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Classes of models where there are alternatives

• Latent Gaussian Models (LGM)

• Change-point Models

• Latent binary Markov Random Fields models

(I do not cover Variational-Bayes.)
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Overview of this talk

• LGM and INLA

• LGM in practice using R

• Some newer results
• LGM and Survival models
• Geostatistics and GMRFs

• Latent Binary MRFs models

• Change-point models

• Parallel computing
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LGM and INLA

LGM

Latent Gaussian models

Stage 1 Observed data y = (yi ),

yi | x,θ ∼ π(yi |xi ,θ)

Stage 2 Latent Gaussian field

x | θ ∼ N (µ,Q(θ)−1), Ax = 0

Stage 3 Priors for the hyperparameters

θ ∼ π(θ)

Unify many of the most used models in statistics
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Structured additive regression models

Linear predictor

ηi =
∑
k

βkzki +
∑

j

wji fj(zji ) + εi

• Linear effects of covariates {zki}
• Effects of fj(·)

• Fixed weights {wji}
• Commonly: fj(zji ) = fj,zji

• Account for smooth response
• Temporal or spatially indexed covariates
• Unstructured terms (“random effects”)

• Depend on some parameters θ
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Examples

• Dynamic linear models

• Stochastic volatility

• Generalised linear (mixed) models

• Generalised additive (mixed) models

• Spline smoothing

• Semiparametric regression

• Space-varying (semiparametric) regression models

• Disease mapping

• Log-Gaussian Cox-processes

• Model-based geostatistics (*)

• Spatio-temporal models
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Example: Disease mapping (BYM-model)

• Data yi ∼ Poisson(Eiexp(ηi ))

• Log-relative risk
ηi = ui + vi + βTzi

• Structured component u

• Unstructured component v

• Covariates zi

• θ are the Log-precisions log κu

and log κv

0.7

0.98

1.27

1.55

1.83

2.11

2.4
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Characteristic features

• Large dimension of the latent Gaussian field: 102 − 105

• A lot of conditional independence in the latent Gaussian field

• Few hyperparameters θ: dim(θ) between 1 and 5

• Non-Gaussian data
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Examples

Main task

• Compute the posterior marginals for the latent field

π(xi | y), i = 1, . . . , n

• Compute the posterior marginals for the hyperparameters

π(θj | y), j = 1, . . . , dim(θ)

• Today’s “standard” approach, is to make use of MCMC

• Main difficulties
• CPU-time
• Additive MC-errors
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INLA

Integrated nested Laplace approximations (INLA) [With
N.Chopin and S.Martino]

• Utilise of the latent Gaussian field
• Laplace approximations

• Utilise the conditional independence properties of the latent
Gaussian field

• Numerical algorithms for sparse matrices

• Utilise small dim(θ)
• Integrated Nested Laplace approximations
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LGM and INLA

Summary of results

Main results

• HUGE improvement in both speed and accuracy compared to
MCMC alternatives

• Relative error

• Practically “exact” results1

• Extensions: Marginal likelihood, DIC, Cross-validation, ...

INLA enable us to treat Bayesian latent Gaussian models properly
and bring these models from the research communities to the
end-users

1Can construct counter-examples
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LGM and INLA

Main ideas

Main ideas (I)

π(z) =
π(x , z)

π(x |z)
leading to π̃(z) =

π(x , z)

π̃(x |z)

∣∣∣
mode(z)

• When π̃(x |z) is the Gaussian-approximation, this is the
Laplace-approximation

• Want π(x |z) to be “almost Gaussian”.
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Main ideas (II)

Posterior

π(x,θ | y) ∝ π(θ) π(x | θ)
∏
i∈I

π(yi | xi ,θ)

Do the integration wrt θ numerically
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Remarks

1. Expect π̃(θ|y) to be accurate, since
• x|θ is a priori Gaussian
• Likelihood models are ‘well-behaved’ so

π(x | θ, y)

is almost Gaussian.

2. There are no distributional assumptions on θ|y
3. Similar remarks are valid to

π̃(xi | θ, y)
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Computational tools

Computational issues

• Our approach in its “raw” form is not computational feasible

• Main issue is the large dimension, n, of the latent field

• Various strategies/tricks are required for obtaining a practical
good solution
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Gaussian Markov random fields

Gaussian Markov random fields

Make use of the conditional independence properties in the latent
field

xi ⊥ xj | x−ij ⇐⇒ Qij = 0

where Q is the precision matrix (inverse covariance)

Use numerical methods for sparse matrices!



Alternatives to MCMC

LGM and INLA

Gaussian Markov random fields

Gaussian Markov random fields

Make use of the conditional independence properties in the latent
field

xi ⊥ xj | x−ij ⇐⇒ Qij = 0

where Q is the precision matrix (inverse covariance)

Use numerical methods for sparse matrices!



Alternatives to MCMC

LGM and INLA

Simplified Laplace

Simplified Laplace Approximation

Expand the Laplace approximation of π(xi |θ, y):

log π̃(xi |θ, y) = −1

2
x2
i + bixi +

1

6
di x3

i + · · ·

Remarks

• Correct the Gaussian approximation for error in shift and
skewness through bi and di

• Fit a skew-Normal density

2φ(x)Φ(ax)

• Computational fast

• Sufficient accurate for most applications
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The Integrated nested Laplace-approximation (INLA)

The integrated nested Laplace approximation (INLA) I

Step I Explore π̃(θ|y)

• Locate the mode
• Use the Hessian to construct new variables
• Grid-search
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LGM and INLA

The Integrated nested Laplace-approximation (INLA)

The integrated nested Laplace approximation (INLA) II

Step II For each θj

• For each i , compute the (simplified) Laplace
approximation for xi
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The Integrated nested Laplace-approximation (INLA)

The integrated nested Laplace approximation (INLA) III

Step III Sum out θj

• For each i , sum out θ

π̃(xi | y) ∝
∑

j

π̃(xi | y,θj)× π̃(θj | y)

• Build a log-spline corrected Gaussian

N (xi ; µi , σ
2
i )× exp(spline)

to represent π̃(xi | y).
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The integrated nested Laplace approximation (INLA) III

Step III Sum out θj

• For each i , sum out θ

π̃(xi | y) ∝
∑

j

π̃(xi | y,θj)× π̃(θj | y)

• Build a log-spline corrected Gaussian

N (xi ; µi , σ
2
i )× exp(spline)

to represent π̃(xi | y).
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LGM and INLA

Assessing the error

How can we assess the errors in the approximations?

Important, but asymptotic arguments are difficult:

dim(y) = O(n) and dim(x) = O(n)
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Assessing the error

Errors in the approximations of π(xi |y)

Compare a sequence of improved approximations

1. Gaussian approximation

2. Simplified Laplace

3. Laplace

Compute the full Laplace-approximation for π(xi |y,θj) only if the
Gaussian and the Simplified Laplace approximation disagree.
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Assessing the error

Overall check: Equivalent number of replicates

Tool 3: Estimate the “effective” number of parameters

• From the Deviance Information Criteria:

pD(θ) ≈ n − trace
(
Qprior(θ) Qpost.(θ)−1

)
• Compare with the number of observations:

#observations/pD(θ)

high ratio is good

• Theoretical justification
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LGM and INLA

Marginal likelihood

Marginal likelihood

Marginal likelihood is the normalising constant for π(θ|y)
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LGM and INLA

DIC

Deviance Information Criteria

D(x; θ) = −2
∑

i

log(yi | xi ,θ)

DIC = 2×Mean (D(x; θ))− D(Mean(x); θ∗)
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LGM and INLA

Cross-validation

Cross-validation

• Based on

π(xi |y−i ,θ) ∝ π(xi |y,θ)

π(yi |xi ,θ)

we can compute
π(yi | y−i )

• Similar with π(θ|y−i )

• Keep the integration points {θj} fixed.

• Detect “surprising” observations:

PITi = Prob(ynew
i ≤ yi | y−i )

• To some extent, validate the model looking at {PITi}
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π(xi |y−i ,θ) ∝ π(xi |y,θ)

π(yi |xi ,θ)

we can compute
π(yi | y−i )

• Similar with π(θ|y−i )
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i ≤ yi | y−i )

• To some extent, validate the model looking at {PITi}



Alternatives to MCMC

LGM and INLA

Examples

Stochastic Volatility model (I)

Log of the daily difference of the pound-dollar exchange rate from
October 1st, 1981, to June 28th, 1985.
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Examples

Stochastic Volatility model (II)

ηt = µ+ ft

ft | f1, . . . , ft−1, τ, φ ∼ N (φft−1, 1/τ) , |φ| < 1

Observations
yt | ηt ∼ N (0, exp(ηt))

θ = (φ, τ)
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Examples

Results: 50 first data
Posterior marginal φ
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Results: 50 first data
Posterior marginal for µ



Alternatives to MCMC

LGM and INLA

Examples

Revised model: all data
Observations: yt | ηt ∼ exp(ηt/2) × Student-tν
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LGM and INLA

Epileptic-example

Longitudinal mixed effects model: Epileptic-example
from OpenBUGS (I)

Observations are the number of seizures during the two weeks
before each of the four clinic visits

yij ∼ Poisson(exp(ηij))

Linear predictor (i = 1, . . . , 59 and j = 1, . . . , 4)

ηij = β0 + βBase log(Baselinej/4)

+ βTrtTrtj + βTrt×BaseTrtj × log(Baselinej/4)

+ βAgeAgej + βV4V4j + εi + νij

Unstructured terms

{εi}
iid∼ N (0, 1/τε) {νij}

iid∼ N (0, 1/τν) θ = (τε, τν)
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Epileptic-example

Longitudinal mixed effects model: Epileptic-example
from OpenBUGS (II)

Posterior marginal for β0
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LGM and INLA

Epileptic-example

Longitudinal mixed effects model: Epileptic-example
from OpenBUGS (II)

Posterior marginal for τε
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LGM and INLA

Epileptic-example

Longitudinal mixed effects model: Epileptic-example
from OpenBUGS (III)

R-interface:

formula <- y ~ lBase4 + Trt + BT+ lAge + V4
+ f( Ind, model="iid" )
+ f( rand, model="iid" )

fit = inla( formula, family="poisson" )

summary( fit )
plot( fit )

Running time on my laptop: 0.55s.
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LGM and INLA

Disease mapping

Disease mapping: The BYM-model

• Data yi ∼ Poisson(Eiexp(ηi ))

• Log-relative risk η = u + v + Zβ

• Structured component u

ui | u−i ∼ N (
1

ni

∑
j∼i

uj ,
1

niκu
)

• Unstructured component v

• θ = (κu, κv ) 0.5

0.6

0.8

1

1.2

1.5

2



Alternatives to MCMC

Survival models

Survival models [with R.Akerkar and S.Martino]

log(hazard) = log(baseline hazard) + covariates

We are able to do

• Right or left censoring

• Piecewise constant baseline hazard (and parametric survival
time)

• Log-Normal frailty

• +standard stuff
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Alternatives to MCMC

Survival models

The (trival) trick

Hazard (no covariates)
log λ(t)

Log-Likelihood from one observation

δi log λ(ti )−
∫ ti

0
λ(s)ds

where δi = 1 if failed or 0 if (right-)cencored.
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Survival models

The (trival) trick

Pice-wise constant log λ(t) on [0, 1] + [1, t] gives

−λ(1)︸ ︷︷ ︸
log Poisson(y=0 | mean=λ(1))

+ δi log λ(2) − (t − 1)λ(2)︸ ︷︷ ︸
log Poisson(y=δi | mean=(t−1)λ(2))

Result: Augment the model with fictive-observations

(δi , t)→ (0, 0, 0, 0, . . . , (δi , t))

and we have a LGM with Poisson observations!
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Survival models

Spatial survival: example

Leukaemia survival data (Henderson et al, 2002, 1043 cases.
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Survival models

Spatial survival: example

log(hazard) = log(baseline)

+f (age)

+f (white blood cell count)

+f (deprivation index)

+sex



Alternatives to MCMC

Survival models

Some internal statistics

In this example:

• Factorise Q (dim = 3144): 370 times

• Solve Qx = b: 12 915 times

• This is 50% of total CPU time



Alternatives to MCMC

Geostatistics

Use information about the locations!
Leukaemia survival data (Henderson et al, 2002, JASA). 1043
cases.
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Geostatistics

Gaussian fields

• Covariance function γ(distance; parameters)

• Matérn family

• Set of locations: n points

• Multivariate Normal distribution
• Dense covariance matrix
• Dense precision matrix

• Dense matrix calculations

O(n3)

• Often referred to as the “big n” problem
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Gaussian Markov Random fields

• xi |x−i only depends on the (few nearest) neighbours

E(xij | x−ij) =
1

20

(
8
◦ ◦ ◦ ◦ ◦
◦ ◦ • ◦ ◦
◦ • ◦ • ◦
◦ ◦ • ◦ ◦
◦ ◦ ◦ ◦ ◦

− 2
◦ ◦ ◦ ◦ ◦
◦ • ◦ • ◦
◦ ◦ ◦ ◦ ◦
◦ • ◦ • ◦
◦ ◦ ◦ ◦ ◦

− 1
◦ ◦ • ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦
◦ ◦ • ◦ ◦

)
Prec(xij | x−ij) = 20κ.

• Simple conditional interpretation

• Small memory footprint

• Fast computations O(n3/2) in R2
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Geostatistics

Can we use GMRFs as proxies?

Is there a GMRF with local neighbourhood that can approximate a
Gaussian field with given covariance function?



Alternatives to MCMC

Geostatistics

Matérn fields [with F.Lindgren and J.Lindström]

The solution of
(κ2 −∆)α/2x(s) = ε(s)

in R2, is a Matérn field:

Cov(x(s), x(s + τ )) ∝ (κ ‖τ‖)ν Kν(κ ‖τ‖), α = ν + dim/2

and Kν is the modified Bessel function.



Alternatives to MCMC

Geostatistics

Matérn fields on manifolds (definition)

• The solution of

(κ2 −∆)α/2x(s) = ε(s)

on the manifold S
• Driven by Gaussian “white

noise” on S

Cov(ε(Ai ), ε(Aj)) =

∫
Ai∩Aj

dS(s)
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Results

Result

Can “solve”

(κ2 −∆)α/2x(s) = ε(s), α = 1, 2, 3, . . . , α = ν + dim/2

for

• any κ

• any triangulation

• on any (“regular”) manifold

“solve” means here: write down, explicitly, the corresponding
precision matrix of the (local) GMRF
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Examples

Example: Explicit results for a regular lattice

For α = 2 (ν = 1)

Q =
κ−2

4π
×


1

2 −2(4 + κ2) 2
1 −2(4 + κ2) 4 + (4 + κ2)2 −2(4 + κ2) 1

2 −2(4 + κ2) 2
1


Range ≈

√
8/κ

Can compute boundary corrections
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Examples

Example: the fit
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Examples

Same example with anisotropy

For α = 2 (ν = 1)

a = κ−2
1 b = κ−2

2 c = 1 + 2(a + b)

Q =
1

4π
√

ab


a2

2ab −2ca 2ab
b2 −2cb c2 + 2(a2 + b2) −2cb b2

2ab −2ca 2ab
a2


Range ≈

√
8/κ1 and

√
8/κ2

Can compute boundary corrections
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Examples

Spatio-temporal example

• Monthly (January) average sea-level pressure at around 1 000
stations

• About 250 stations withheld for validation purposes

• 5 years of data

Simple model:

• Model for the mean

• Treat the data as (conditionally) independent

• Matérn (α = 2, ν = 1) covariance function, or oscillating field.
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Spatial-temporal example

Posterior stdev



Alternatives to MCMC

Latent (binary) Markov random field

Binary MRF

• Defined on a regular lattice size n

• Lattice points xi take values {−1, 1}
• Full conditional π(xi |x−i , β) = π(xi |neighbours of i , β).

Ising model

π(x | β) =
q(x | β)

z(β)
=

exp
(
β1
∑

i xi + β2
∑

i∼j xixj

)
z(β)

The normalising constant is

z(β) =
∑

x

q(x | β)
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Latent (binary) Markov random field

Undirected Graphs and joint distributions

π(x) =
1

z
ψ(x1, x2)ψ(x1, x3)ψ(x2, x4)ψ(x3, x5)ψ(x2, x5, x6)

z =
∑
x1

· · ·
∑
x6

ψ(x1, x2)ψ(x1, x3)ψ(x2, x4)ψ(x3, x5)ψ(x2, x5, x6)

Computing z costs O(26)
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Latent (binary) Markov random field

Undirected Graphs and joint distributions

The “trick”

z =
∑
x1

∑
x2

ψ(x1, x2)
∑
x3

ψ(x1, x3)
∑
x4

ψ(x2, x4)∑
x5

ψ(x3, x5)
∑
x6

ψ(x2, x5, x6)

No more than 3 terms appear in any summand. Computational
complexity is decreased!

Recursive schemes: Bartolucci & Besag (2002) and Reeves &
Pettitt (2004).
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Latent (binary) Markov random field

Results for binary MRFs

Nial and Rue (2007) “completed” the algorithm by Reeves &
Pettitt (2004), to allow for

• compute (all) normalising constants,

• compute marginals π(xi |β), π(xi , xj |β), ...

• sample exact,

• compute modal configuration,

• compute marginal likelihood.

For lattices where smallest dimension m does not exceed 19
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Alternatives to MCMC

Latent (binary) Markov random field

Approximate inference for large lattices

A BC

Consider a large lattice partitioned into sub-lattices A and B,
separated by a column of lattice points C

π(x | β) = π(xA | β, xC ) π(xC | β)π(xB | β, xC ).

If we can compute the marginal of xC then we have two
independent smaller problems.
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Latent (binary) Markov random field

Approximating the marginal of xC

BCC1 C2A S T

π(xC | β) =
π(x | β)

π(xA | xC , β)π(xB | xC , β)

≈
π(xS ,C ,T | xC1, xC2, β)

π(xS | xC , xC1, β) π(xT | xC , xC2, β)
.
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Latent (binary) Markov random field

Approximations

Same basic ideas as in INLA can be applied:

π(xi | y) =
∑

j

π(xi | y,θj) π(θj | y) ∆j

etc...
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Latent (binary) Markov random field

Approximations...

Improved approximations for π(xi |y,θj) for increasing size of
window centred at site i .

• More difficult MRF models: talk by H.Tjelmeland and
H.Austad

• Approximating normalising constants: previously announced
talk by N.Friel
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Latent (binary) Markov random field

Change-point models

based on work by Yo (1984, AoS), Barry and Hartigan (1992 AoS,
1993 JASA).
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Latent (binary) Markov random field

Model

• Data y1, . . . , yn

• Conditionally independent given θ

• θ is piece-wise constant (θ1, . . . , θm) in m-segments

• Independent θj ’s over segments
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Latent (binary) Markov random field

Recursions

• Forward-backward based recursions

• Require the marginal likelihood in each segment

• Fixed number of change-points: compute posterior marginal
for each change-point and corresponding θj .

• Random number of change-points: compute the posterior
marginal for the number of change-points.
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Coal mining disaster data
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Latent (binary) Markov random field

Coal mining disaster data: number of change-points

RJMCMC Exact: discrete time
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Latent (binary) Markov random field

Change-point models

• Recursions can be “tuned” to derive near instant algorithms

• Extentions are possible

• Need marginal likelihood



Alternatives to MCMC

Parallel computing

Parallel computing

• (Near) every new computer is dual-core/quad-core

• Programs has to take advantage of this in order to gain
speedup.



Alternatives to MCMC

Parallel computing

OpenMP (www.openmp.org)

Dual/Quad-core computers has shared memory; makes (my) life
easier.
OpenMP defines a nice set of tools for creating parallel programs
(multi-threading), in C/C++/Fortran.
OpenMP was included in gcc/gfortran-4.2.
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Parallel computing

Example: Loops

Standard C-code

for(i=0; i<N; i++)
x[i] = GetNewSample(...) // Independent loop

with OpenMP directives

#pragma omp parallel for private(i)
for(i=0; i<N; i++)

x[i] = GetNewSample(...)



Alternatives to MCMC

Parallel computing

Example: Parallel regions
Standard C-code

DoTaskA(); // Independent tasks
DoTaskB();

with OpenMP directives

#pragma omp parallel sections
{
#pragma omp section

DoTaskA();

#pragma omp section
DoTaskB();

}
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Examples

Spatial-survival example:

Number of threads CPU seconds

1 15.7
2 11.2

• optimisation is less parallel

• integration is parallel
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Parallel computing

(GP)GPU Computing

• GPU computing is the use of a GPU (graphics processing unit)
to do general purpose scientific and engineering computing.

• The model for GPU computing is to use a CPU and GPU
together in a heterogeneous computing model.

• The sequential part of the application runs on the CPU and
the computationally-intensive part runs on the GPU.
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Parallel computing

Model
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Parallel computing

The future

”GPUs have evolved to the point where many real-world
applications are easily implemented on them and run significantly
faster than on multi-core systems. Future computing architectures
will be hybrid systems with parallel-core GPUs working in tandem
with multi-core CPUs.”

Prof. Jack Dongarra
Director of the Innovative Computing Laboratory
The University of Tennessee
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Parallel computing

Challenge

More parallel

• implementation

• case studies

• algorithm development
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Summary

Summary (I)

• Good and fast approximations for posterior marginals++ do
exists for certain model classes

• LGM are particular important and successful
• HUGE class
• fast and generic algorithm and implementation
• makes these models usable on routinely basis

• Spatial Latent Skew-Normals: talk by J.Eidsvik

• More on approximations in the Machine-Learning literature...

Software: www.math.ntnu.no/∼hrue/GMRFLib
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Summary

Summary (II)

• Analytical intractable models do not automatic require
MCMC!

• Computing (simple) posterior marginals is (much) simpler!

• The literature is partly miss-leading on these issues
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Summary

Summary (III)

Combine {MC,S,}MC and Laplace approximations?
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