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Some repulsive things

Spanish towns Pine trees
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Plotting locations

Locations: Spanish towns Locations: Swedish pines
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Poisson process

Constant intensity: locations uniform
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Ways to model repulsion

Two different approaches:
Create density with respect to Poisson point process
Create algorithm that modifies Poisson point process

Poisson point process

Space S

Intensity measure λ · µ(·)

For A ⊆ S, E[A] = λ · µ(A)
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What is a Poisson point process?

Divide region into tiny squares
Probability square contains point...
...equals size of square times λ
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Poisson point process, second viewpoint

To generate process:
Draw N ← Poisson(λ · µ(S))

Randomly place N points on S using µ(S)

(When µ is Lebesgue measure, points uniform over S)
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Example: density approach

Strauss process1

γ := repulsion parameter in (0,1)

R := radius of interaction
f (x) = γ#{(i,j):dist(xi ,xj )<R}/Z

R = .02

f (x) = γ6 / Z

1Strauss 1975
Mark Huber (Duke University) Perfect simulation Matérn Type III EPSRC Workshop on MCMC 9 / 62



Density approach

Advantages
Easy to write down
Perfect simulation algorithms exist
Can deal with edge effects
Used for maximum likelihood or as prior for Bayesian inference

Disadvantages
Unknown normalizing constant Z
Has phase transition
Makes Markov chain slow for big λ
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Matérn approach

More algorithmic2

Start with Poisson point process
Apply procedure to induce repulsive effect

Advantages
By definition easy to simulate
Known normalizing constant

Disadvantages
Unknown density
No density = no MLE = no posterior

2Matérn 1960
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Type I

Generate Type I Matérn process
Input: R, λ(·) Output: x
1) Draw A← Poisson point process(λ(·))
2) For all {p,p′} ⊂ A do
3) If dist(p,p′) ≤ R
4) Let A← A \ {p,p′}

Thinned Poisson point process:
Start with PPP
Remove any pair of points within distance R of each other
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Type I: Picture
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Circles of radius R/2

Circles touch =
points eliminated

Points a, b, c eliminated

Mark Huber (Duke University) Perfect simulation Matérn Type III EPSRC Workshop on MCMC 13 / 62



Type I: After thinning

da db
dc

td te

Call a, b, c ghost points

Call d , e seen points

Ghost points exert
invisible pressure
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Type I: Comments

Problems
Too many eliminations
As λ→∞, # of points→ 0
Need method that preserves some points
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Type II

Generate Type II Matérn process
Input: R, λ(·) Output: x
1) Draw A← Poisson point process(λ(·))
2) For all points p ∈ A
3) Draw a time stamp tp ← Unif([0,1])
4) For all {p,p′} ⊂ A do
5) If dist(p,p′) ≤ R and tp < tp′

6) Let A← A \ {tp′}

Thinned Poisson point process:
Start with PPP
Remove point if within distance R of point born earlier
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Type II: Picture
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Type II: After thinning

ta db
dc

td te

Call b, c ghost points

Call a, d , e seen points

Ghost points exert
invisible pressure
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Type II: Comments

Advantages
First points survive
Higher number of points than Type I

Problems
Still can’t write a density down
Would like higher density of points
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Type III

Generate Type III Matérn process
Input: R, λ(·) Output: x
1) Draw A← Poisson point process(λ(·))
2) For all points p ∈ A
3) Draw a time stamp tp ← Unif([0,1])
4) Let L← {p1,p2, . . . ,p#A} where tp1 ≤ tp2 ≤ · · · tp#A

5) While L 6= ∅
6) Let p be entry of L with smallest time stamp
7) Let A← A \ {q : tp < tq}

Thinned Poisson point process:
Start with PPP
Remove point if within distance R of point born earlier that hasn’t
already been eliminated
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Type III: Picture
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Circles of radius R/2

Point a eliminates b
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Type III: After thinning

ta db
tc

td te

Call b ghost point

Call a, c, d , e seen points

Ghost points exert
invisible pressure
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Type III: Comments

Advantages
More points left to be seen
More than twice density of Type II
Can write a density
Random Sequential Adsorption (RSA) model in Poisson limit

Needed pieces to use Type III:
Write down the density
Build Markov chain for density
Build perfect sampler around Markov chain
Build product estimator to utilize samples
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Casting shadows

The seen points cast shadows where the ghosts live:

time stamp

space

0 10

0

1
S time stamp

2.8 0.70
5.2 0.50
8.0 0.65

2R = 1.4
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The density

The density of point locations and time stamps (with respect to a
Poisson point process with intensity µ(·)) is

f (x , t |θ) = exp(µ(S)[1− λ])λ#x exp(λ · µ(shadow)), θ = (λ,R)

Remarks:
exp(µ(S)[1− λ]) resets intensity from µ(·) to λµ(·)
Only the shadow is a function of t

g(x |θ) = exp(µ(S)[1− λ])λ#x
∫

t∈[0,1]#x
exp(λ · µ(shadow)).
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Standard Monte Carlo

Usual situation:

g(x) =
w(x)

Z
, Z =

∫
Ω

w(x) dx

Typically Z difficult to compute (# P complete)
With Matérn: know normalizing constant, integration in weight!

Our Monte Carlo approach
Generate t to go along with x
Use product estimator to approximate g(x |θ)
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How to draw time stamps given locations?

Markov chain Monte Carlo
1 Construct a Markov chain with stationary distribution matching

target distribution
2 Under mild conditions (φ-irreducbility, aperiodicity) can guarantee

limiting distribution matches stationary distribution
3 Run chain “for a long time” from arbitrary inital state to obtain

samples
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Metropolis

Once have density, can use Metropolis method
Metropolis3 is a protocol for building Markov chains with target
stationary distribution
At state t , propose move (uniformly) to new state t ′

Accept move with probability:

min
{

1, r(t ′, t) :=
f (x , t ′|θ)
f (x , t |θ)

}

Tricky part:

r(t , t ′) = exp(λ[µ(shadow under t ′)− µ(shadow under t)])

3Metropolis, Rosenbluth, Rosenbluth, Teller & Teller 1953
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Why tricky?

Keep it simple: only change tp for single point p
µ(change in shadow) involves (even in 2D) intersections of circles:
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Avoiding the ratio

Easy case: t ′p ≤ tp (so point born earlier) means r(t , t ′) ≥ 1
Hard case: t ′p > tp, which decreases shadow

r(t , t ′) = exp(−λ(µ(orange region)))

time stamp

space

0 10

0

1
S time stamp

2.8 0.70
5.2 0.50
8.0 0.65

2R = 1.4
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A Poisson subprocess

Idea #1:

exp(−λ(µ(orange region))) = P(PPP in orange region has 0 points)

Idea #2:
Draw PPP in orange region by thinning PPP in larger cylinder

time stamp

space

0 10

0

1
S time stamp

2.8 0.70
5.2 0.50
8.0 0.65

2R = 1.4
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How to take a step in Markov chain

Metropolis step
Input: seen points x , current time stamps t
Output: next time stamps t
1) Draw i ← Unif({1, . . . ,#(x)})
2) Draw t ′i ← Unif([0,1])
3) If t ′i ≤ ti
4) Let ti ← t ′i
5) Else
6) Draw W ← Poisson point process over [t ′i , ti ]× Br (xi)
7) If #{W ∩ change in shadow} = 0 then
8) Let ti ← t ′i
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Perfect simulation

Goal
Draw samples exactly from stationary distribution
No need to know mixing time of chain

Drawback
Running time is random
Example: Acceptance/Rejection
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Bounding chains4

At each step look at possible states for next step:

? ?

4Huber 1998, Häggström & Nelander 1998, Huber 2004
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Bounding chains Part II

At each step look at possible states for next step:
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Blocks either success or failure

Start with 
all states

Run fixed 
# of steps
(block of 
steps)

All states 
move to 
one state

SUCCESS!

FAILURE...or they 
do not
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Going from blocks to exact samples

Coupling from the past5

Say have method for deciding if block is success or failure...
...CFTP turns block method into method for generating exactly
stationary draws
Running time = time to generate block/probability block success
No need to know mixing time of Markov chain
Run success followed by geometric number of failure blocks

Details of CFTP

5Propp & Wilson 1996
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Using intervals to bound time stamps

ta
[.23, .45] tc

[.67, .89]

td
[0,1]

te
[.43, .43]
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Updating interval

t_lower t_upper
][

t_proposed

Always
accept

Might 
accept

For “might accept”
Draw Poisson process over largest possible region based on other
intervals
If empty, accept move for all points below proposed t
Gives proof that chain is antimonotonic 6

6Kendall 1998, Kendall & Møller 2000, Häggström & Nelander 1997
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Approximating the likelihood

What we have so far:
A density for Matérn III that we want to approximate
A Markov chain for generating approximate samples
A perfect simulation algorithm for generating exact samples

What we want:
A method for turning samples into approximation of density
Method: product estimator
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Product estimator

A means for estimating sizes my looking at successive products:

µ(D) = µ(A)
µ(B)

µ(A)
· µ(C)

µ(B)
· µ(D)

µ(C)

A B C D
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Product estimator for estimating density

In context of Matérn III:
Smallest set is λ = 0: g(x |(0,R)) = exp(µ(S))

Create sequence 0 = λ0 ≤ λ1 ≤ · · · ≤ λn = λ

Make λi − λi−1 = 1/µ(S)

Then g(x |(λi ,R))/g(x |(λi−1,R)) ≤ e
Need O(n2(1/ε2) ln(1/δ)) samples for 1 + ε-approximation with
probability at least 1− δ
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Getting the ratios

g(x |(λi ,R))

g(x |(λi−1,R))
= exp(µ(S)(λi−1 − λi))C exp((λi − λi−1)µ(shadow)

To estimate this last part without finding µ(shadow):
Use thinning trick from before
Generate Poisson process with intensity (λi − λi−1)µ(S) on S
Only keep points that lie in shadow
If no points remain, count as success
P(success) = exp((λi − λi−1)µ(S))
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Results: towns
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Results: trees
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Running time per sample

Appears to be no phase transition
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Extensions

There are many ways to extend this work:
Soft core–allowing some points to be closer than others
Removing edge effects
Discretizing

Goal: building model that matches actual distribution of
distances
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Soft core

Several approaches
Strauss model: penalize rather than forbid
Individual values of Ri for point xi
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Edge effects

Dealing with edge effects
Matérn’s work all on finite space S
Want method for Rd dimensional analogue
Look at finite window on infinite plane

Start with Poisson Point Process in a plane
Connect any two points within distance R
Track back from node until sure in or out of Matérn III

Mark Huber (Duke University) Perfect simulation Matérn Type III EPSRC Workshop on MCMC 51 / 62



Finite window: example

e kills c so b survives, kills a

ab

c

d
a

e
f

g

.81
.39

.53

.62
.22

.19
.71

e is three steps away from a with te ≤ tc ≤ tb ≤ ta
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Exponential versus Factorial

Consider graph of nodes within R
Number of nodes k steps away grows exponentially
Chance node k away matters is 1/k !
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Neural Spike Trains

Some data essentially discretized
Tried running on neural spike train data
Data only given to nearest millisecond
Introduced artificial repulsion of 1 millisecond
Need discrete version to apply to this type of data
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Other projects

Protocols for perfect simulation
Here used coupling from the past7 and bounding chains8

Randomness Recycler9

Partial Recursive Acceptance/Rejection
Sequential Acceptance/Rejection (O(n3) faster than Markov
chains 10

Monte Carlo methods for permutations
Nonmarkovian couplings
Machine learning applications
Nonparametric convex rank tests

7Propp & Wilson 1996
8Huber 2004
9Fill & Huber 2001

10Huber & Law 2008
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Summary

For Matérn Type III processes
This work built a density for the process
Created a Metropolis Markov chain for the density
Created a perfect simulation method for the chain to obtain exact
samples with experimentally near linear (in intensity) run time
Created a product estimator to use the samples to approximate
the density

The result
A method for likelihood estimating and posterior inference using
the model of Matérn Type III processes
Apparently no phase transition behavior
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Coupling from the past details

Let K t be the kernel of t steps in Markov chain. For π stationary:

πK t = π.

A block of t steps is either a SUCCESS block or FAILURE block
Let K S be the kernel conditioned on SUCCESS
Let K F be the kernel conditioned on FAILURE
Let p be the probability that a block is a SUCCESS
Then

K t = pK S + (1− p)K F .
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CFTP details continued...

From last slide:

πK t = π, K t = pK S + (1− p)K F .

Since SUCCESS block moves all states to same state,

πK S = K S,

in other words: SUCCESS blocks destroy memory of past. This gives:

π = πK t = pK S + (1− p)πK F .
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More CFTP details

Combining the facts from last two slides:

π = πK t

= π(pK S + (1− p)K F )

= pK S + (1− p)πK F

= pK S + (1− p)[pK S + (1− p)πK F ]K F

= pK S + (1− p)pK SK F + (1− p)2πK F K F

...
= pK S + (1− p)pK SK F + (1− p)2pK SK F K F + · · ·

So to get draw from π, run a success block followed by G failure
blocks, where G ∼ Geo(p).
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Similar nature

Similar nature to acceptance/rejection
CFTP related to acceptance/rejection (Fill’s algorithm)
Other modifications of A/R exist for perfect sampling
All share 1) random run time, 2) generate exact samples
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Read Once Coupling from the Past11

Call success block S, failure block F
Blocks independent of each other
Result: Blocks look like Bernoulli trials SSSFSFSFFFSS
Each state in Markov chain before an S block is stationary
Why? Because it is an S block followed by geometric number of F
blocks

Go back

11Wilson 2000
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