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Main points of the talk

e MREFs give a flexible approach to modeling.
e Inference for discrete-valued MRF models using MCMC.

e Application to classification problems.



Classification and supervised learning

Given complete training data: (x;,yi)";,

where the y;'s are class labels taking values 1,2,..., C.
The problem:
Predict class labels y;, for a collection of unlabelled /incomplete

test features (X,)Erﬂ_l



An example
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k-nearest-neighbour algorithm

This algorithm dates back to Fix and Hodges (1951) and has been
widely studied ever since.
knn algorithm

An unobserved class label y,; associated with a feature x,; is
estimated by the most common class among the k nearest
neighbours of x,.; in the training set.



The knn algorithm

e |t is deterministic, given the training data.

e It is not parametrised, but the choice of k is clearly crucial.



Probabilistic knn

Holmes & Adams (2003) address the shortcomings of knn. They
define a full-conditional distribution as

exp (8 1) = yi)/k)
s op (8010 = €)/k)

p(yi|y—ivxvﬂ’ k) =

Here j ~% i means 'x; is one of the k nearest neighbours of x;".
The parameter 3 > 0 controls the degree of uncertainty: 3 =0
implies independence among y, while increasing values of (3 lead to
stronger dependence among y.

A problem! There does not necessarily exists a valid joint
distribution for y which has the above full-conditional distribution.



Probabilistic knn — Cucala, Marin, Robert, Titterington (2009)

x1
Xp is one of the 3 nearest neighbours of
x1, but x7 is not one of the 3 nearest

3 neighbours of x;.

o

x5
x4

This method attempts to build a joint distribution for y from a
collection of full-conditional distributions y;|y_;. This is how
Markov random fields are often constructed.

But a necessary condition for a valid MRF is that the neighbour
cliques are symmetric.

Xj~ Xj <= Xj~ X
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Probabilistic knn — Cucala, Marin, Robert, Titterington (2009)

Cucala et al (2009) rectify this with

p(ylB,x)expq B Y Iy = y;)/k

1 jki

Here j ~* i means that the sum is taken over cases j which have k
nearest neighbours of x;.

The full-conditional distribution now appears as

plyily_i, B,%) ocexp 4 B/k | Y 1y =y))+ Y 1{y; = yi)

ki inkj



Probabilistic knn — Cucala, Marin, Robert, Titterington (2009)

Cucala et al (2009) rectify this with

p(ylB,x)expq B Y Iy = y;)/k

1 jki

Here j ~* i means that the sum is taken over cases j which have k
nearest neighbours of x;.

The full-conditional distribution now appears as

plyily_i, B,%) ocexp 4 B/k | Y 1y =y))+ Y 1{y; = yi)

ki inkj

Therefore, some points get summed twice, if they are mutual
neighbours, and summed once if they aren't mutual neighbours.



Remarks on pknn

e Both of these algorithms might be criticised from the aspect
that points are always included as neighbours regardless of
their distance.

e The neighbourhood model of pknn is an Ising type model
where all neighbouring points have equal influence regardless
of distance.

e This suggests that both algorithms might not handle outliers
in a sensible way.



Distance nearest neighbours

p(yily_i»x, 8,p) ccexp [ B wil(y; = yi)
7

The weights sum to 1 and decrease as d(x;, X;) increases, eg,

. — X,',X'2 . .
V.,Jzo(exp<d(2pzf)>; jefl o\ {i}

so that features which are closer to x; have more influence than
those which are further away.

Here the neighbourhood of each point is of maximal size.



Computational difficulties

The joint distribution appears as

exp (ﬁ S Y imei Wil (v = yi))

p(ylx, 8,p) = 2(5.7)

The normalising constant is difficult to evaluate:

-3 e (45T vty -
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An approximate solution — Pseudolikelihood:

n

P(Y|Xa/6uo) = Hp(yi|Y—i7x7/87 P)
i=1
This gives a fast solution.
But it ignores dependencies in the underlying graph. Only first
order dependencies are accounted for.



Usual MCMC doesn’t work in this case

Consider the general problem of sampling from

p(0ly) o p(y|0)p(0), where p(y|0) = q(y|#)/z(#) and z(0) is
impossible to evaluate.

Metropolis-Hasting algorithm:

i (1. 90100P(0)
(@) = min (1. S0 )

The intracability of z(0) makes this algorithm infeasible.



Overcoming the NC problem — Auxiliary variable method
Mgller et al. (2006)

Introduce an auxiliary variable x on the same space as the data y
and extend the target distribution

p(0,xly) o< p(y|@)p(0)p(x|6o),

for some fixed 6.
Joint update (6, x*) with proposal:

h(6*,x*|0,x) = h1(x*|6%)h2(07]6, x*)
where

q(x*|0")

hl(x*w*) = p(X*‘H*) = 2(9*)




p(y|07)p(67)p(x*|00) p(x|0) h2(616%)

X1 xX) = 1) p(0)p(x[Fo) [0 ha(67]6)

z(6*) appears in p(y|6*) above and in p(y’|6’) below, and therefore
cancels. Similarly z(#) cancels above and below.

The choice of g is important. eg the maximum pseudolikelihood
estimate based on y.



Overcoming the NC problem — the exchange algorithm
Murray, Ghahramani and MacKay (2007)

Augment the intractable distribution p(f|y) with variables 6" and
y’, where y’ belongs to the same space as y.

p(0,0',y'ly) oc p(y|0)p(6)h(6'|0)p(y'6)

1. Gibbs update of (¢',y’):
draw 6’ from h(6’|0) and then y' ~ p(y'|¢’).
2. Exchange (y, ), (y’,0") with (y, '), (y’,6) using an MH

transition.
. p(9’)h(99’)p(y’|9))
a=min |1,
< p(y|0)p(8)h(6"|0)
Notice that appears in above and below, and

therefore cancels! Similarly z(6) cancels above and below.



Implementing the exchange algorithm

e The main difficulty with implementation of the exchange
algorithm is the need to draw an exact sample y’ ~ p(y’|¢).

e Perfect sampling is an obvious approach, if this is possible.

e A pragmatic alternative is to take a realisation from a long
MCMC run with stationary distribution, p(y’|#) as an
approximate draw.



The exchange algorithm and importance sampling.

The MH ratio in the exchange algorithm (assuming that h(6,|0’) is
symmetric) can be written as

q(yl0")p(¢")
q(y|0)p(0)

Compare this to the standard MH ratio:

q(y|0)p(6")
q(y|6)p(6)

We see that the ratio of normalising constants, z(6)/z(¢'), is

replaced by q(y'|0)/q(y'|¢').
This ratio can be interpreted as an importance sampling estimate

of z(0)/z(6"), since

q(y'le) [ q(y'l0) a(y'l') . z(0)
By Gy 107) _/ a0y =20 Y= 2y




Predicting the unlabelled class data

We adopt a Bayesian model and consider the problem of classifying
the unlabelled {yn+1,- -, Yn+m}-

One alternative is to consider that all the class labels,
Yiseo s Yn Yntls -« -3 Yntm, arose from a single joint model

P()/h cee ,)/n+m|x7Xn+1a « ooy Xn+my e)p)

where some of the class labels are missing at random.

But this is computationally very challenging!



Predicting the unlabelled class data

Unclassified points can be labelled based on the marginal predictive
distribution of y,;

P()/n-i-i’Xn—&-iaXa Y) - //ﬁp(}’n-HXn+iaxay757P)P(/6aP|xa Y)dp d/8
p

where
p(B, plx,y) o< p(y|x, 3, p)p(B)p(p)

is the posterior of (3, p) given the training data (x,y).

Recall: p(y|x, 3, p) is difficult to evaluate.



Results: Benchmark datasets

cC F N
Pima 2 8 b32
Forensic glass | 4 9 214
Iris 3 4 150
Crabs 4 5 130
Wine 3 13 178
Olive 3 9 572

Here C, F, N corresponds to the
number of classes, the dimension
of the feature vectors and the
overall number of observations,
respectively.

In each situation, the training dataset was approximately 25% of

the size of the overall dataset.

In the Bayesian model, diffuse non-informative priors were chosen.

The dnn algorithm was run for 20, 000 iterations, with the first
10,000 serving as burn-in iterations. The auxiliary chain within the
exchange algorithm was run for 1,000 iterations.



Results: Benchmark datasets

Misclassification rates

knn  dnn
Pima 33% 29%
Forensic glass | 40% 33%
Iris 5% 5%
Crabs 17% 17%
Wine 5% 3%
Olive 5% 3%

In all examples, the data was standardised to give transformed
features with zero mean and unit variance.

The value of k in the knn algorithm was chosen as the value that
minimises the leave-one-out cross-validation error rate in the
training dataset.

In all cases dnn performs at least as well as knn.



Classification with a large feature set: Food authenticity

65 samples of Greek virgin olive-oil were analysed using near
infra-red spectroscopy giving rise to 1050 reflectance values for
wavelengths in the range 400 — 2098nm. These values serve as the
feature vector for each observation.

The aim of this study was to see if these measurements could be
used to classify each olive-oil sample to its correct geographical
region.

There are 3 possible classes: Crete (18 locations), Peloponnese (28
locations) and other regions (19 locations).

In our experiment the data were randomly split into a training set
of 25 observations and a test set of 40 observations.



Results of knn algorithm

Leave-one-out cross-validation
on the training data gives a
minimum misclass rate for
k=14

K

Training data: leave-one-out cross-validation.

The misclass rate for the test
dataat k=1and k=4is
27% and 33%, respectively.
The minimum misclass rate is
20% (k =3).

Test data: misclass rate versus k.



Results of dnn algorithm
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50,000 Iterations; 20,000 burn-in; 1,000 iterations for the auxiliary
chain. Acceptance rate is 24%.

The misclassification rate for the dnn algorithm was 17%. This
compares favourably with the misclassification rate for the knn
algorithm (27% or 33%).



Food authenticity: classification of meat samples

Similar to the last example, the aim of this experiment was to
classify 5 meat types according to 1050 reflectance values from
near infra-red spectroscopy for 231 meat sample.

The data was randomly split into training and test data with the
following frequencies within each class:

Training data  Test data

Chicken 15 40
Turkey 20 35
Pork 13 42
Beef 11 21

Lamb 11 23



Results of knn algorithm

Leave-one-out cross-validation
on the training data gives a
minimum misclass rate for

k = 3.

B

Training data: leave-one-out cross-validation.

The misclass rate for the test
data at k = 3 is 35%. The
minimum misclass rate over
all values of k is 30% (k = 1).

Test data: misclass rate versus k.



Results for dnn
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50,000 Iterations; 20,000 burn-in; 1,000 iterations for the auxiliary
chain. Acceptance rate is 22%.

The misclassification rate for the dnn algorithm was 30%
(compared to 35% for knn algorithm).



Summary

e The dnn algorithm provides a probabilistic approach to a
Bayesian analysis of supervised learning, building on the work
of Cucala et al (2009) and shares many of the advantages of
the approach there, providing a sound setting for Bayesian
inference.

e The most likely allocations for the test dataset can be
evaluated and also the uncertainty that goes with them. In
addition, the Bayesian framework allows for an automatic
approach to choosing weights for neighbours.

e Our work also also addresses the computational difficulties
related to the well-known issue of the intractable normalising
constant for discrete exponential family models. Our
algorithm based on the exchange algorithm has very good
mixing properties and therefore computational efficiency.



