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Classes of models where there are alternatives

e Latent Gaussian Models (LGM)
e Change-point Models

e Latent binary Markov Random Fields models

(I do not cover Variational-Bayes.)
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Overview of this talk

e LGM and INLA

e LGM in practice using R
e Some newer results

e LGM and Survival models
e Geostatistics and GMRFs

e Latent Binary MRFs models
e Change-point models

e Parallel computing
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LrLam

:

Latent Gaussian models

Stage 1 Observed data y = (y;),

Yi | x70 ~ 7T(Yi|xi79)
Stage 2 Latent Gaussian field

x |6~ N(p,Q(6)71),

Ax=0
Stage 3 Priors for the hyperparameters

0 ~ m(0)

Unify many of the most used models in statistics
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> Brzii+ > wiifi(zji) + €
k J

e Observations y

m(y | x,0) =

Hﬂ' yi | ni,0)

from an (f.ex) exponential family with mean p; =
Latent Gaussian model if

=g ().
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ALTERNATIVES TO MCMC
L LGM anp INLA
Lram

Structured additive regression models

> Brzii+ > wiifi(zji) + €
k J

e Observations y
Y‘xe HT"YI|77170)

from an (f.ex) exponential family with mean p; =
o Latent Gaussian model if

=g H(m).
x = ({8} {fi}, {mi}) 16 ~ N(1,Q(0)7)
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Ezxamples

e Dynamic linear models

e Stochastic volatility

e Generalised linear (mixed) models

e Generalised additive (mixed) models

e Spline smoothing

e Semiparametric regression

e Space-varying (semiparametric) regression models
e Disease mapping

e Log-Gaussian Cox-processes

e Model-based geostatistics (*)

e Spatio-temporal models
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Ezample: Disease mapping (BYM-model)

Data y; ~ Poisson(E;exp(n;))

Log-relative risk
ni=ui+vi+ Bz
Structured component u

Unstructured component v

Covariates z;

0 are the Log-precisions log x,,
and log k,,
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Few hyperparameters 0: dim(@) between 1 and 5
Non-Gaussian data
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Main task

e Compute the posterior marginals for the latent field

w(xi|y), i=1,...,n
e Compute the posterior marginals for the hyperparameters

(0 y),

j=1,...,dim(0)
e Today's “standard” approach, is to make use of MCMC
e Main difficulties
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Main task

Compute the posterior marginals for the latent field

m(xi|y), i=1,...,n

Compute the posterior marginals for the hyperparameters

7O 1y),  j=1....dim(®)

Today's “standard” approach, is to make use of MCMC
Main difficulties

o CPU-time

e Additive MC-errors
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Integrated nested Laplace approximations (INLA) [With
N.Chopin and S.Martino]

e Utilise of the latent Gaussian field
e Laplace approximations

e Utilise the conditional independence properties of the latent
Gaussian field

e Utilise small dim(0)
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Integrated nested Laplace approximations (INLA) [With
N.Chopin and S.Martino]

e Utilise of the latent Gaussian field
e Laplace approximations
e Utilise the conditional independence properties of the latent
Gaussian field
e Numerical algorithms for sparse matrices
e Utilise small dim(8)

o Integrated Nested Laplace approximations
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Main results

¢ HUGE improvement in both speed and accuracy compared to
MCMC alternatives
e Relative error

e Practically “exact” results?
e Extensions: Marginal likelihood, DIC, Cross-validation,

INLA enable us to treat Bayesian latent Gaussian models properly
and bring these models from the research communities to the
end-users

1Can construct counter-examples

DA
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Main ideas (1)

_ m(x,z)
(&) = 2P2)

leading to

7(z) =

m(x, z)
%(X'Z) mode(z)
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leading to 7(z) = % mode(z)

e When 7(x|z) is the Gaussian-approximation, this is the
Laplace-approximation

Want 7(x|z) to be “almost Gaussian”
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Posterior

m(x,0 |y) ccw(6) w(x | 8) []7(vi | ;. 6)

Do the integration wrt @ numerically
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Main ideas (II)

Posterior

m(x,0 | y) oc(8) w(x | 8) [[ 7 (vi | . 6)

i€eT
Do the integration wrt @ numerically

w(xi | y) = / (0 | y) 7(xi | 0.y) dO
76 1y) = [ (6 ]y) do
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Main ideas (II)

Posterior

m(x,0 | y) oc(8) w(x | 8) [[ 7 (vi | . 6)

i€eT
Do the integration wrt @ numerically

F(xi | y) = / (0] y) 7(x | 0,y) d6
76 1y) = [#6]y) do
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Remarks

1. Expect 7(8]y) to be accurate, since

e x|0 is a priori Gaussian

e Likelihood models are ‘well-behaved’ so

m(x[6,y)
is almost Gaussian.

2. There are no distributional assumptions on 0|y
3. Similar remarks are valid to

%(Xi | 07 y)
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1. Expect 7(0]y) to be accurate, since

e x|0 is a priori Gaussian

e Likelihood models are ‘well-behaved’ so
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2. There are no distributional assumptions on 8|y
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Computational issues

e Our approach in its “raw” form is not computational feasible
e Main issue is the large dimension, n, of the latent field

e Various strategies/tricks are required for obtaining a practical
good solution

u]
o)
I

i
it



ALTERNATIVES TO MCMC
L LGM anp INLA
L compuTaTioNaL TooLs

Computational 1ssues

e Our approach in its “raw” form is not computational feasible
e Main issue is the large dimension, n, of the latent field

e Various strategies/tricks are required for obtaining a practical
good solution



ALTERNATIVES TO MCMC
L LGM anp INLA
L COMPUTATIONAL TOOLS

Computational 1ssues

e Our approach in its “raw” form is not computational feasible
e Main issue is the large dimension, n, of the latent field

e Various strategies/tricks are required for obtaining a practical
good solution

u]
o)
I

i
it




ALTERNATIVES TO MCMC
L LGM axp INLA

LGAUSSIAN MARKOV RANDOM FIELDS

Gaussian Markov random fields

field

Make use of the conditional independence properties in the latent
X Lxj [ xjj

— ;=0
where Q is the precision matrix (inverse covariance)

Use numerical methods for sparse matrices!
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Simplified Laplace Approrimation

Expand the Laplace approximation of 7(x;|0,y):

log 7(x;|60,y) = —=x?

2,+mm+1
Remarks
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e Correct the Gaussian approximation for error in shift and
skewness through b; and d;

Fit a skew-Normal density

2¢(x)P(ax)
Computational fast

Sufficient accurate for most applications
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Step I Explore 7(60y)

e Locate the mode

e Use the Hessian to construct new variables
e Grid-search
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L TuE INTEGRATED NESTED LAPLACE-APPROXIMATION (INLA)

The integrated nested Laplace approximation (INLA) IT

Step II For each 0;

e For each i, compute the (simplified) Laplace
approximation for x;
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L Tug INTEGRATED NESTED LAPLACE-APPROXIMATION (INLA)

The integrated nested Laplace approximation (INLA) II1
Step III Sum out 0;

e For each /, sum out @

J

T(xi ly) o< > 7 (xi |y, 0)) x7(6; | y)
e Build a log-spline corrected Gaussian

N(xi; pi,o?) x exp(spline)
to represent 7(x; | y).
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L LGM anp INLA

LASSESSING THE ERROR

How can we assess the errors in the approrvimations?

Important, but asymptotic arguments are difficult:
dim(y) = O(n)

and dim(x) = O(n)
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I_ASSESSING THE ERROR

Errors in the approximations of w(x;|y)

Compare a sequence of improved approximations
1. Gaussian approximation
2. Simplified Laplace

3. Laplace

Compute the full Laplace-approximation for 7(x;ly, 8;) only if the
Gaussian and the Simplified Laplace approximation disagree.
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Errors in the approximations of w(x;|y)

Compare a sequence of improved approximations
1. Gaussian approximation
2. Simplified Laplace
3. Laplace

Compute the full Laplace-approximation for m(x;|y, 8;) only if the
Gaussian and the Simplified Laplace approximation disagree.
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LASSESSING THE ERROR

Overall check: Equivalent number of replicates

Tool 3: Estimate the “effective” number of parameters

e From the Deviance Information Criteria:

PD(O) ~ n — trace (Qprior(e) onst.(e)_l)

Compare with the number of observations:

#observations/pp(0)
high ratio is good

Theoretical justification
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Tool 3: Estimate the “effective” number of parameters

e From the Deviance Information Criteria:
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e Compare with the number of observations:
#observations/pp(6)

high ratio is good

e Theoretical justification
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L MARGINAL LIKELIHOOD

Marginal likelihood

Marginal likelihood is the normalising constant for m(0|y)
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Lpic

Deviance Information Criteria

D(x;0) =

-2 Z log(y; | xi, 0)

DIC = 2 x Mean (D(x; 0)) — D(Mean(x); 6*)
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L Cross-vaLbaTION

Cross-validation

e Based on

7r(Xily70)
m(xily_;, @) x
Gy 0 21, 0)

we can compute

m(yi|y—;)
e Similar with w(0]y_;)

e Keep the integration points {6;} fixed.
e Detect “surprising” observations:

PIT; = Prob(y;""

<vyily-i)
e To some extent, validate the model looking at {PIT;}

DA
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L CROSS-VALIDATION

Cross-validation

e Based on (xily. 0)
w(x;ly,
m(xily_;, 0) o< m
] 1
we can compute
m(yi [ y_;)

Similar with 7(0]y_;)
Keep the integration points {6} fixed.

Detect “surprising” observations:
PIT; = Prob(y/™" < yi [y_;)

e To some extent, validate the model looking at {PIT;}
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L ExawmpLEs

Stochastic Volatility model (1)

-2
|

[¢] 200 400 600 800 1000

Log of the daily difference of the pound-dollar exchange rate from
October 1st, 1981, to June 28th, 1985.
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[ EXAMPLES

Stochastic Volatility model (1I)

Ne =

w+ f
f;.“|f17' '7ft‘—137—7¢ ~ N(¢ft—171/7—)7

Observations

ye | ne ~ N(0, exp(nt))

0= (Qb,T)

lpl <1
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[ EXAMPLES
:

Stochastic Volatility model (1I)

Ne =

p+f

ft|f17' .,f-t-,l,T,QS ~ N(qsftfl’l/’r)’
Observations

ye lne ~ N(0, exp(n:))

0= (d)vT)

lpl <1
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Results: 50 first data

Posterior marginal ¢
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- EXAMPLES

Revised model: all data

0.04

Observations: y; | n: ~ exp(n:/2) x Student-t,

0.03

0.02

0.01

0.00

T T
20 40

1
80 100
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L EPILEPTIC-EXAMPLE

Longitudinal mixed effects model: Epileptic-example
from OpenBUGS (I)
Observations are the number of seizures during the two weeks

before each of the four clinic visits

yij ~ Poisson(exp(n;j))

Linear predictor (i =1,...,59 and j =1,...,4)

ni = o+ PBase log(Baseline;/4)
+ Ot Trtj + BTrexBase 11t X log(Baseline;/4)
+ “A‘fjAgeAgej + ,3\/4V4j + € + vjj

Unstructured terms

{6} S N(0,1/7)  {vi} CN(O,1/7) 6= (1)

[m] = =

it
N)
yel
)
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Longitudinal mixed effects model: Epileptic-example

from OpenBUGS (I)

Observations are the number of seizures during the two weeks
before each of the four clinic visits

yij ~ Poisson(exp(n;))
Linear predictor (i=1,...,59 and j=1,...,4)

nij = Bo+ Pgase log(Baseline;/4)
+ B Trtj + OrrexBase 11t x log(Baseline;/4)
+  DBageAge; + BvaVaj + € + v

Unstructured terms

(e} S NO0,1/m)  {vi} CN(O,1/7) 6= (1)
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L EpILEPTIC-EXAMPLE

Longitudinal mixed effects model: Epileptic-example

from OpenBUGS (II)

Posterior marginal for 3y
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L EPILEPTIC-EXAMPLE

Longitudinal mixed effects model: Epileptic-example
from OpenBUGS (II)

Posterior marginal for 7,
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L EpILEPTIC-EXAMPLE

Longitudinal mixed effects model: Epileptic-example
from OpenBUGS (II1)

R-interface:

formula <- y © 1Base4 + Trt + BT+ 1lAge + V4
+ f( Ind, model="iid" )
+ f( rand, model="iid" )

fit = inla( formula, family="poisson" )

summary( fit )
plot( fit )

Running time on my laptop: 0.55s.



ALTERNATIVES TO MCMC
L LGM anp INLA

L DISEASE MAPPING

Disease mapping: The BYM-model

e Data y; ~ Poisson(E;exp(n;))
o Log-relative risk n =u+v+2Z3
e Structured component u

1 1

uilu_; ~ N(= Y uj,—
I | I (ni Z 7 niK'u)
jri
e Unstructured component v

o 0 =Ky kv)




ALTERNATIVES TO MCMC
LSurvivaL mMopELS

Survival models [with R.Akerkar and S.Martino]

log(hazard) = log(baseline hazard) + covariates

We are able to do

Right or left censoring

Piecewise constant baseline hazard (and parametric survival
time)

Log-Normal frailty
+standard stuff
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log(hazard) = log(baseline hazard) + covariates

We are able to do

Right or left censoring

e Piecewise constant baseline hazard (and parametric survival
time)

Log-Normal frailty
+standard stuff
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The (trival) trick

Hazard (no covariates)

log A(t)
Log-Likelihood from one observation

dilog A(t) — /Oti A(s)ds

where 0; = 1 if failed or 0 if (right-)cencored.

DA
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Hazard (no covariates)

log A(t)
Log-Likelihood from one observation

dilog A(t;) — /Oti A(s)ds

where 0; = 1 if failed or 0 if (right-)cencored.
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The (trival) trick

Pice-wise constant log A(t) on [0,1] 4 [1, t] gives
—\®
——

+  bilog A\® — (t —1)\?
log Poisson(y=0 | mean=A(1))  |og Poisson(yz&;ﬁnean:(t—l))\(z))
Result: Augment the model with fictive-observations

((5,', t) — (O, 0,0,0,..., (5,’, t))

and we have a LGM with Poisson observations!
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The (trival) trick

Pice-wise constant log A(t) on [0,1] 4 [1, t] gives

=\ +  6ilogA® — (£ —1)A®
- -~ _
log Poisson(y=0 | mean=X1))  |og Poisson(y=6; | mean=(t—1)A(2))

Result: Augment the model with fictive-observations
(6i,t) — (0,0,0,0,...,(d,1t))

and we have a LGM with Poisson observations!
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L SURVIVAL MODELS

Spatial survival: example

Leukaemia survival data (Henderson et al, 2002, 1043 cases.

Fig 1. Leukaemia survival data: districts of Northwest England and locations of the observations.




ALTERNATIVES TO MCMC
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Spatial survival: example

log(hazard) = log(baseline)
+1(age)

+f (white blood cell count)
+f (deprivation index)
+sex

Fig 1. Leukaemia survival data: districts of Nonhwest England and locations of the obse
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Some internal statistics

In this example:

e Factorise Q (dim = 3144): 370 times
e Solve Qx = b: 12915 times

e This is 50% of total CPU time
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L GrosratisTics

Use information about the locations!
cases.

Leukaemia survival data (Henderson et al, 2002, JASA). 1043

Fig I. Leukaemia survival data: districts of Northwest England and locations of the observations.

[m]

=




ALTERNATIVES TO MCMC
LGEOSTATISTICS

Gaussian fields

Covariance function ~(distance; parameters)

Matérn family

Set of locations: n points

Multivariate Normal distribution

e Dense matrix calculations

O(n?)

Often referred to as the "big n” problem
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Gaussian fields

Covariance function ~(distance; parameters)

Matérn family

Set of locations: n points
Multivariate Normal distribution

e Dense covariance matrix
e Dense precision matrix

Dense matrix calculations

O(n3)

Often referred to as the “big n" problem
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Gaussian fields

Covariance function ~(distance; parameters)

Matérn family

Set of locations: n points
Multivariate Normal distribution

e Dense covariance matrix
e Dense precision matrix

e Dense matrix calculations

O(n®)

Often referred to as the "big n” problem
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Gausstan Markov Random fields

e xj|x_; only depends on the (few nearest) neighbours

coooo ocoo0o0o0 coeoo
1 oo eo0o0 0ceo0eo ocoooo
E(Xle—U):_ Soeoeo —2 00000 —] ecocoe
20 oo eo0o0 oceo0eo0 0co0o0o0o0

cooo0o0 ocoo0o0o0 coeo0o

Prec(xjj | x—jj) = 20k.

Simple conditional interpretation
Small memory footprint
Fast computations O(n*?) in R?
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Gausstan Markov Random fields

e xj|x_; only depends on the (few nearest) neighbours

1
E(xj [ x—j) = %<8

Prec(xjj | x—jj) = 20k.
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Gausstan Markov Random fields

xi|x_; only depends on the (few nearest) neighbours
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Prec(xjj | x—jj) = 20k.

Simple conditional interpretation

Small memory footprint
Fast computations O(n*?) in R?
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Can we use GMRFs as proxies?

Is there a GMRF with local neighbourhood that can approximate a

Gaussian field with given covariance function?
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Matérn fields [with F.Lindgren and J.Lindstrom]
The solution of

(k2 — 8)*x(s) = €(s)
in R?, is a Matérn field:

Cov(x(s),x(s + 7)) o (s ||7]1)” Ku(k|Tl),

a=v+dim/2
and K, is the modified Bessel function.
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EOSTATISTICS
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EOSTATISTICS
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LGEOSTATISTICS

L Resurrs
:

Result

Can “solve”

(k2 — D)*%x(s) = e(s), a=1,23,...,
for

e any K
e any triangulation

e on any (“regular") manifold

“solve” means here: write down, explicitly, the corresponding
precision matrix of the (local) GMRF

a=v+dim/2

DA
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L Resurrs
:

Result

Can “solve”

for

(x? — 8)*x(s) = €(s),

a=1,2,3,...,

e any K
e any triangulation

e on any (“regular") manifold

“solve” means here: write down, explicitly, the corresponding
precision matrix of the (local) GMRF

a=v+dim/2
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- REsuLTs
:

Result

Can “solve”

(* -

for

A %x(s) = €(s), a=1,2,3,...,

a=v+dim/2
e any kK

e any triangulation

e on any (“regular") manifold

“solve” means here: write down, explicitly, the corresponding
precision matrix of the (local) GMRF
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- EXAMPLES
:

Ezxample: Explicit results for a reqular lattice

Fora=2(r=1)

1
2 2 —2(4 + K?) 2
Q= 2 < |1 204+ kK2) 4+ (4+K%)? —204+K>) 1
T 2 —2(4 + K?) 2
1
Range ~ v/8/x

Can compute boundary corrections
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L EXAMPLES

Ezxample: the fit

alpha 2 kappa 0.1 range 28.2842712474619

0.6 0.8 1.0
I !

my.matern(x.values, kappa, alpha)
0.4

0.0

10

20 30 40

x.values o
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- EXAMPLES

Same example with anisotropy

Fora=2(r=1)

a=r? b=ry? c=1+2(a+b)
22
1 2ab —2ca 2ab
Q= b> —2cb c?+2(a®+b%) —2cb b?
Amvab 2ab —2ca 2ab
22
Range ~ 1/8/k1 and v/8/ky

Can compute boundary corrections
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- EXAMPLES

Example: Anisotropy on a reqular grid

0.9

0.8

0.3

0.2

0.1f

n = 4an 45 o Ta) nE an nE AN AR
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- EXAMPLES

Survival example: irreqular grid

Fie 1 Leukaemia survival data: districts of Northwest Eneland and locations of the observations.
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L GrosratisTics
- EXAMPLES

Spatio-temporal example

e Monthly (January) average sea-level pressure at around 1000
stations

e About 250 stations withheld for validation purposes

e 5 years of data

Simple model:
e Model for the mean
e Treat the data as (conditionally) independent
e Matérn (o = 2, v = 1) covariance function, or oscillating field.
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[ EXAMPLES

Spatial-temporal example

V civbari:.
s

\)
RN AR
""Nﬁfi""%vﬂw
TR ASIS:
XY .

DA
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Spatial-temporal example
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L Larent (BINARY) MARKOV RANDOM FIELD
:

Binary MRF

e Defined on a regular lattice size n

e Lattice points x; take values {—1,1}

e Full conditional 7(x;|x_;, 3) = m(x;|neighbours of i, 3)
Ising model

m(x

3) = q(x | B) B exp <“31 doiXi+ B Z;NJ X,-xj>
! Z(f)

The normalising constant is

z(0)
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Binary MRF

e Defined on a regular lattice size n
e Lattice points x; take values {—1,1}

e Full conditional 7(x;|x_;, 3) = 7(x;|neighbours of i, 3).

Ising model
x| gy = A9 P (80225 % + B2 Xy )
) 2(9)

The normalising constant is

2(B) = a(x|B)

X
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Undirected Graphs and joint distributions

E]

7(x) = -

—1p(x1, x2)¥(x1, x3)10 (X2, Xa )Y (X3, X5 )1p (X2, X5, X6)

Computing z costs O(2°)

zZ = Z e Z 'l;;'(Xl, XQ)E}(XI-, X3)1§)(X2, X4)'U>(X37 X5)'Lﬁ‘i'(x27 X5, X6)
X1 X6
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Undirected Graphs and joint distributions

E]

m(x) = i

X1 X6

—1p(x1, x2)¥(x1, x3)10 (X2, Xa )Y (X3, X5 )1p (X2, X5, X6)

2= ) w(xa, x)w(xa, xs)(x2, xa ) (xs, x5 )1 (x2, X5, X6)
Computing z costs O(2°)
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E]

m(x) = i

X1

—1p(x1, x2)¥(x1, x3)10 (X2, Xa )Y (X3, X5 )1p (X2, X5, X6)

2= ) w(xa, x)w(xa, xs)(x2, xa ) (xs, x5 )1 (x2, X5, X6)
Computing z costs O(2°)
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Undirected Graphs and joint distributions

The “trick”

z o= Y Y Wlae) D vla,xe) D Yo, xa)

x| X2 X3

D h(xa,x5) D W(x, x5, %)

No more than 3 terms appear in any summand. Computational
complexity is decreased!

Recursive schemes: Bartolucci & Besag (2002) and Reeves &
Pettitt (2004).
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Undirected Graphs and joint distributions

The “trick”

z o= > > dlax) Y via,xs) D> b(xx)

x| X2 X3

D vl x) Y w2, x5, %)

No more than 3 terms appear in any summand. Computational
complexity is decreased!

Recursive schemes: Bartolucci & Besag (2002) and Reeves &
Pettitt (2004).
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Results for binary MRFs

Nial and Rue (2007) “completed” the algorithm by Reeves &
Pettitt (2004), to allow for

e compute (all) normalising constants,

e compute marginals 7(x;

“3), 7T(X,',Xj
e sample exact,

e compute modal configuration,

e compute marginal likelihood.

For lattices where smallest dimension m does not exceed 19



ALTERNATIVES TO MCMC

L Larent (BINARY) MARKOV RANDOM FIELD
:

Results for binary MRFs

Nial and Rue (2007) “completed” the algorithm by Reeves &
Pettitt (2004), to allow for

e compute (all) normalising constants,
e compute marginals 7(x;|3), 7(xi, xj|3),
sample exact,

compute modal configuration,

compute marginal likelihood.

For lattices where smallest dimension m does not exceed 19



ALTERNATIVES TO MCMC

L Larent (BINARY) MARKOV RANDOM FIELD
:

Results for binary MRFs

Nial and Rue (2007) “completed” the algorithm by Reeves &
Pettitt (2004), to allow for

e compute (all) normalising constants,
e compute marginals 7(x;|3), 7(xi, xj|3),
e sample exact,

compute modal configuration,

compute marginal likelihood.

For lattices where smallest dimension m does not exceed 19



ALTERNATIVES TO MCMC

L Larent (BINARY) MARKOV RANDOM FIELD
:

Results for binary MRFs

Nial and Rue (2007) “completed” the algorithm by Reeves &
Pettitt (2004), to allow for

e compute (all) normalising constants,
e compute marginals 7(x;|3), 7(xi, xj|3),
e sample exact,

e compute modal configuration,

compute marginal likelihood.

For lattices where smallest dimension m does not exceed 19




ALTERNATIVES TO MCMC
L Larent (BINARY) MARKOV RANDOM FIELD

Results for binary MRFs

Nial and Rue (2007) “completed” the algorithm by Reeves &
Pettitt (2004), to allow for

e compute (all) normalising constants,

e compute marginals 7(x;|3), 7(xi, xj|3), ...
e sample exact,

e compute modal configuration,

e compute marginal likelihood.

For lattices where smallest dimension m does not exceed 19



ALTERNATIVES TO MCMC
L Larent (BINARY) MARKOV RANDOM FIELD

Results for binary MRFs

Nial and Rue (2007) “completed” the algorithm by Reeves &
Pettitt (2004), to allow for

e compute (all) normalising constants,

e compute marginals 7(x;|3), 7(xi, xj|3), ...
e sample exact,

e compute modal configuration,

e compute marginal likelihood.

For lattices where smallest dimension m does not exceed 19



ALTERNATIVES TO MCMC

L Larent (BINARY) MARKOV RANDOM FIELD
:

Approximate inference for large lattices

7(x

separated by a column of lattice points C

j) — TT(XA ‘ 3?Xc) W(XC | 3)7&’(XB

3' XC)
If we can compute the marginal of x¢ then we have two
independent smaller problems.

Consider a large lattice partitioned into sub-lattices A and B,
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Approximate inference for large lattices

Consider a large lattice partitioned into sub-lattices A and B,
separated by a column of lattice points C

m(x | B) = m(xa | B,xc) m(xc | B)m(xs | B,xc)

If we can compute the marginal of x¢c then we have two
independent smaller problems.
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Approzimate inference for large lattices

Consider a large lattice partitioned into sub-lattices A and B,
separated by a column of lattice points C

m(x | B) = m(xa | B,xc) m(xc | B)w(xg | B,xc).

If we can compute the marginal of x¢ then we have two
independent smaller problems.
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Approximating the marginal of X¢

B n(x | 5)
m(xc|B) = (xa | xc, B)m (x5 | xc, 3)
m(xs,c, 7 | Xc1,Xc2, )

Q

m(xs | xc,xc1, B) m(XT | X, X2, 3)
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Approrimations

Same basic ideas as in INLA can be applied

J

m(xi|y) =Y mxi|y,0;) w(6; | y) A
etc...
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Approximations...

. .
Improved approximations for 7(x;|y, 8;) for increasing size of
window centred at site /.
H.Austad

e More difficult MRF models: talk by H.Tjelmeland and

e Approximating normalising constants: previously announced
talk by N.Friel
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Approximations...

Improved approximations for 7(x;|y, 8;) for increasing size of
window centred at site /.
e More difficult MRF models: talk by H.Tjelmeland and
H.Austad
e Approximating normalising constants: previously announced
talk by N.Friel
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Change-point models

Stat Comput {2006) 16: 203-213
DO 10 1007 45 112 22-006-8450-8

Exact and efficient Bayesian inference for multiple
changepoint problems

Paul Fearnhead

based on work by Yo (1984, AoS), Barry and Hartigan (1992 AoS,
1993 JASA).
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Model

Data y1,...,¥n
Conditionally independent given 6

e 0 is piece-wise constant (01, ...,0,) in m-segments

Independent 0;'s over segments

N
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Recursions

Forward-backward based recursions

Require the marginal likelihood in each segment

Fixed number of change-points: compute posterior marginal
for each change-point and corresponding 0;.

e Random number of change-points: compute the posterior
marginal for the number of change-points.
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Coal mining disaster data

718

PETER J. GREEN
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Fig. 1. Coal mining disaster data, 1851-1962: dates of disasters, cumulative counting
process (dotted curve) and posterior mean rate of occurrence (solid curve).
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Coal mining disaster data: number of change-points
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Fig. 2. Coal mining disaster data: posterior distribution of k, the
number of change-points. Components

RIMCMC Exact: discrete time
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Coal mining disaster data

of the algorithm. For example, in the analysis of the coal-
mining disaster data in Green (1995), the reversible jump
MCMC algorithm had not converged. The reanalysis of the
data in Green (2003), using a reversible jump MCMC algo-
rithm run for 25 times as long, does fully explore the posterior
distribution. The exact simulation method we describe here

avolds any problems of needing to diagnose convergence of
an MCMC algorithm.
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Change-point models

e Recursions can be “tuned” to derive near instant algorithms
e Extentions are possible
e Need marginal likelihood

N
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Parallel computing

speedup.

e (Near) every new computer is dual-core/quad-core
e Programs has to take advantage of this in order to gain
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OpenMP (www.openmp.org)

Dual/Quad-core computers has shared memory; makes (my) life
easier.

OpenMP defines a nice set of tools for creating parallel programs
(multi-threading), in C/C++/Fortran.

OpenMP was included in gcc/gfortran-4.2.
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Example: Loops

Standard C-code

for (i=0; i<N; i++)
x[i] = GetNewSample(...)

// Independent loop
with OpenMP directives

#pragma omp parallel for private(i)
for (i=0; i<N; i++)

x[i] = GetNewSample(...)
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Example: Parallel regions
Standard C-code

DoTaskA(); // Independent tasks
DoTaskB() ;

with OpenMP directives

#pragma omp parallel sections

{

#pragma omp section
DoTaskAQ);

#pragma omp section
DoTaskB();
X
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Ezxamples

Spatial-survival example:

Number of threads | CPU seconds
1
2

157

11.2
e optimisation is less parallel

e integration is parallel
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(GP)GPU Computing

e GPU computing is the use of a GPU (graphics processing unit)
to do general purpose scientific and engineering computing.

e The model for GPU computing is to use a CPU and GPU
together in a heterogeneous computing model.

e The sequential part of the application runs on the CPU and
the computationally-intensive part runs on the GPU.
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Model

4 cores
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The future

"GPUs have evolved to the point where many real-world
applications are easily implemented on them and run significantly
faster than on multi-core systems. Future computing architectures
will be hybrid systems with parallel-core GPUs working in tandem
with multi-core CPUs.”

Prof. Jack Dongarra
Director of the Innovative Computing Laboratory
The University of Tennessee
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Challenge

More parallel

e implementation

e case studies

e algorithm development
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Summary (1)

e Good and fast approximations for posterior marginals++ do

exists for certain model classes

e LGM are particular important and successful
e HUGE class

e fast and generic algorithm and implementation
e makes these models usable on routinely basis
e Spatial Latent Skew-Normals: talk by J.Eidsvik

e More on approximations in the Machine-Learning literature...

Software: www.math.ntnu.no/~hrue/GMRFLib
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Summary (1)

Good and fast approximations for posterior marginals++ do
exists for certain model classes

LGM are particular important and successful

e HUGE class
o fast and generic algorithm and implementation
e makes these models usable on routinely basis

Spatial Latent Skew-Normals: talk by J.Eidsvik

e More on approximations in the Machine-Learning literature...

Software: www.math.ntnu.no/~hrue/GMRFLib
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Summary (11)

e Analytical intractable models do not automatic require
MCMC!

e Computing (simple) posterior marginals is (much) simpler!

e The literature is partly miss-leading on these issues
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Summary (111)

Combine {MC,S,}MC and Laplace approximations?

Laplace Expansions in Markov Chain Monte
Carlo Algorithms

Chantal GUHENNEUC-JOUY AUX and Judith RousseEau
DM Ame rican Stanisrieal Axsoctfarion, fsninee of Mathemanical Sransnics,
el Brirerfence Founndarion af Novrh Ame ricea

Jenersend of Conrpuereerioned evnd Grapduieal Stadsrics, Vodwre 14, Ninber 1, Pages T304
D 100 DRG] RGO0TX 25727
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