$\boldsymbol{x}^{(m+1)} = \hat{\mathrm{E}}(\boldsymbol{x}|\boldsymbol{y},\boldsymbol{\eta}) = \hat{\boldsymbol{\mu}}_{x|y,\eta}(\boldsymbol{x}^{(m)}) + \hat{\boldsymbol{\Sigma}}_{x|y,\eta}(\boldsymbol{x}^{(m)})D'_{x|y,\eta}\hat{\boldsymbol{\psi}},$$

$$\hat{\psi} = \psi(0, \hat{\Sigma}_{x|y,\eta}(\boldsymbol{x}^{(m)}), D_{x|y,\eta}, \hat{\nu}_{x|y,\eta}(\boldsymbol{x}^{(m)}), 1)$$

4. Set $m = m + 1$.

5. Convergence is obtained after a few iterations. $\hat{\pi}(\boldsymbol{x}|\boldsymbol{y},\boldsymbol{\eta}) = CSN_{n,1}(\boldsymbol{x}; \hat{\boldsymbol{\mu}}_{x|y,\eta}(\boldsymbol{x}^{(m+1)}), \hat{\Sigma}_{x|y,\eta}(\boldsymbol{x}^{(m+1)}), D_{x|y,\eta}, \hat{\boldsymbol{\nu}}_{x|y,\eta}(\boldsymbol{x}^{(m+1)}), 1).$ Approximate Parametric Inference

$$\hat{\pi}(\boldsymbol{\eta}|\boldsymbol{y}) \propto rac{\pi(\boldsymbol{y}|\boldsymbol{x})\pi(\boldsymbol{x}|\boldsymbol{\eta})\pi(\boldsymbol{\eta})}{\hat{\pi}(\boldsymbol{x}|\boldsymbol{y},\boldsymbol{\eta})} \Big|_{\boldsymbol{x}=\hat{E}(\boldsymbol{x}|\boldsymbol{y},\boldsymbol{\eta})}.$$

Similar to the Laplace approximation of Tierney and Kadane (1986).

Approximate Spatial Prediction

- Predict the latent variables \boldsymbol{x}^{pred} .
- $\hat{\pi}(\boldsymbol{x}|\boldsymbol{y},\boldsymbol{\eta})$ is CSN \rightarrow marginal $\hat{\pi}(x_j|\boldsymbol{y},\boldsymbol{\eta})$ is also CSN.

$$\hat{\pi}(x_j|\boldsymbol{y}) = \sum_{\ell} \hat{\pi}(x_j|\boldsymbol{y}, \boldsymbol{\eta}_{\ell}) \cdot \hat{\pi}(\boldsymbol{\eta}_{\ell}|\boldsymbol{y}), \quad j = k+1, \cdots, n.$$

• Mixture of CSN distributions.

Approximate Spatial Prediction

• Improved approximation for predictive marginals.

$$\tilde{\pi}(x_j|\boldsymbol{y},\boldsymbol{\eta}) \propto \frac{\pi(\boldsymbol{y}|\boldsymbol{x})\pi(\boldsymbol{x}|\boldsymbol{\eta})}{\tilde{\pi}(\boldsymbol{x}_{-j}|x_j,\boldsymbol{y},\boldsymbol{\eta})} \left| \boldsymbol{x} = E(\boldsymbol{x}_{-j}|x_j,\boldsymbol{y},\boldsymbol{\eta}) \right|, \qquad (4)$$

- $\tilde{\pi}(\boldsymbol{x}_{-j}|x_j, \boldsymbol{y}, \boldsymbol{\eta})$ is CSN, approximated and evaluated for fixed x_j .
- $\tilde{\pi}(x_j|\boldsymbol{y}) = \sum_{\ell} \tilde{\pi}(x_j|\boldsymbol{y}, \boldsymbol{\eta}_{\ell}) \cdot \hat{\pi}(\boldsymbol{\eta}_{\ell}|\boldsymbol{y}), \quad j = k+1, \cdots, n.$

Example 1 : Precipitation in Middle Norway

Figure 6: Map of observation sites

• The data are number of rainy days and the number of days in operation for $i = 1, \dots, 92$ registration sites.

• Binomial data,
$$\pi(y_i|x_i) = Bin(\frac{e^{x_i}}{1+e^{x_i}}, 14).$$

Figure 7: Posterior marginals for parameters

Solid is approximate Bayesian inference. Dashed is independent proposal MCMC $\hat{\pi}(\boldsymbol{\eta}|\boldsymbol{y}) \cdot \hat{\pi}(\boldsymbol{x}|\boldsymbol{y},\boldsymbol{\eta})$. Acceptance rates 70 - 80%.

Example 1 : Precipitation in Middle Norway

Figure 8: Predictions at unobserved site. Top is SN, below is Normal.

Three approximations: $\hat{\pi}(x_j|\boldsymbol{y}, \hat{\boldsymbol{\eta}}), \quad \tilde{\pi}(x_j|\boldsymbol{y}, \hat{\boldsymbol{\eta}}), \quad \pi^{mcmc}(x_j|\boldsymbol{y}, \hat{\boldsymbol{\eta}})$

Example 2: Norwegian Lakes Acidification

Figure 9: Map of observation sites.

• Data are high/low fish quality in 542 lakes.

• Bernoulli data,
$$\pi(y_i|x_i) = Bin(\frac{e^{x_i}}{1+e^{x_i}}, 1).$$

• Explanatory variable is acid capacity index (pH).

Figure 10: Posterior marginals for model parameters.

Solid is approximate Bayesian inference. Dashed is MCMC (Acceptance rates about 80 percent)

Example 2: Norwegian Lakes Acidification

Figure 11: Prediction at unobserved site. Left is $\hat{\pi}(x_i|\boldsymbol{y}, \hat{\boldsymbol{\eta}})$. Right is $\hat{\pi}(x_i|\boldsymbol{y})$.

Example 3: Seismic inversion

Figure 12: North Sea well log and synthetic seismic data (Karimi, Omre and Mohammadzadeh, 2009)

- Data are seismic reflection amplitudes for different traveltimes and several incidence angles.
- $\pi(\boldsymbol{y}|\boldsymbol{x}) = Normal(G\boldsymbol{x},T).$
- In this case $\pi(\boldsymbol{x}|\boldsymbol{y},\boldsymbol{\eta})$ is CSN without approximations.

Example 3: Seismic inversion

Figure 13: CSN priors. From Karimi, Omre and Mohammadzadeh (2009)

Fitted tri-variate CSN prior from well logs. Same for all depth, but correlated.

Example 3: Seismic inversion

Figure 14: Inversion result. From Karimi, Omre and Mohammadzadeh (2009)

CSN result (left) and Normal result (right).

Conclusion

- Skew Normal prior for latent variables in Spatial GLMMs.
- Closed skew Normal for approximate Bayesian inference \rightarrow approximations comparable with MCMC results. Direct inference (seconds), improved inference (minutes), MCMC (hours).
- Closed skew Normal results for parameter estimates differ from Normal: Larger 'correlation', less 'standard deviation'. Skewness is hard to estimate from our data.
- Closed skew Normal results for prediction differ from Normal only at some sites, where the skewness 'kicks in'. More skewness 'directions' could change this (larger q).
- Computational / numerical challenges: $\Phi_q(\boldsymbol{x}), E(\boldsymbol{x}|\boldsymbol{y},\boldsymbol{\eta}), \hat{\pi}(x_i|\boldsymbol{y},\boldsymbol{\eta}),$ when *n* or *k* are very large.