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Bayesian analysis, but its the only general device.

• Generality has it costs; for specific classes of models, we can
do “better”

• Provide faster answers to commonly asked questions
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Classes of models where there are alternatives

• Latent Gaussian Models (LGM)

• Change-point Models

• Latent binary Markov Random Fields models

(I do not cover Variational-Bayes.)
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Overview

Overview of this talk

• LGM and INLA

• LGM in practice using R

• Some newer results
• LGM and Survival models
• Geostatistics and GMRFs

• Latent Binary MRFs models

• Change-point models

• Parallel computing
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LGM and INLA

LGM

Latent Gaussian models

Stage 1 Observed data y = (yi ),

yi | x,θ ∼ π(yi |xi ,θ)

Stage 2 Latent Gaussian field

x | θ ∼ N (µ,Q(θ)−1), Ax = 0

Stage 3 Priors for the hyperparameters

θ ∼ π(θ)

Unify many of the most used models in statistics
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Structured additive regression models

Linear predictor

ηi =
∑
k

βkzki +
∑

j

wji fj(zji ) + εi

• Linear effects of covariates {zki}
• Effects of fj(·)

• Fixed weights {wji}
• Commonly: fj(zji ) = fj,zji

• Account for smooth response
• Temporal or spatially indexed covariates
• Unstructured terms (“random effects”)

• Depend on some parameters θ
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Examples

• Dynamic linear models

• Stochastic volatility

• Generalised linear (mixed) models

• Generalised additive (mixed) models

• Spline smoothing

• Semiparametric regression

• Space-varying (semiparametric) regression models

• Disease mapping

• Log-Gaussian Cox-processes

• Model-based geostatistics (*)

• Spatio-temporal models
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Example: Disease mapping (BYM-model)

• Data yi ∼ Poisson(Eiexp(ηi ))

• Log-relative risk
ηi = ui + vi + βTzi

• Structured component u

• Unstructured component v

• Covariates zi

• θ are the Log-precisions log κu

and log κv

0.7

0.98

1.27

1.55

1.83

2.11

2.4
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Characteristic features

• Large dimension of the latent Gaussian field: 102 − 105

• A lot of conditional independence in the latent Gaussian field

• Few hyperparameters θ: dim(θ) between 1 and 5

• Non-Gaussian data
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Examples

Main task

• Compute the posterior marginals for the latent field

π(xi | y), i = 1, . . . , n

• Compute the posterior marginals for the hyperparameters

π(θj | y), j = 1, . . . , dim(θ)

• Today’s “standard” approach, is to make use of MCMC

• Main difficulties
• CPU-time
• Additive MC-errors
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INLA

Integrated nested Laplace approximations (INLA) [With
N.Chopin and S.Martino]

• Utilise of the latent Gaussian field
• Laplace approximations

• Utilise the conditional independence properties of the latent
Gaussian field

• Numerical algorithms for sparse matrices

• Utilise small dim(θ)
• Integrated Nested Laplace approximations
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LGM and INLA

Summary of results

Main results

• HUGE improvement in both speed and accuracy compared to
MCMC alternatives

• Relative error

• Practically “exact” results1

• Extensions: Marginal likelihood, DIC, Cross-validation, ...

INLA enable us to treat Bayesian latent Gaussian models properly
and bring these models from the research communities to the
end-users

1Can construct counter-examples
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LGM and INLA

Main ideas

Main ideas (I)

π(z) =
π(x , z)

π(x |z)
leading to π̃(z) =

π(x , z)

π̃(x |z)

∣∣∣
mode(z)

• When π̃(x |z) is the Gaussian-approximation, this is the
Laplace-approximation

• Want π(x |z) to be “almost Gaussian”.
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Main ideas (II)

Posterior

π(x,θ | y) ∝ π(θ) π(x | θ)
∏
i∈I

π(yi | xi ,θ)

Do the integration wrt θ numerically
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Remarks

1. Expect π̃(θ|y) to be accurate, since
• x|θ is a priori Gaussian
• Likelihood models are ‘well-behaved’ so

π(x | θ, y)

is almost Gaussian.

2. There are no distributional assumptions on θ|y
3. Similar remarks are valid to

π̃(xi | θ, y)
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Computational tools

Computational issues

• Our approach in its “raw” form is not computational feasible

• Main issue is the large dimension, n, of the latent field

• Various strategies/tricks are required for obtaining a practical
good solution
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Gaussian Markov random fields

Gaussian Markov random fields

Make use of the conditional independence properties in the latent
field

xi ⊥ xj | x−ij ⇐⇒ Qij = 0

where Q is the precision matrix (inverse covariance)

Use numerical methods for sparse matrices!
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Simplified Laplace

Simplified Laplace Approximation

Expand the Laplace approximation of π(xi |θ, y):

log π̃(xi |θ, y) = −1

2
x2
i + bixi +

1

6
di x3

i + · · ·

Remarks

• Correct the Gaussian approximation for error in shift and
skewness through bi and di

• Fit a skew-Normal density

2φ(x)Φ(ax)

• Computational fast

• Sufficient accurate for most applications
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The Integrated nested Laplace-approximation (INLA)

The integrated nested Laplace approximation (INLA) I

Step I Explore π̃(θ|y)

• Locate the mode
• Use the Hessian to construct new variables
• Grid-search
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LGM and INLA

The Integrated nested Laplace-approximation (INLA)

The integrated nested Laplace approximation (INLA) II

Step II For each θj

• For each i , compute the (simplified) Laplace
approximation for xi
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The Integrated nested Laplace-approximation (INLA)

The integrated nested Laplace approximation (INLA) III

Step III Sum out θj

• For each i , sum out θ

π̃(xi | y) ∝
∑

j

π̃(xi | y,θj)× π̃(θj | y)

• Build a log-spline corrected Gaussian

N (xi ; µi , σ
2
i )× exp(spline)

to represent π̃(xi | y).
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The integrated nested Laplace approximation (INLA) III

Step III Sum out θj

• For each i , sum out θ

π̃(xi | y) ∝
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j

π̃(xi | y,θj)× π̃(θj | y)

• Build a log-spline corrected Gaussian

N (xi ; µi , σ
2
i )× exp(spline)

to represent π̃(xi | y).
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LGM and INLA

Assessing the error

How can we assess the errors in the approximations?

Important, but asymptotic arguments are difficult:

dim(y) = O(n) and dim(x) = O(n)
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Assessing the error

Errors in the approximations of π(xi |y)

Compare a sequence of improved approximations

1. Gaussian approximation

2. Simplified Laplace

3. Laplace

Compute the full Laplace-approximation for π(xi |y,θj) only if the
Gaussian and the Simplified Laplace approximation disagree.
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Assessing the error

Overall check: Equivalent number of replicates

Tool 3: Estimate the “effective” number of parameters

• From the Deviance Information Criteria:

pD(θ) ≈ n − trace
(
Qprior(θ) Qpost.(θ)−1

)
• Compare with the number of observations:

#observations/pD(θ)

high ratio is good

• Theoretical justification
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Marginal likelihood

Marginal likelihood

Marginal likelihood is the normalising constant for π(θ|y)
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LGM and INLA

DIC

Deviance Information Criteria

D(x; θ) = −2
∑

i

log(yi | xi ,θ)

DIC = 2×Mean (D(x; θ))− D(Mean(x); θ∗)
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Cross-validation

Cross-validation

• Based on

π(xi |y−i ,θ) ∝ π(xi |y,θ)

π(yi |xi ,θ)

we can compute
π(yi | y−i )

• Similar with π(θ|y−i )

• Keep the integration points {θj} fixed.

• Detect “surprising” observations:

PITi = Prob(ynew
i ≤ yi | y−i )

• To some extent, validate the model looking at {PITi}
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• Based on

π(xi |y−i ,θ) ∝ π(xi |y,θ)

π(yi |xi ,θ)

we can compute
π(yi | y−i )

• Similar with π(θ|y−i )

• Keep the integration points {θj} fixed.
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PITi = Prob(ynew
i ≤ yi | y−i )

• To some extent, validate the model looking at {PITi}



Alternatives to MCMC

LGM and INLA

Examples

Stochastic Volatility model (I)

Log of the daily difference of the pound-dollar exchange rate from
October 1st, 1981, to June 28th, 1985.
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Stochastic Volatility model (II)

ηt = µ+ ft

ft | f1, . . . , ft−1, τ, φ ∼ N (φft−1, 1/τ) , |φ| < 1

Observations
yt | ηt ∼ N (0, exp(ηt))

θ = (φ, τ)
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Examples

Results: 50 first data
Posterior marginal φ
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Results: 50 first data
Posterior marginal for µ
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LGM and INLA

Examples

Revised model: all data
Observations: yt | ηt ∼ exp(ηt/2) × Student-tν
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LGM and INLA

Epileptic-example

Longitudinal mixed effects model: Epileptic-example
from OpenBUGS (I)

Observations are the number of seizures during the two weeks
before each of the four clinic visits

yij ∼ Poisson(exp(ηij))

Linear predictor (i = 1, . . . , 59 and j = 1, . . . , 4)

ηij = β0 + βBase log(Baselinej/4)

+ βTrtTrtj + βTrt×BaseTrtj × log(Baselinej/4)

+ βAgeAgej + βV4V4j + εi + νij

Unstructured terms

{εi}
iid∼ N (0, 1/τε) {νij}

iid∼ N (0, 1/τν) θ = (τε, τν)
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Epileptic-example

Longitudinal mixed effects model: Epileptic-example
from OpenBUGS (II)

Posterior marginal for β0
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Epileptic-example

Longitudinal mixed effects model: Epileptic-example
from OpenBUGS (II)

Posterior marginal for τε
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Epileptic-example

Longitudinal mixed effects model: Epileptic-example
from OpenBUGS (III)

R-interface:

formula <- y ~ lBase4 + Trt + BT+ lAge + V4
+ f( Ind, model="iid" )
+ f( rand, model="iid" )

fit = inla( formula, family="poisson" )

summary( fit )
plot( fit )

Running time on my laptop: 0.55s.
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LGM and INLA

Disease mapping

Disease mapping: The BYM-model

• Data yi ∼ Poisson(Eiexp(ηi ))

• Log-relative risk η = u + v + Zβ

• Structured component u

ui | u−i ∼ N (
1

ni

∑
j∼i

uj ,
1

niκu
)

• Unstructured component v

• θ = (κu, κv ) 0.5

0.6

0.8

1

1.2

1.5

2



Alternatives to MCMC

Survival models

Survival models [with R.Akerkar and S.Martino]

log(hazard) = log(baseline hazard) + covariates

We are able to do

• Right or left censoring

• Piecewise constant baseline hazard (and parametric survival
time)

• Log-Normal frailty

• +standard stuff
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Alternatives to MCMC

Survival models

The (trival) trick

Hazard (no covariates)
log λ(t)

Log-Likelihood from one observation

δi log λ(ti )−
∫ ti

0
λ(s)ds

where δi = 1 if failed or 0 if (right-)cencored.
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Survival models

The (trival) trick

Pice-wise constant log λ(t) on [0, 1] + [1, t] gives

−λ(1)︸ ︷︷ ︸
log Poisson(y=0 | mean=λ(1))

+ δi log λ(2) − (t − 1)λ(2)︸ ︷︷ ︸
log Poisson(y=δi | mean=(t−1)λ(2))

Result: Augment the model with fictive-observations

(δi , t)→ (0, 0, 0, 0, . . . , (δi , t))

and we have a LGM with Poisson observations!
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Survival models

Spatial survival: example

Leukaemia survival data (Henderson et al, 2002, 1043 cases.
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Survival models

Spatial survival: example

log(hazard) = log(baseline)

+f (age)

+f (white blood cell count)

+f (deprivation index)

+sex



Alternatives to MCMC

Survival models

Some internal statistics

In this example:

• Factorise Q (dim = 3144): 370 times

• Solve Qx = b: 12 915 times

• This is 50% of total CPU time



Alternatives to MCMC

Geostatistics

Use information about the locations!
Leukaemia survival data (Henderson et al, 2002, JASA). 1043
cases.



Alternatives to MCMC

Geostatistics

Gaussian fields

• Covariance function γ(distance; parameters)

• Matérn family

• Set of locations: n points

• Multivariate Normal distribution
• Dense covariance matrix
• Dense precision matrix

• Dense matrix calculations

O(n3)

• Often referred to as the “big n” problem
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Gaussian Markov Random fields

• xi |x−i only depends on the (few nearest) neighbours

E(xij | x−ij) =
1

20

(
8
◦ ◦ ◦ ◦ ◦
◦ ◦ • ◦ ◦
◦ • ◦ • ◦
◦ ◦ • ◦ ◦
◦ ◦ ◦ ◦ ◦

− 2
◦ ◦ ◦ ◦ ◦
◦ • ◦ • ◦
◦ ◦ ◦ ◦ ◦
◦ • ◦ • ◦
◦ ◦ ◦ ◦ ◦

− 1
◦ ◦ • ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦
◦ ◦ • ◦ ◦

)
Prec(xij | x−ij) = 20κ.

• Simple conditional interpretation

• Small memory footprint

• Fast computations O(n3/2) in R2
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Geostatistics

Can we use GMRFs as proxies?

Is there a GMRF with local neighbourhood that can approximate a
Gaussian field with given covariance function?
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Geostatistics

Matérn fields [with F.Lindgren and J.Lindström]

The solution of
(κ2 −∆)α/2x(s) = ε(s)

in R2, is a Matérn field:

Cov(x(s), x(s + τ )) ∝ (κ ‖τ‖)ν Kν(κ ‖τ‖), α = ν + dim/2

and Kν is the modified Bessel function.



Alternatives to MCMC

Geostatistics

Matérn fields on manifolds (definition)

• The solution of

(κ2 −∆)α/2x(s) = ε(s)

on the manifold S
• Driven by Gaussian “white

noise” on S

Cov(ε(Ai ), ε(Aj)) =

∫
Ai∩Aj

dS(s)
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Results

Result

Can “solve”

(κ2 −∆)α/2x(s) = ε(s), α = 1, 2, 3, . . . , α = ν + dim/2

for

• any κ

• any triangulation

• on any (“regular”) manifold

“solve” means here: write down, explicitly, the corresponding
precision matrix of the (local) GMRF
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Examples

Example: Explicit results for a regular lattice

For α = 2 (ν = 1)

Q =
κ−2

4π
×


1

2 −2(4 + κ2) 2
1 −2(4 + κ2) 4 + (4 + κ2)2 −2(4 + κ2) 1

2 −2(4 + κ2) 2
1


Range ≈

√
8/κ

Can compute boundary corrections
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Examples

Example: the fit
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Examples

Same example with anisotropy

For α = 2 (ν = 1)

a = κ−2
1 b = κ−2

2 c = 1 + 2(a + b)

Q =
1

4π
√

ab


a2

2ab −2ca 2ab
b2 −2cb c2 + 2(a2 + b2) −2cb b2

2ab −2ca 2ab
a2


Range ≈

√
8/κ1 and

√
8/κ2

Can compute boundary corrections
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Example: Anisotropy on a regular grid
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Geostatistics

Examples

Spatio-temporal example

• Monthly (January) average sea-level pressure at around 1 000
stations

• About 250 stations withheld for validation purposes

• 5 years of data

Simple model:

• Model for the mean

• Treat the data as (conditionally) independent

• Matérn (α = 2, ν = 1) covariance function, or oscillating field.



Alternatives to MCMC

Geostatistics

Examples

Spatial-temporal example



Alternatives to MCMC

Geostatistics

Examples

Spatial-temporal example

Posterior stdev



Alternatives to MCMC

Latent (binary) Markov random field

Binary MRF

• Defined on a regular lattice size n

• Lattice points xi take values {−1, 1}
• Full conditional π(xi |x−i , β) = π(xi |neighbours of i , β).

Ising model

π(x | β) =
q(x | β)

z(β)
=

exp
(
β1
∑

i xi + β2
∑

i∼j xixj

)
z(β)

The normalising constant is

z(β) =
∑

x

q(x | β)
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Latent (binary) Markov random field

Undirected Graphs and joint distributions

π(x) =
1

z
ψ(x1, x2)ψ(x1, x3)ψ(x2, x4)ψ(x3, x5)ψ(x2, x5, x6)

z =
∑
x1

· · ·
∑
x6

ψ(x1, x2)ψ(x1, x3)ψ(x2, x4)ψ(x3, x5)ψ(x2, x5, x6)

Computing z costs O(26)
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Latent (binary) Markov random field

Undirected Graphs and joint distributions

The “trick”

z =
∑
x1

∑
x2

ψ(x1, x2)
∑
x3

ψ(x1, x3)
∑
x4

ψ(x2, x4)∑
x5

ψ(x3, x5)
∑
x6

ψ(x2, x5, x6)

No more than 3 terms appear in any summand. Computational
complexity is decreased!

Recursive schemes: Bartolucci & Besag (2002) and Reeves &
Pettitt (2004).
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Latent (binary) Markov random field

Results for binary MRFs

Nial and Rue (2007) “completed” the algorithm by Reeves &
Pettitt (2004), to allow for

• compute (all) normalising constants,

• compute marginals π(xi |β), π(xi , xj |β), ...

• sample exact,

• compute modal configuration,

• compute marginal likelihood.

For lattices where smallest dimension m does not exceed 19
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Alternatives to MCMC

Latent (binary) Markov random field

Approximate inference for large lattices

A BC

Consider a large lattice partitioned into sub-lattices A and B,
separated by a column of lattice points C

π(x | β) = π(xA | β, xC ) π(xC | β)π(xB | β, xC ).

If we can compute the marginal of xC then we have two
independent smaller problems.
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Latent (binary) Markov random field

Approximating the marginal of xC

BCC1 C2A S T

π(xC | β) =
π(x | β)

π(xA | xC , β)π(xB | xC , β)

≈
π(xS ,C ,T | xC1, xC2, β)

π(xS | xC , xC1, β) π(xT | xC , xC2, β)
.
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Latent (binary) Markov random field

Approximations

Same basic ideas as in INLA can be applied:

π(xi | y) =
∑

j

π(xi | y,θj) π(θj | y) ∆j

etc...



Alternatives to MCMC

Latent (binary) Markov random field

Approximations...

Improved approximations for π(xi |y,θj) for increasing size of
window centred at site i .

• More difficult MRF models: talk by H.Tjelmeland and
H.Austad

• Approximating normalising constants: previously announced
talk by N.Friel
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Latent (binary) Markov random field

Change-point models

based on work by Yo (1984, AoS), Barry and Hartigan (1992 AoS,
1993 JASA).
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Latent (binary) Markov random field

Model

• Data y1, . . . , yn

• Conditionally independent given θ

• θ is piece-wise constant (θ1, . . . , θm) in m-segments

• Independent θj ’s over segments
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Latent (binary) Markov random field

Recursions

• Forward-backward based recursions

• Require the marginal likelihood in each segment

• Fixed number of change-points: compute posterior marginal
for each change-point and corresponding θj .

• Random number of change-points: compute the posterior
marginal for the number of change-points.
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Coal mining disaster data
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Latent (binary) Markov random field

Coal mining disaster data: number of change-points

RJMCMC Exact: discrete time
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Latent (binary) Markov random field

Change-point models

• Recursions can be “tuned” to derive near instant algorithms

• Extentions are possible

• Need marginal likelihood



Alternatives to MCMC

Parallel computing

Parallel computing

• (Near) every new computer is dual-core/quad-core

• Programs has to take advantage of this in order to gain
speedup.
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Parallel computing

OpenMP (www.openmp.org)

Dual/Quad-core computers has shared memory; makes (my) life
easier.
OpenMP defines a nice set of tools for creating parallel programs
(multi-threading), in C/C++/Fortran.
OpenMP was included in gcc/gfortran-4.2.



Alternatives to MCMC

Parallel computing

Example: Loops

Standard C-code

for(i=0; i<N; i++)
x[i] = GetNewSample(...) // Independent loop

with OpenMP directives

#pragma omp parallel for private(i)
for(i=0; i<N; i++)

x[i] = GetNewSample(...)



Alternatives to MCMC

Parallel computing

Example: Parallel regions
Standard C-code

DoTaskA(); // Independent tasks
DoTaskB();

with OpenMP directives

#pragma omp parallel sections
{
#pragma omp section

DoTaskA();

#pragma omp section
DoTaskB();

}
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Parallel computing

Examples

Spatial-survival example:

Number of threads CPU seconds

1 15.7
2 11.2

• optimisation is less parallel

• integration is parallel
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Parallel computing

(GP)GPU Computing

• GPU computing is the use of a GPU (graphics processing unit)
to do general purpose scientific and engineering computing.

• The model for GPU computing is to use a CPU and GPU
together in a heterogeneous computing model.

• The sequential part of the application runs on the CPU and
the computationally-intensive part runs on the GPU.
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Parallel computing

Model
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Parallel computing

The future

”GPUs have evolved to the point where many real-world
applications are easily implemented on them and run significantly
faster than on multi-core systems. Future computing architectures
will be hybrid systems with parallel-core GPUs working in tandem
with multi-core CPUs.”

Prof. Jack Dongarra
Director of the Innovative Computing Laboratory
The University of Tennessee
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Parallel computing

Challenge

More parallel

• implementation

• case studies

• algorithm development



Alternatives to MCMC

Summary

Summary (I)

• Good and fast approximations for posterior marginals++ do
exists for certain model classes

• LGM are particular important and successful
• HUGE class
• fast and generic algorithm and implementation
• makes these models usable on routinely basis

• Spatial Latent Skew-Normals: talk by J.Eidsvik

• More on approximations in the Machine-Learning literature...

Software: www.math.ntnu.no/∼hrue/GMRFLib



Alternatives to MCMC

Summary

Summary (I)

• Good and fast approximations for posterior marginals++ do
exists for certain model classes

• LGM are particular important and successful
• HUGE class
• fast and generic algorithm and implementation
• makes these models usable on routinely basis

• Spatial Latent Skew-Normals: talk by J.Eidsvik

• More on approximations in the Machine-Learning literature...

Software: www.math.ntnu.no/∼hrue/GMRFLib



Alternatives to MCMC

Summary

Summary (I)

• Good and fast approximations for posterior marginals++ do
exists for certain model classes

• LGM are particular important and successful
• HUGE class
• fast and generic algorithm and implementation
• makes these models usable on routinely basis

• Spatial Latent Skew-Normals: talk by J.Eidsvik

• More on approximations in the Machine-Learning literature...

Software: www.math.ntnu.no/∼hrue/GMRFLib



Alternatives to MCMC

Summary

Summary (II)

• Analytical intractable models do not automatic require
MCMC!

• Computing (simple) posterior marginals is (much) simpler!

• The literature is partly miss-leading on these issues
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Summary

Summary (III)

Combine {MC,S,}MC and Laplace approximations?
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