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Introduction

We consider a problem of characterizing subsurface properties given
“coarse-scale” measurements.

Subsurface properties are highly heterogeneous with uncertainties at “small”
scales that can affect the measurement results.

The relation between the input (subsurface properties in this talk) and the output
(e.g., oil production rate) is highly nonlinear.

Inverse problem in a Bayesian framework (uncertainty quantification in inverse
problems, ...): P(k|D) < P(D|k)P(k), where k(x) represents the subsurface
property (permeability, e.g.).
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lllustration

Fractional Flows
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Prototypical model

We consider two-phase flow in a heterogeneous porous formation under the assumption
that the displacement is dominated by viscous effects.

V- (A(S)kVp) = h,

g—f +v-Vf(S)=0, v=—-A(S)kVp.
Measured data:
S)dl
Pty = Jou IS
fout vdl
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Problem setting

Given the fractional flow information (integrated response) F'(t) and some
precision, we would like to sample k from P(k|F).

From Bayes theorem
P(k|F) o P(F|k)P(k).
Here P(k) is the prior information, P(F|k) is the likelihood and assumed given by
obs 2
P(F|k) = exp(— Ee=F77WON7 )

(o2

2
Priors can be (1) P(k) = exp(— 1okl =los(kens) Iy (2) covariance matrix is given
Tk

(3) with unknown parameters in the covariance matrix (4) ...
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Difficulties

- .

(k) = P(k|F) can be multi-modal and high dimensional.

w(k) = P(k|F) is not given analytically and involves the solution of nonlinear pde
system.
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Sampling

Algorithm (Metropolis-Hastings MCMC)

Step 1. At k,, generate k from q(k|ky).
Step 2. Accept k as a sample with probability

p(kn, k) = min <1, :
(o) a(klken) (k)

l.e. kn4+1 = k with probability p(k., k), and k,+1 = ky, with probability 1 — p(kn, k).
Here = (k) is the distribution we would like to sample.

Direct (full) MCMC simulations are usually prohibitively expensive, because each
proposal requires a fine-scale computation.

We use algorithms where the proposal distribution is modified using coarse-scale
spatial models.
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Priors

P
= W .
EhE i e
R ENIEE R
E% Facies 1 Facies 2

Interface modeling with level sets (7 = const)

oT
— Vr =0,
83+w 4

where w is a random vector field. In simulations, we assume that the direction of
the velocity field is fixed.

Within each region, two-point correlation based log-permeability fields are used,
l.e., R(z,y) = E(Y(z,w)Y (y,w)) IS given, where Y (z,w) = log(k(z,w)).
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Priors

existing interface
J— added interface segments
= updated points updated interface

Discretization of the interface is done with variable number of points that have
unknown locations.

Discretization of permeability field in each region is done with Karhunen-Loéve
expansion, Y(z,w) = > 0;(w)vVAi¢i(x).
Permeability is conditioned at some locations (well locations).
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Proposal distributions

Py existing points  -==---------- remove d interface se gment
existing interface

_— added interface segments
o updated points updated interface

[=} new point

An illustration of the Birth, Death and Jump process in Reversible Jump MCMC for an
interface.

Permeability within a region (k(z) — Y (x) = log(k(x)) — 0;(w)) is proposed either
using random walk sampler or Langevin.
Forward models based on pde’s allow computing the gradients of the posterior.

Langevin proposals are derived from the solution of
dk(1) = 2V log w(k(t))dr + dW-. Itis given by

A
Y = kn + %Vlogﬂ(kn) +VATen.
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Langevin Algorithms

The transition distribution of the proposal is

2AT

Y_kn—EVIO kn 2
g(Y |kn) o exp <_” TV log 7 (kn) | >

k, —Y — ATvy] V112
q(kn|Y") oc exp (—H 5 Vlogm(Y)| >

2AT
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Multiscale spatio-temporal models

=

Multiscale basis functions (or similarly upscaled quantities) are pre-computed on a
coarse grid. The objective is to solve the problems on a coarse grid.

In multiscale simulations, we attempt to represent the solution on a coarse grid.

Example: the solution p(x) defined on 100 x 100 fine grid is written as
p(x) = 329 ¢;ihi(x). Multiscale basis functions are computed such that it
captures the local variations of the solution.

Ensemble level multiscale methods: p(z,w) ~ 3°° | ¢;¢i(, w).

Some details can be found, e.g., Efendiev and Hou, Multiscale finite element
methods. Theory and Applications. Springer, 2009

-
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A simple example

Exact solution Basis
0.3 ‘ ‘ 1.2r

0.25¢

0.2r

0.15¢

0.1f

0.05¢

0 0.2 04 0.6 0.8 1 70 0.2 0.4 0.6 0.8 1

(ae(x)u’) = =1, u(0) = u(l) =0, ac(z) = 1/(2 + 1.99 cos(x/€)), e = 0.01.
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Gridding
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The use of multiscale models

_IE@=E @2y

73
Based on off-line computations (fine vs. coarse), one can determine a statistical
relation

m(k) = P(k|F) < P(F|k)P(k), where P(F|k) = exp(

| Fi(t) — Fops (B)] & G| Ff (t) — F**(1)]]) + Noise.
(error modeling, e.g., J. Glimm, M. Christie, ...)

A simplest relation is a linear relation G(z) = ax.

G Fy (1) —F**()|)?

*
Introduce 7* (k) o exp(— 5 VP (k).
7f
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Preconditioned coarse-gradient Langevin algorithm

(1) Make a proposal (birth/death for an interface point; move the interface; populate
spatial features based on “coarse gradients”); (2) run the coarse-scale simulation code
and check the “appropriateness” of the sample; (3) run the “fine-scale” simulation.

Step 1. At k,,, generate a trial proposal Y from the coarse Langevin distribution
q* (Ylkn).

Step 2. Take the proposal k£ as

k  with probability o, (kn, k),
k= . . ~
kn ~ with probability 1 — ay (kn, k),

where

ap(kn l%)zmin(l Q(~R|k)ﬂ (k >>
e q(k|kn)m* (kn)
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Uncertainty quantification in inverse problems with multiscale models. Applications to porous media — p.16/2’



Preconditioned coarse-gradient Langevin algorithm

If we are at Birth Step

P*(Fpslk) y P(T)P(0)P(z'¢|my + 1)P(mqn + 1)
P*(Fops|kn) = P(rn)P(6n) P(ale|mn) P(mn)

~"

ap(kn, k) = mm{l

7

-

~
likelihood ratio prior ratio

q0 (0 n|9)2?frfl+1 agmnm(ﬁg@oc>u>

X
6(0|0n )paddenmn—l—l (ulzr?€) dxlocou

-~ Vv

proposal ratio Jacobian

7

Step 3. Accept k& as a sample with probability

p(kn, k) = min <1, Q(kn|k)m (k) ) |

Q(K[kn ) (Fn )

where @ is the effective proposal distribution.

-
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Convergence of modified Markov Chain

Denote

€= {k; =(k) > [0]},
E* ={k; ©* (k) > [0},
D = {k; q(k|kn) > [0] for some k,, € £},

To sample from = (k) correctly, it is necessary that £ C £*. Otherwise, there will exist a
subset A C (£ \ £*) such that

w(A) = /A w(x)dx > 0 and mr(A) = /A 7w (x)dz = 0.

As a result, the chain {k,,} will never visit (sample from) A since the element of A will
never be accepted for fine-scale run in Step 2. For the same reason, we should require
that £ C Q.

o -
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A remark

=

If 7* (k) is a smooth surface, then instead of using =*(k), it can be interpolated
employing sparse collocation techniques

7 = Zw*(ki)Li(k),

where k; are sparse collocation points and L;(k) are polynomials (P. Dostert et al.,
2007).

Some analysis of MH in the homogenization setting can be carried out.

-
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Numerical Results

Left: Coarse-scale response surface =* restricted to a 2-D hyperplane. Right:
Fine-scale response surface = restricted to the same 2-D hyperplane.

o -
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Numerical Results
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Left: Acceptance rate comparison. Right: Natural log of CPU time (seconds)
comparison. In each plot we use § = 0.05 and aJ% = 0.001.
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Numerical Results

0.1 ‘ ‘ , Fractional Flows
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Left: The fractional flow errors for coarse Langevin compared with interpolated
Langevin. Right: The fractional flows of sampled realizations and the reference
fractional flow. In these numerical tests, § = 0.05, o—J% = 0.001.
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Numerical results
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Upper left plot is the reference conductivity. The other three plots are examples of
ccepted conductivity realizations.
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Numerical results
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fractional flow error

Numerical results

Fractional flow error vs iterations
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Numerical results

reference initial

3 3
== 2 2
| e— 1 1
0 0

realization realization
3 3
2 - 2
e 1 — - 1
0] 0

realization realization
3 3
2 2
1 1
0] 0]
3 3
2 2
1 1
0 0

-

Uncertainty quantification in inverse problems with multiscale models. Applications to porous media — p.26/2’



Conclusions

=

Direct sampling using MH MCMC approaches is expensive

Coarse gradient information and inexpensive coarse-scale models can be used to
speed-up the simulations

Numerical results demonstrate CPU time can be reduced by two orders of
magnitude.

Models at different scales with weights can be also used.

Other representations for modeling interfaces

-
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