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Introduction

• The problem is to compute expectations

π(f) =

∫

E

f(x)π(x)dx

w.r.t a probability measure π, for many f .

• In many cases of interest it is not possible/sensible using analytic or deterministic nu-

merical methods.

• This has a wide variety of real applications, from statistics to physics and much more.

• Basic idea: Sample an ergodic Markov chain of stationary distribution π. The estimate

of π(f) is

SXn (f) =
1

n+ 1

n∑

i=0

f(Xi)

whereX0, X1, . . . , Xn are samples from our Markov chain. Termed MCMC.
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• For probability measures π

– possessing many modes

– and/or complex inter-dependence structure,

MCMC can be slow to move around the space.

• As a result, many advanced MCMC algorithms:

– Adaptive MCMC

– Equi-energy sampler

– Particle MCMC

to name but a few.

• In this talk I present another alternative: Non-Linear MCMC.
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Non-Linear MCMC

• LetP(E) be the class of probability measures on E.

• Standard MCMC has a kernel: K : E →P(E).

• Non-Linear MCMC has a kernel: K : E ×P(E)→P(E).

• The kernel is to operate in some non-linear way on an input probability measure.

• The idea is to induce a kernel which mixes much faster than an ordinary MCMC kernel.
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• A linear example:

Kμ(x, dy) = (1− ε)K(x, dy) + εμK(dy) ,

where

– K is a Markov kernel of invariant distribution π

– ε ∈ (0, 1)

– μK(dy) =
∫
μ(dx)K(x, dy).

• Simulating fromKπ allows regenerations from π, withKπ strongly uniformly ergodic.

• It is not possible to sample fromKπ . The idea is then to approximate the kernel using

simulated samples in the past.
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• By this I mean to approximate, at time n+ 1 of the algorithm, the kernel by:

KSXn (x, dy) = (1− ε)K(x, dy) + εSXn K(dy) ,

• Such an algorithm, brings previously simulated samples back, with probability ε and

then samples fromK .

• Note that other approximation schemes are possible. In PMCMC, a new process is

sampled (i.e. the particle filter) at every step and that yields a Markov chain.

• This leads us to our rather loose framework:

– Identify a non-linear kernel, that admits π as an invariant distribution and can be

expected to mix faster than an ordinary MCMC kernel

– Construct a stochastic process that approximates the kernel, which can be simu-

lated in practice.
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Some Algorithms

• Consider the non-linear kernel:

Ππ×SYn ((xn, yn), d(xn+1, yn+1)) =

[
(1− ε)K(xn, dxn+1) + εΦ(S

Y
n )(dxn+1)

]
P (yn, dyn+1)

where

– P is a Markov kernel of invariant distribution η

– Φ(μ)(dx) = μ(gK)(dx)/μ(g)

– g = dπ/dη

– (π × η)Ππ×η(d(x, y)) = π × η(d(x, y)).

• η should be easier to sample than π but related to it.

• Φ will select a value of the chain {Yn} and try to help the {Xn} process.
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The Theoretical Analysis

• It is sought to prove a strong law of large numbers for the sample path:

SXn (f) =
1

n+ 1

n∑

i=0

f(Xi).

• Introduce the sequence of probability distributions {Sωn := 1/(n+1)
∑n
i=0 ω(S

Y
i )}n≥0

where ω(μ) is the invariant probability distribution ofKμ.

• Adopt the decomposition

SXn (f)− π(f) = SXn (f)− S
ω
n (f) + S

ω
n (f)− π(f) .

• The analysis of the first term on the R.H.S relies upon a classical martingale argument.
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• Under the assumptions in the paper the a solution to Poisson’s equation exists

f(x)− ω(μ)(f) = f̂μ(x)−Kμ(f̂μ)(x) .

• The first term on the R.H.S is

(n+ 1)[SXn − S
ω
n ](f) =Mn+1

+
n∑

m=0

[f̂SYm+1(Xm+1)− f̂SYm(Xm+1)] + f̂SY0 (X0)− f̂SYn+1(Xn+1) ,

where

Mn =

n−1∑

m=0

[f̂SYm(Xm+1)−KSYm(f̂SYm)(Xm)] ,

is such that {Mn,Gn} is a martingale.

• The Martingale can be controlled using Burkholder’s inequality.
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• The other expressions can be dealt with via continuity properties of the solution to the

Poisson equation.

• The expression Sωn (f) − π(f) is more complex and appears to require a strong law

of large numbers for U−statistics, in order to prove the result.

• The assumptions are based upon standard Foster-Lyapunov drift inequalities and are

relatively standard.
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Summary + Extensions

• Investigated a new approach to stochastic simulation: Non-Linear MCMC.

• The conditions required for convergence may be relaxed; e.g. using sub-geometric

kernels.

• To design more elaborate methods to control the evolution of the empirical measure.

• To design ‘better’ algorithms.
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