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Introduction

The problem is to compute expectations

r(f) = /E f (@) () de

W.r.t a probability measure 7, for many f.

In many cases of interest it is not possible/sensible using analytic or deterministic nu-
merical methods.

This has a wide variety of real applications, from statistics to physics and much more.

Basic idea: Sample an ergodic Markov chain of stationary distribution 7v. The estimate

of m(f)is

SX() = —5 3 f(X)

where X, X1, ..., X, are samples from our Markov chain. Termed MCMC.
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e [or probability measures 7
— possessing many modes
— and/or complex inter-dependence structure,
MCMC can be slow to move around the space.
® As aresult, many advanced MCMC algorithms:
— Adaptive MCMC
— Equi-energy sampler
— Particle MCMC
to name but a few.

e |n this talk | present another alternative: Non-Linear MCMC.
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Non-Linear MCMC
Let & (F) be the class of probability measures on E.
Standard MCMC has akernel: K : B — Z(F).
Non-Linear MCMC has akernel: K : E x Z(E) — Z(F).
The kernel is to operate in some non-linear way on an input probability measure.

The idea is to induce a kernel which mixes much faster than an ordinary MCMC kernel.
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e A linear example:
Ky(z,dy) = (1—e€)K(z,dy)+epK(dy),

where
— K is a Markov kernel of invariant distribution 7
- €€ (0,1)
- pK(dy) = [ p(dz)K (z,dy).
e Simulating from K . allows regenerations from 7, with /& strongly uniformly ergodic.

e It is not possible to sample from K .. The idea is then to approximate the kernel using
simulated samples in the past.
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By this | mean to approximate, at time n + 1 of the algorithm, the kernel by:

Ksx(z,dy) = (1-€)K(z,dy) + Sy K(dy)

Such an algorithm, brings previously simulated samples back, with probability € and
then samples from K .

Note that other approximation schemes are possible. In PMCMC, a new process is
sampled (i.e. the particle filter) at every step and that yields a Markov chain.

This leads us to our rather loose framework:

— Identify a non-linear kernel, that admits 7 as an invariant distribution and can be
expected to mix faster than an ordinary MCMC kernel

— Construct a stochastic process that approximates the kernel, which can be simu-
lated in practice.
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Some Algorithms

e Consider the non-linear kernel:
wasgj((iﬁn, Yn), A(Tnt1, Yn+1)) =

(1= VK (2, dn 1) + €@(SY) (A1) P(Yn, dyn 1)
where

— P is a Markov kernel of invariant distribution 7

- @(p)(dr) = u(gK)(dz)/1u(g)
- g =dm/dn

= (7 X )z xn(d(z, y)) = 7 x n(d(z,y)).
e 7 should be easier to sample than 7 but related to it.

e & will select a value of the chain {Y}, } and try to help the { X, } process.
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The Theoretical Analysis

It is sought to prove a strong law of large numbers for the sample path:
1 mn
X f— .
A= g LX),
1=

Introduce the sequence of probability distributions {S% :=1/(n+1) Y7, w(S} ) }n>0
where w( ) is the invariant probability distribution of K ,.

Adopt the decomposition
Sy (f)—n(f) = Sy (f) = S5(f)+ Sy (f) —=(f).

The analysis of the first term on the R.H.S relies upon a classical martingale argument.
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Under the assumptions in the paper the a solution to Poisson’s equation exists
f@)—wp)(f) = fulx) = Ku(fu)(z).

The first term on the R.H.S is

+ Z[stH( Xoni1) = fsx (Xmt1)] + fsy (Xo) = for (Xny1)
m=0
where »
My, = Z [fSY (Xomt1) — Kgy (]ES},CL)(Xm)] )
m=0

is such that { M,,, G, } is a martingale.

The Martingale can be controlled using Burkholder’s inequality.
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® The other expressions can be dealt with via continuity properties of the solution to the
Poisson equation.

e The expression S¥(f) — w(f) is more complex and appears to require a strong law
of large numbers for U —statistics, in order to prove the result.

e The assumptions are based upon standard Foster-Lyapunov drift inequalities and are
relatively standard.
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Summary + Extensions
e |nvestigated a new approach to stochastic simulation: Non-Linear MCMC.

e The conditions required for convergence may be relaxed; e.g. using sub-geometric
kernels.

e To design more elaborate methods to control the evolution of the empirical measure.

e To design ‘better’ algorithms.
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