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General Setting

Let π be a probability distribution. I want the value of some feature
θ. For example, θ might be a quantile, a mode, an interval, or

θ = Eπg :=

∫

X
g(x)π(dx)

Assume that θ is analytically intractable.

Treat θ as an unknown parameter and simulate data to estimate it.



Markov Chain Monte Carlo Basics

Simulate a Markov chain X := {Xn}

Use θ̂n = θ̂(X0,X1, . . . ,Xn−1) to estimate θ so that

θ̂n → θ as n →∞

Usual Case

θ̂n = ḡn :=
1

n

n−1∑

i=0

g(Xi )
a.s.→ Eπg = θ as n →∞



Fixed-Width Methodology

When is n large enough?

When is θ̂n a good estimate of θ?

Monte Carlo Error: θ̂n − θ

Sampling Distribution

τn(θ̂n − θ)
d→ J as n →∞

Simulate until
[θ̂n − cn, θ̂n + cn]

is sufficiently narrow.



Fixed-Width Methodology

Usual Case

√
n(ḡn − Eπg)

d→ N(0, σ2
g ) as n →∞

Simulate until

t∗
σ̂g√

n
+ a(n) ≤ desired half-width

where t∗ is an appropriate critical value and a(n) ↓ 0 on Z+.



Questions

Old Question

1 When is θ̂n a good estimate of θ?

New Questions

1 When does the Monte Carlo error have a limiting distribution?

2 How can we construct confidence intervals for θ?

3 Will the sequential procedure terminate at a finite time?

4 Will the resulting intervals have the desired coverage
probability?



Regularity Conditions

X = {X0,X1,X2, . . .} is a Markov chain

• invariant distribution is π
• π-irreducible
• aperiodic
• positive Harris recurrent

Pn(x ,A) :=Pr(Xi+n ∈ A|Xi = x)

As n →∞

‖Pn(x , ·)− π(·)‖ := sup
A

|Pn(x ,A)− π(A)| ↓ 0



Regularity Conditions

Rate of TV convergence is the key:

‖Pn(x , ·)− π(·)‖ ≤ C (x)tn

where C (x) ≥ 0 and t ∈ (0, 1).

Uniform / geometric ergodicity means C is bounded / unbounded.

There exist constructive techniques for establishing the rate of
convergence.



Usual Case

θ = Eπg
√

n(ḡn − Eπg)
d→ N(0, σ2

g ) as n →∞

Simulate until

t∗
σ̂g√

n
+ a(n) ≤ desired half-width

where t∗ is an appropriate critical value and a(n) ↓ 0 on Z+.



Usual Case: CLT

Suppose at least one of the following conditions hold.

• X is uniformly ergodic and Eπg2 < ∞
• X is geometrically ergodic and Eπ|g |2+ε < ∞

Then for any initial distribution there exists σ2
g ∈ (0,∞) such that

as n →∞ √
n(ḡn − Eπg)

d→ N(0, σ2
g )



Usual Case: Estimating σ2
g

Batch Means (nonoverlapping, overlapping, spaced)

Regenerative Simulation

Spectral Methods

Subsampling Bootstrap (overlapping batch means)

Time Series Bootstrap



Usual Case: Overlapping Batch Means

Split a long run {X0,X1, . . . ,Xn−1} into batches of length an:

X0, . . . ,Xan−1 ḡ1 = 1
an

∑an−1
j=0 g(Xj)

X1, . . . ,Xan ḡ2
...

...

There are n − an + 1 batches of length an.

σ̂2
OBM =

nan

(n − an)(n − an + 1)

n−an∑

j=0

(ḡj − ḡn)
2



Usual Case: Overlapping Batch Means

Theorem

Suppose

• X is geometrically ergodic,

• Eπ|g(x)|2+δ+ε < ∞ for δ, ε > 0 and

• an = *nν+ and 3/4 > ν > (1 + δ/2)−1,

then σ̂2
OBM → σ2

g w.p. 1 as n →∞ .



General Case

θ̂n approximates θ

Sampling Distribution

τn(θ̂n − θ)
d→ J as n →∞

Simulate until
[θ̂n − cn, θ̂n + cn]

is sufficiently narrow.



General Case: Subsampling Bootstrap

Split a long run {X0,X1, . . . ,Xn−1} into batches of length an:

X0, . . . ,Xan−1 θ̂1

X1, . . . ,Xan θ̂2
...

...

There are n − an + 1 batches of length an. The collection

θ̂1, θ̂2, · · · , θ̂n−an+1

can be used to approximate the sampling distribution of θ̂n.



Subsampling Bootstrap

Theorem Assume that as n →∞ τn →∞ and

τn(θ̂n − θ)
d→ J .

Let J∗ be the empirical distribution function of the τan(θ̂an − θ̂n).
If X is geometrically ergodic and as n →∞

1 an →∞ and an/n → 0

2 τan →∞ and τan/τn → 0

then J∗ → J at every continuity point and an “asymptotically
valid” 100(1− α)% confidence interval for θ is

[θ̂n − τ−1
n J∗

−1
(1− α/2), θ̂n − τ−1

n J∗
−1

(α/2)] .



Baseball

Efron and Morris (1975) give a data set consisting of the raw
batting averages (based on 45 official at-bats) and a
transformation (

√
45 arcsin(2x − 1)) for 18 Major League Baseball

players during the 1970 season.

Suppose for i = 1, . . . ,K that

Yi |γi ∼ N(γi , 1) γi |µ, λ ∼ N(µ, λ)

λ ∼ IG(2, 2) f (µ) ∝ 1 .

Block Gibbs Sampler: (λ′, µ′, γ′) → (λ, µ, γ)

Theorem (Rosenthal,1996) The Markov chain is geometrically
ergodic.



Baseball

Goal: Estimate the posterior mean and median of γ9, the “true”
long-run (transformed) batting average of the Chicago Cubs’ Ron
Santo.

2000 Replications
Target half-width=.005
Nominal 95% confidence interval
Estimated Coverage Probability

OBM .948 (.003)
SS .951 (.005)



Summary

• Fixed-width methodology is useful in automating MCMC but
requires a strongly consistent estimator of the asymptotic
variance / asymptotically valid confidence interval.

• Fixed-width methods compare favorably to using diagnostics
such as that developed by Gelman and Rubin.

• Spectral variance methods (Tukey-Hanning window) appear
superior to batch means methods.

• The finite-sample properties of these methods have been
extensively investigated and match the theory.

• There has been no assumption of stationarity.


