Fixed-Width Output Analysis for MCMC

Galin L. Jones with James Flegal, Murali Haran, Ron Neath and Brian Caffo

> School of Statistics University of Minnesota

March 19, 2009

General Setting

Let π be a probability distribution. I want the value of some feature θ . For example, θ might be a quantile, a mode, an interval, or

$$\theta = E_{\pi}g := \int_{\mathsf{X}} g(x)\pi(dx)$$

Assume that θ is analytically intractable.

Treat θ as an unknown parameter and simulate data to estimate it.

Markov Chain Monte Carlo Basics

Simulate a Markov chain $X := \{X_n\}$

Use
$$\hat{ heta}_n = \hat{ heta}(X_0, X_1, \dots, X_{n-1})$$
 to estimate $heta$ so that $\hat{ heta}_n o heta$ as $n o \infty$

Usual Case

$$\hat{\theta}_n = \bar{g}_n := rac{1}{n} \sum_{i=0}^{n-1} g(X_i) \stackrel{\text{a.s.}}{\to} E_\pi g = \theta \text{ as } n \to \infty$$

Fixed-Width Methodology

When is *n* large enough?

When is $\hat{\theta}_n$ a good estimate of θ ?

<u>Monte Carlo Error</u>: $\hat{\theta}_n - \theta$

Sampling Distribution

$$au_n(\hat{ heta}_n- heta)\stackrel{d}{
ightarrow}J$$
 as $n
ightarrow\infty$

Simulate until

$$[\hat{\theta}_n - c_n, \, \hat{\theta}_n + c_n]$$

is sufficiently narrow.

Fixed-Width Methodology

Usual Case

$$\sqrt{n}(ar{g}_n-E_\pi g) \stackrel{d}{
ightarrow} {\sf N}(0,\sigma_g^2)$$
 as $n
ightarrow\infty$

Simulate until

$$t_* \, rac{\hat{\sigma}_{g}}{\sqrt{n}} + a(n) \leq ext{desired half-width}$$

where t_* is an appropriate critical value and $a(n) \downarrow 0$ on \mathbb{Z}^+ .

Questions

Old Question

1 When is $\hat{\theta}_n$ a good estimate of θ ?

New Questions

- 1 When does the Monte Carlo error have a limiting distribution?
- **2** How can we construct confidence intervals for θ ?
- 3 Will the sequential procedure terminate at a finite time?
- Will the resulting intervals have the desired coverage probability?

Regularity Conditions

 $X = \{X_0, X_1, X_2, \ldots\}$ is a Markov chain

- invariant distribution is π
- π-irreducible
- aperiodic
- positive Harris recurrent

$$P^n(x,A) := \Pr(X_{i+n} \in A | X_i = x)$$

As $n \to \infty$

$$\|P^n(x,\cdot)-\pi(\cdot)\|:=\sup_{A}|P^n(x,A)-\pi(A)|\downarrow 0$$

Regularity Conditions

Rate of TV convergence is the key:

$$\|P^n(x,\cdot)-\pi(\cdot)\|\leq C(x)t^n$$

where $C(x) \ge 0$ and $t \in (0, 1)$.

Uniform / geometric ergodicity means *C* is bounded / unbounded.

There exist constructive techniques for establishing the rate of convergence.

Usual Case

$$egin{aligned} & heta &= E_\pi g \ & \sqrt{n}(ar{g}_n - E_\pi g) \stackrel{d}{ o} & \mathsf{N}(0,\sigma_g^2) \ \ \text{as} \ n o \infty \end{aligned}$$

Simulate until

$$t_* \, rac{\hat{\sigma}_{\mathsf{g}}}{\sqrt{n}} + a(n) \leq {\sf desired} \, \, {\sf half-width}$$

where t_* is an appropriate critical value and $a(n) \downarrow 0$ on \mathbb{Z}^+ .

Usual Case: CLT

Suppose at least one of the following conditions hold.

- X is uniformly ergodic and $E_{\pi}g^2 < \infty$
- X is geometrically ergodic and $E_\pi |g|^{2+\epsilon} < \infty$

Then for any initial distribution there exists $\sigma_g^2 \in (0,\infty)$ such that as $n \to \infty$

$$\sqrt{n}(\bar{g}_n - E_{\pi}g) \stackrel{d}{\rightarrow} \mathsf{N}(0, \sigma_g^2)$$

Usual Case: Estimating σ_g^2

Batch Means (nonoverlapping, overlapping, spaced)

Regenerative Simulation

Spectral Methods

Subsampling Bootstrap (overlapping batch means)

Time Series Bootstrap

Usual Case: Overlapping Batch Means

Split a long run $\{X_0, X_1, \ldots, X_{n-1}\}$ into batches of length a_n :

$$\begin{array}{ccc} X_{0}, \dots, X_{a_{n}-1} & & \bar{g}_{1} = \frac{1}{a_{n}} \sum_{j=0}^{a_{n}-1} g(X_{j}) \\ X_{1}, \dots, X_{a_{n}} & & \bar{g}_{2} \\ \vdots & & \vdots \end{array}$$

There are $n - a_n + 1$ batches of length a_n .

$$\hat{\sigma}_{OBM}^2 = rac{na_n}{(n-a_n)(n-a_n+1)} \sum_{j=0}^{n-a_n} (\bar{g}_j - \bar{g}_n)^2$$

Usual Case: Overlapping Batch Means

Theorem

Suppose

- X is geometrically ergodic,
- $E_{\pi}|g(x)|^{2+\delta+\epsilon}<\infty$ for $\delta,\epsilon>0$ and

•
$$a_n = \lfloor n^{
u} \rfloor$$
 and $3/4 >
u > (1 + \delta/2)^{-1}$,

then $\hat{\sigma}^2_{OBM} \rightarrow \sigma^2_g ~~{\rm w.p.}~1~{\rm as}~n \rightarrow \infty$.

General Case

 $\hat{\theta}_n$ approximates θ

Sampling Distribution

$$au_n(\hat{ heta}_n- heta) \stackrel{d}{
ightarrow} J$$
 as $n
ightarrow\infty$

Simulate until

$$[\hat{\theta}_n - c_n, \, \hat{\theta}_n + c_n]$$

is sufficiently narrow.

General Case: Subsampling Bootstrap

Split a long run $\{X_0, X_1, \ldots, X_{n-1}\}$ into batches of length a_n :

$$\begin{array}{ccc} X_0, \dots, X_{a_n-1} & \hat{\theta}_1 \\ X_1, \dots, X_{a_n} & \hat{\theta}_2 \\ \vdots & \vdots \end{array}$$

There are $n - a_n + 1$ batches of length a_n . The collection

$$\hat{\theta}_1, \hat{\theta}_2, \cdots, \hat{\theta}_{n-a_n+1}$$

can be used to approximate the sampling distribution of $\hat{\theta}_n$.

Subsampling Bootstrap

<u>Theorem</u> Assume that as $n \to \infty \tau_n \to \infty$ and

$$au_n(\hat{\theta}_n-\theta)\stackrel{d}{\rightarrow}J$$
.

Let J^* be the empirical distribution function of the $\tau_{a_n}(\hat{\theta}_{a_n} - \hat{\theta}_n)$. If X is geometrically ergodic and as $n \to \infty$

1
$$a_n \to \infty$$
 and $a_n/n \to 0$
2 $\tau_{a_n} \to \infty$ and $\tau_{a_n}/\tau_n \to 0$

then $J^* \rightarrow J$ at every continuity point and an "asymptotically valid" $100(1-\alpha)\%$ confidence interval for θ is

$$[\hat{\theta}_n - \tau_n^{-1} J^{*^{-1}} (1 - \alpha/2), \, \hat{\theta}_n - \tau_n^{-1} J^{*^{-1}} (\alpha/2)] .$$

Baseball

Efron and Morris (1975) give a data set consisting of the raw batting averages (based on 45 official at-bats) and a transformation ($\sqrt{45} \arcsin(2x - 1)$) for 18 Major League Baseball players during the 1970 season.

Suppose for $i = 1, \ldots, K$ that

$$egin{array}{lll} Y_i | \gamma_i \sim {\sf N}(\gamma_i,1) & \gamma_i | \mu,\lambda \sim {\sf N}(\mu,\lambda) \ \lambda \sim {\sf IG}(2,2) & f(\mu) \propto 1 \;. \end{array}$$

Block Gibbs Sampler: $(\lambda', \mu', \gamma') \rightarrow (\lambda, \mu, \gamma)$

<u>Theorem</u> (Rosenthal,1996) The Markov chain is geometrically ergodic.

Baseball

<u>Goal</u>: Estimate the posterior mean and median of γ_9 , the "true" long-run (transformed) batting average of the Chicago Cubs' Ron Santo.

2000 Replications Target half-width=.005 Nominal 95% confidence interval Estimated Coverage Probability

```
OBM .948 (.003)
SS .951 (.005)
```

Summary

- Fixed-width methodology is useful in automating MCMC but requires a strongly consistent estimator of the asymptotic variance / asymptotically valid confidence interval.
- Fixed-width methods compare favorably to using diagnostics such as that developed by Gelman and Rubin.
- Spectral variance methods (Tukey-Hanning window) appear superior to batch means methods.
- The finite-sample properties of these methods have been extensively investigated and match the theory.
- There has been no assumption of stationarity.