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Introduction
We will address the issue of poor mixing within 
(RJ)MCMC algorithms.
In particular, we consider the case where the 
distribution is potentially multi-modal.
The methods are easily extended to the case of 
model uncertainty and the use of the RJMCMC 
algorithm. 
We will demonstrate the potential increase in 
efficiency that can be obtained for little additional 
computational expense.



(Really) Simple Motivating Example 
Suppose that the distribution we wish to sample 
from is a mixture of two Normal distributions:

0.6 N(-8, 0.52) + 0.4 N(8, 0.92)
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Simple Motivating Example
Performing a random walk MH algorithm will 
typically mean that only mode will be explored 
within the MCMC iterations.
However, using a random walk with large 
variance will typically result in very poor mixing 
with a large rejection probability.
Pilot-tuning can be used to identify the individual 
modes (starting the chain at different points). 
A MH algorithm can then be tuned to allow 
movements between modes.
Note that this requires the modes to be identified 
via pilot-tuning……



Simulated Tempering
Suppose that we are interested in sampling from 
the distribution π(θ).
Introduce auxiliary variable, k, and define the 
joint distribution,

π(θ,k) = π(θ)k p(k),
k is typically called the (inverse) temperature.
When k=1, π(θ,k) ∝ π(θ).
When k<1, the temperature is raised, and the 
distribution is “flattened” or “squashed”.
For k=0, π(θ,k) ∝ 1.



Simulated Tempering



Simulated Tempering
To obtain a sample from π(θ):

Set a temperature ladder, (i.e. the set of possible values 
for k = k1,…,km). We consider a geometric ladder:

ki = (1+∆k)1-i for i=1,…,m.
Sample from the joint distribution, π(θ,k), using 
standard MCMC updates (MH/Gibbs for θ and MH for k –
propose to move to neighbouring k with equal 
probability, i.e. for ki, P(ki → ki+1) = P(ki → ki-1) = 0.5).
Obtain posterior estimates of π(θ) by retaining the 
sampled values of θ when k=1.

Typically, the pseudo-prior p(k) is set such that 
the chain spends (approximately) equal amounts 
of time in each temperature.



Simulated Tempering/Importance 
Sampling

Simulated tempering can be regarded as wasteful 
in that only values of θ are used, when k = 1.
However, there is information in the other θ
values sampled when k ≠ 1 regarding the 
distribution π(θ).
This is where the idea of importance sampling 
comes in – we can reweight the values of θ for 
the other temperatures (k ≠ 1) to obtain 
summary estimates of π(θ) using all the sampled 
values.
(Note this is not a new idea!).



(Naïve) Importance Sampling
Suppose that we wish to estimate Eπ(h(θ)).
We can use importance sampling to estimate this 
by,

h*IS = W-1 ∑T
t=1 w(θ t, k t)h(θ t)

w(θ, k) = π(θ)/π(θ)k

W = ∑T
t=1 w(θ t, k t)

We now describe how we can improve on this 
estimator (and will demonstrate how poor this 
naïve IS estimator can be).



Importance Tempering
Note that we can obtain an importance sampling 
estimate of Eπ(h(θ)) for each temperature, ki, 
which we denote by hi*.
We consider an estimator of Eπ(h(θ)) of the form,

h* = ∑ λi hi*
where 0 ≤ λi ≤ ∑ λi = 1.
Note – naïve IS and ST are both special cases of 
this general algorithm.
We find an “optimal” set of values for λi.
We define optimal in terms of maximising the 
effective sample size.



Effective Sample Size (ESS)
Following Liu (2001) we define the ESS as

ESS = 

where,
cv2 = 

This can be regarded as a measure of efficiency 
of the given IS algorithm.

T
1 + cv2

∑T
t=1 (w(θt, kt) – w)2

(T-1) w2



Optimal choice of λ
Recall that h* = ∑ λi hi*.
The value of the λi’s that maximises the ESS is 
given by,

λi
* = 

where

βi = 

such that wij denotes the weight of the jth
realisation in temperature ki; and Wi the sum of 
the weights for temperature ki.

βi

∑m
i=1 βi

Wi
2

∑T wij
2i

j=1



Examples – toy example
We return to the toy example of the mixture of 
two Normal distributions.
We run the MCMC iterations for 100000 iterations 
and compare the ESS for the naïve IS, ST and IT 
approaches (m=40; km = 0.1)

Method ESS
ST 2535
Naïve IS 17779
IT 22913



Examples - RJMCMC
We now apply IT to an example where there is 
model uncertainty.
We consider mark-recapture-recovery data of 
shags on the Isle of May (Scotland), where there 
are three “sets” of parameters:

φa,t – survival probability at time t for individual aged 
a = {1,2,3,A}

λa,t – recovery probability at time t for individual aged 
a = {1,2,3,A}

pa,t – recapture probability at time t for individual aged 
a = {1,2,3,A}.



Models
There are a large number of possible models for 
φ, λ and p, corresponding to age and/or time 
dependence.
Typically we can denote the models in the form:

φ1(t), φ2,3(t), φA / p1,2,3,A(t) / λ1(t), λ2,3, λA

where the subscripts denote the age 
dependence; and the (t) corresponds to time 
dependence for the given parameters.
Clearly there are a number of possible models for 
each set of parameters.
A RW MH is used for each parameter, conditional 
on the model, and appears to perform well.



RJMCMC
Moving between the different possible models for 
each set of parameters is difficult. 
This is largely as a result of the large difference 
in the number of parameters between 
“neighbouring” models.
For example, adding/removing time dependence, 
means changing the dimension of the model by 8 
parameters.
Alternatively, adding/removing age dependence 
results in a difference of 1 or 9 parameters 
(dependent on whether the parameter(s) are age 
time dependent or not).



RJMCMC
In order to move between the different models we 
perform an initial pilot run in the saturated model 
(i.e. fully age and time dependent).
When proposing to move between different models, 
we set the mean of the proposal distribution of the 
parameters to be a function of the posterior mean 
of the parameters from the saturated model.
Eg suppose we propose to move from a model with 
p1(t), p2(t) to the model with p1,2(t). We propose,

p1,2(t) ~ N(µ(t),σ2),
with,

µ(t) = 0.5(µ1(t)+µ2(t))



Improving the RJMCMC algorithm
With extensive pilot-tuning (including different 
proposal distributions), the acceptance 
probabilities for moving between different models 
are still small.
This means that movement between non-
neighbouring models is very difficult.
Even with starting from over-dispersed starting 
values, we may not spot “multi-modality” over the 
model space.
We implement the IT algorithm to (hopefully) 
improve the mixing between the different models.
We set m=40 and km = 0.1.



IT Results - ESS
Simulations are run for 107 iterations with the 
initial 10% discarded as burn-in. 

Method ESS
ST 248158
Naïve IS 5
IT 612026

The catastrophic ESS for the naïve IS is a result 
of a few very large weights obtained at hot 
temperatures (i.e. for small k).



IT Results – Acceptance probs
As previously discussed, moving between different 
models can be difficult. 
Thus, we now compare the acceptance 
probabilities for the standard RJMCMC algorithm, 
and corresponding IT algorithm.

Mean % acceptance rate
Method Split age   Merge age   Add time   Remove time

RJMCMC 1.30 0.50 0.01 0.14
IT 1.32      1.21   0.30 1.45



IT Results – Models visited
We can also compare the number of different 
models visited for the different methods.

φ λ p
max IT    ST   RJ    max IT   ST   RJ   max IT   ST   RJ

Age+time 54 51   26   18     94 12    5    3      94 75   25   28
Age         10 7     4    3      15 7     4    2      15  15 11   12

Overall total number of models visited for each 
method was 3080 for IT; 177 for ST and 233 for 
standard RJMCMC.
Posterior estimates (e.g. posterior means, model 
probabilities) were very similar for RJMCMC & IT)



Summary/comments
Naïve importance sampling can lead to very poor 
ESS and corresponding estimates
IT can be implemented with minimal additional 
computational (and programming) effort post-
process.
Comparing IT results with standard RJMCMC 
results can reassure us (but not guarantee) that 
we have not missed models with high posterior 
mass.



Future work/improvements
Typically, within ST the MH updates are adaptive 
to the temperature – we have not applied such a 
method to the RJMCMC updates in our example.
It is possible to consider alternative temperature 
ladders to the geometric ladder – is it possible to 
find some form of “optimal” ladder? Or consider 
continuous values for k?
The ESS considered does not include any 
autocorrelation between successive draws from 
the Markov chain – extend the idea of ESS to 
include serial autocorrelation. 


