Imperial College London

On Non-Linear MCMC

Ajay Jasra

ajay.jasra@imperial.ac.uk

Department of Mathematics

Imperial College London

Outline

- Introduction
- Non-Linear MCMC
- Some Algorithms
- The Theoretical Analysis
- Summary

Introduction

The problem is to compute expectations

$$\pi(f) = \int_{E} f(x)\pi(x)dx$$

w.r.t a probability measure π , for many f.

- In many cases of interest it is not possible/sensible using analytic or deterministic numerical methods.
- This has a wide variety of real applications, from statistics to physics and much more.
- Basic idea: Sample an ergodic Markov chain of stationary distribution π . The estimate of $\pi(f)$ is

$$S_n^X(f) = \frac{1}{n+1} \sum_{i=0}^n f(X_i)$$

where X_0, X_1, \ldots, X_n are samples from our Markov chain. Termed MCMC.

- ullet For probability measures π
 - possessing many modes
 - and/or complex inter-dependence structure,

MCMC can be slow to move around the space.

- As a result, many advanced MCMC algorithms:
 - Adaptive MCMC
 - Equi-energy sampler
 - Particle MCMC

to name but a few.

• In this talk I present another alternative: Non-Linear MCMC.

Non-Linear MCMC

- Let $\mathscr{P}(E)$ be the class of probability measures on E.
- Standard MCMC has a kernel: $K:E \to \mathscr{P}(E)$.
- Non-Linear MCMC has a kernel: $K: E \times \mathscr{P}(E) \to \mathscr{P}(E)$.
- The kernel is to operate in some non-linear way on an input probability measure.
- The idea is to induce a kernel which mixes much faster than an ordinary MCMC kernel.

• A linear example:

$$K_{\mu}(x, dy) = (1 - \epsilon)K(x, dy) + \epsilon \mu K(dy)$$
,

where

- $\,K\,$ is a Markov kernel of invariant distribution π
- $-\epsilon \in (0,1)$
- $\mu K(dy) = \int \mu(dx) K(x, dy).$
- ullet Simulating from K_π allows regenerations from π , with K_π strongly uniformly ergodic.
- It is not possible to sample from K_{π} . The idea is then to approximate the kernel using simulated samples in the past.

ullet By this I mean to approximate, at time n+1 of the algorithm, the kernel by:

$$K_{S_n^X}(x, dy) = (1 - \epsilon)K(x, dy) + \epsilon S_n^X K(dy)$$
,

- ullet Such an algorithm, brings previously simulated samples back, with probability ϵ and then samples from K.
- Note that other approximation schemes are possible. In PMCMC, a new process is sampled (i.e. the particle filter) at every step and that yields a Markov chain.
- This leads us to our rather loose framework:
 - Identify a non-linear kernel, that admits π as an invariant distribution and can be expected to mix faster than an ordinary MCMC kernel
 - Construct a stochastic process that approximates the kernel, which can be simulated in practice.

Some Algorithms

Consider the non-linear kernel:

$$\Pi_{\pi \times S_n^Y}((x_n, y_n), d(x_{n+1}, y_{n+1})) =$$

$$[(1 - \epsilon)K(x_n, dx_{n+1}) + \epsilon \Phi(S_n^Y)(dx_{n+1})]P(y_n, dy_{n+1})$$

where

- P is a Markov kernel of invariant distribution η
- $\Phi(\mu)(dx) = \mu(gK)(dx)/\mu(g)$
- $-g = d\pi/d\eta$
- $(\pi \times \eta) \Pi_{\pi \times \eta}(d(x,y)) = \pi \times \eta(d(x,y)).$
- η should be easier to sample than π but related to it.
- ullet Φ will select a value of the chain $\{Y_n\}$ and try to help the $\{X_n\}$ process.

The Theoretical Analysis

It is sought to prove a strong law of large numbers for the sample path:

$$S_n^X(f) = \frac{1}{n+1} \sum_{i=0}^n f(X_i).$$

- Introduce the sequence of probability distributions $\{S_n^\omega:=1/(n+1)\sum_{i=0}^n\omega(S_i^Y)\}_{n\geq 0}$ where $\omega(\mu)$ is the invariant probability distribution of K_μ .
- Adopt the decomposition

$$S_n^X(f) - \pi(f) = S_n^X(f) - S_n^{\omega}(f) + S_n^{\omega}(f) - \pi(f).$$

• The analysis of the first term on the R.H.S relies upon a classical martingale argument.

Under the assumptions in the paper the a solution to Poisson's equation exists

$$f(x) - \omega(\mu)(f) = \hat{f}_{\mu}(x) - K_{\mu}(\hat{f}_{\mu})(x).$$

The first term on the R.H.S is

$$(n+1)[S_n^X - S_n^{\omega}](f) = M_{n+1}$$

$$+ \sum_{m=0}^n [\hat{f}_{S_{m+1}^Y}(X_{m+1}) - \hat{f}_{S_m^Y}(X_{m+1})] + \hat{f}_{S_0^Y}(X_0) - \hat{f}_{S_{n+1}^Y}(X_{n+1}) ,$$

where

$$M_n = \sum_{m=0}^{n-1} [\hat{f}_{S_m^Y}(X_{m+1}) - K_{S_m^Y}(\hat{f}_{S_m^Y})(X_m)],$$

is such that $\{M_n, \mathcal{G}_n\}$ is a martingale.

The Martingale can be controlled using Burkholder's inequality.

- The other expressions can be dealt with via continuity properties of the solution to the Poisson equation.
- ullet The expression $S_n^\omega(f)-\pi(f)$ is more complex and appears to require a strong law of large numbers for U-statistics, in order to prove the result.
- The assumptions are based upon standard Foster-Lyapunov drift inequalities and are relatively standard.

Summary + Extensions

- Investigated a new approach to stochastic simulation: Non-Linear MCMC.
- The conditions required for convergence may be relaxed; e.g. using sub-geometric kernels.
- To design more elaborate methods to control the evolution of the empirical measure.
- To design 'better' algorithms.

Acknowledgements

- Joint work with Christophe Andrieu, Arnaud Doucet and Pierre Del Moral.
- During this work I was supported by the University of Cambridge, Universitié Nice, ISM Tokyo Japan and Imperial College London.
- Paper is available from:

http://stats.ma.ic.ac.uk/a/aj2/public_html/papers/NLREV1.PDF.