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Jump-diffusions

A jump-diffusion process is defined as the solution
X := {Xt : 0 ≤ t ≤ T} of the SDE:

dXt = b(Xt−; θ)dt + σ(Xt−; θ)dBt + dJt , X0 = x0.

Jt is a jump process where the jump times follow a Poisson process
with rate λ(t,Xt−; θ) and the jump sizes are given by a function
g(Zt ,Xt−), where Zt has a distribution f (Zt ; θ).
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Problem

Xt1 ,Xt2 , . . . ,Xtn is observed.

Make inference for θ given the observations.

Only the likelihood function for the whole path is available →
EM Algorithm.

Aim: Use the EM Algorithm (MCEM, actually) to find the
MLE of θ based on the observations.

Beskos, Papaspiliopoulos, Roberts and Fearnhead (2006)
proposed an MCEM Algorithm for diffusion processes.
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General framework

Proposed by Dempster, Laird and Rubin (1977).

Xobs ∼ f (Xobs ; θ) (unknown).

Xmiss is not observed.

X = {Xobs ,Xmiss} ∼ f (X ; θ) (known).

Aim: Find θ that maximises l(Xobs ; θ).
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Algorithm

Set a initial value θ′.

E-step

EXmiss |Xobs ,θ′ [l(X ; θ)] = Q(θ, θ′)

M-step
Maximise Q(θ, θ′) w.r.t. θ and update θ′.
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Monte Carlo EM

Introduced in Wei and Tanner (1990).

EXmiss |Xobs ,θ′ [l(X ; θ)] is not analytically available.

It is possible to simulate from (Xmiss |Xobs , θ
′)

Use the Monte Carlo estimator

Q̂(θ, θ′) =

∑M
i=1 l(X (i); θ)

M

Q̂(θ, θ′) −→ Q(θ, θ′) as M →∞
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Exact Algorithm (EA)

Proposed by Beskos, Papaspiliopoulos and Roberts (2006).

Exact simulation of a class of Itô’s diffusions.

Exact in the sense that there is no discretisation error.

The EA performs retrospective rejection sampling by
proposing paths from processes that we can simulate and
accepting them according to appropriate probability density
ratios.

The novelty lies in the fact that the paths proposed are
unveiled only at finite (but random) time instances and the
decision whether to accept the path or not can be easily taken.
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Flávio Gonçalves University of Warwick

Monte Carlo Inference for Jump-Diffusion Processes



Motivation EM and MCEM Algorithms Exact Algorithm Conditional Jump Exact Algorithm MCEM for jump-diffusions

Exact Algorithm (EA)

Proposed by Beskos, Papaspiliopoulos and Roberts (2006).

Exact simulation of a class of Itô’s diffusions.
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Idea

Proposes paths from a Brownian Bridge.

dQ
dW
∝ exp

{
−
∫ T

0
φ(Xt)dt

}
≤ 1

Theorem

Let X be any continuous mapping from [0,T ] to R, and M(X ) an
upper bound for the mapping t 7→ φ(Xt), t ∈ [0,T ]. If Φ is a
homogeneous Poisson process of unit intensity on [0,T ]× [0,M(X )]
and N is the number of points of Φ found below the graph
{(t, φ(Xt)); t ∈ [0,T ]}, then

P(N = 0|X ) = exp

{
−
∫ T

0
φ(Xt)dt

}
.
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Returns a skeleton of the processes in [0,T ].
Any additional information on the process can be easily simulated.
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X is accepted and

X is rejected.

Returns a skeleton of the processes in [0,T ].
Any additional information on the process can be easily simulated.
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Preliminaries

dXt = b(Xt−; θ)dt + σ(Xt−; θ)dBt + dJt , X0 = x0.

Jt = {PP(λ(t,Xt−; θ)); g(Zt ,Xt−), f (Zt ; θ)}

Transformation: Yt = η(Xt) =

∫ Xt

z

1

σ(u; θ)
du

dYt = α(Yt−; θ)dt + dBt + dJt , Y0 = x .

Jt =
{
PP(λ(t, η−1(Yt); θ)); g1(Zt ,Yt−), f (Zt ; θ)

}
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General idea: Use Retrospective Rejection Sampling like EA.

1st candidate: dYt = dBt + dJt , Y0 = x , YT = y

Jt = {PP(λ); f }

2nd candidate: Y = J + B∗

Jt = {PP(λ); f } and B∗ = BB(0, x ; T , y − JT )
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Main result

d P̃
dD̃

∝ exp

{
−
∫ T

0

(
α2 + α′

2

)
(Yt−; θ) + λ(t,Yt−; θ)dt

−
NJ∑
j=1

∫ Ytj

Ytj−

α(u; θ)du


NJ∏
j=1

λ(t,Ytj−; θ)fg (Ytj − Ytj−; θ)

λf (Ytj − Ytj−)

exp

{
− 1

2T
(y − JT − x)2

}
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Log-likelihood

l(Y ; θ) ∝ A(y ; θ)− A(x ; θ)−
NJ∑
j=1

∫ Ytj

Ytj−

α(u; θ)du

−
∫ T

0

(
α2 + α′

2

)
(Yt−; θ) + λ(t,Yt−; θ)dt

NJ∑
j=1

log(λ(t,Ytj−; θ)) + log(fg (Ytj − Ytj−; θ))
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A(x , θ) =

∫ x

0
α(u; θ)du

EXmiss |Xobs ,θ′

[∫ T

0
f (Yt)dt

]
= EXmiss ,U|Xobs ,θ′ [Tf (YU)]

U ∼ U(0,T )

The expectation of the log-likelihood depends on
{XU , NJ, tj , ,Xtj−, Xtj}.
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MCEM Algorithm

1 Choose θ′;

2 Perform CJEA M times to obtain M samples of
{XU , NJ, tj , ,Xtj−, Xtj};

3 Compute the MC estimator of the expectation of the
log-likelihood;

4 Maximise the expectation w.r.t. θ;

5 Update θ′ and go back to 2.

Flávio Gonçalves University of Warwick
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Other alternatives

Propose from a modified process to cancel the term

−
NJ∑
j=1

∫ Ytj

Ytj−

α(u; θ)du in the acceptance probability.

Propose from D̂ and use Importance Sampling (IS) on the
E-step.

Propose from a similar jump-diffusion via CJEA and use IS
(embedded Rejection Sampling).
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Flávio Gonçalves University of Warwick

Monte Carlo Inference for Jump-Diffusion Processes



Thank you!

Contact: F.B.Goncalves@warwick.ac.uk
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