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Stochastic Approximation
Consider the vectorial stochastic approximation algorithm:

θk+1 = θk + akH(θk, Xk+1), (1)

where ak is called gain factor, and Xk+1 is a stochastic disturbance
distributed according to the density function fθk

(x) with x ∈ X ⊂ Rd,
and d is the dimension of x.

Such an algorithm is often studied by rewriting it as an algorithm used
for the search of zeros of a function h(θ),

θk+1 = θk + ak[h(θk) + εk+1], (2)

where h(θk) =
∫
X H(θk, x)fθk

(x)dx corresponds to the mean effect
of H(θk, Xk+1), and εk = H(θk, Xk+1) − h(θk) is called the obser-
vation noise.
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Optimal Convergence Rate and Newton Algorithm
It is well known that the optimal convergence rate of (2) can be

achieved with
ak = −F−1/k,

where F = ∂h(θ∗)/∂θ, and θ∗ denotes the zero point of h(θ). In
this case, the stochastic approximation algorithm is reduced to Newton’s
algorithm. Unfortunately, it is often impossible to use this algorithm, as
the matrix F is generally unknown.
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Trajectory Averaging
It has been shown (Ruppert, 1988; Polyak, 1990; Polyak and Judit-

sky, 1992) that the trajectory averaging estimator is asymptotically effi-
cient; that is,

θ̄n =
n∑

k=1

θk/n

can converge in distribution to a normal random variable with mean θ∗

and covariance matrix Σ, where Σ is the smallest possible covariance
matrix in an appropriate sense.

Averaging paradoxical principle: A slow algorithm having less than
optimal convergence rate must be averaged.

The trajectory averaging estimator allows {ak} to be relatively large,
decreasing slower than O(1/k).
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The averaging estimator has not yet been explored for the stochastic
approximation MCMC algorithm.

• Chen (1993, 2002) considered the case where the observation
noise can be state dependent, their results are not directly appli-
cable to stochastic approximation MCMC algorithms.

• The theory established by Kushner and Yin (2003) can potentially
be extended to the stochastic approximation MCMC algorithm, but,
as mentioned in Kushner and Yin (2003, p.375), more work needs
to be done for the extension.
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Results

• We show that the trajectory averaging estimator is asymptotically
efficient for the stochastic approximation MCMC algorithm under
mild conditions.

• The theoretical result is illustrated by a numerical example, which
shows that the trajectory averaging estimator has a constant vari-
ance independent of the choice of the gain factor sequence.
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Notations

• Let {Ks, s ≥ 0} be a sequence of compact subsets of Θ such
that

⋃
s≥0

Ks = Θ, and Ks ⊂ int(Ks+1), s ≥ 0, (3)

where int(A) denotes the interior of set A.

• Let {ak} and {bk} be two monotone, nonincreasing, positive se-
quences.

• Let X0 be a subset of X , and let T : X × Θ → X0 × K0 be
a measurable function which maps a point in X × Θ to a ran-
dom point in X0 × K0. Let σk denote the number of truncations
performed until iteration k.
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Varying Truncation Stochastic Approximation MCMC Algorithm

The algorithm starts with a random choice of (θ0, x0) in the space
K0 ×X0, and then iterates between the following steps:

• Draw sample xk+1 from a Markov transition kernel with the invari-
ant distribution fθk

(x).

• Set θk+ 1
2

= θk + akH(θk, xk+1).

• If ‖θk+ 1
2
− θk‖ ≤ bk and θk+ 1

2
∈ Kσk

, then set (θk+1, xk+1) =

(θk+ 1
2
, xk+1) and σk+1 = σk; otherwise, set (θk+1, xk+1) =

T(θk, xk) and σk+1 = σk + 1.
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Why varying truncation?

• It removes the bound constraint on the solution space.

• It removes the growth rate restriction on the mean effect function
h(θ).
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Condition A1: Lyapunov condition on h(θ)

The function h : Θ → Rd is continuous, and there exists a continu-
ously differentiable function v : Θ → [0,∞) such that

(i) There exists a single point θ∗ ∈ Θ such that 〈∇v(θ∗), h(θ∗)〉 =
0 and 〈∇v(θ), h(θ)〉 < 0 for any θ ∈ Θ \ {θ∗}.

(ii) There existM0 andM1 such thatM1 > M0 > 0, θ∗ ∈ int(VM0),
and VM1 is a compact set, where int(A) denotes the interior of the
set A.
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Condition A2: stability condition on h(θ)

The mean field function h(θ) is measurable and locally bounded.
There exist a stable matrix F (i.e., all eigenvalues of F are with negative
real parts), γ > 0, ρ ∈ (τ, 1], and a constant c such that

‖h(θ)− F (θ− θ∗)‖ ≤ c‖θ− θ∗‖1+ρ, ∀θ ∈ {θ : ‖θ− θ∗‖ ≤ γ}.
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Condition A3: Drift conditions on the transition kernel Pθ

For any given θ ∈ Θ, the transition kernel Pθ is irreducible and
aperiodic. In addition, there exists a function V : X κ → [1,∞) and a
constant α ≥ 2 such that for any compact subset K ⊂ Θ,

(i) There exist a set C ⊂ X , an integer l, constants 0 < λ < 1, b,
ς , δ > 0 and a probability measure ν such that

• sup
θ∈K

P l
θV

α(x) ≤ λV α(x) + bI(x ∈ C), ∀x ∈ X .(4)

• sup
θ∈K

PθV
α(x) ≤ ςV α(x), ∀x ∈ X . (5)

• sup
θ∈K

P l
θ(x,A) ≥ δν(A), ∀x ∈ C, ∀A ∈ B. (6)

(ii) There exists a constant c such that for all x ∈ X ,

• sup
θ∈K

‖H(θ, x)‖ ≤ cV (x). (7)

• sup
(θ,θ′)∈K

‖H(θ, x)−H(θ′, x)‖ ≤ cV (x)‖θ − θ′‖.(8)
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(iii) There exists a constant c such that for all (θ, θ′) ∈ K ×K,

• ‖Pθg − Pθ′g‖V ≤ c2‖g‖V |θ − θ′|, ∀g ∈ LV . (9)

• ‖Pθg − Pθ′g‖V α ≤ c2‖g‖V α |θ − θ′|, ∀g ∈ LV α .(10)
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Condition A4: Conditions on the step-sizes
The sequences {ak} and {bk} are nonincreasing, positive, and sat-

isfy the conditions:

lim
k→∞

(kak) = ∞,
ak+1 − ak

ak

= o(ak+1), lim
k→∞

bk = 0, (11)

for some τ ∈ (0, 1),
∞∑

k=1

a
(1+τ)/2
k√
k

<∞, (12)

and for some constant α ≥ 2 as defined in condition (A3),

∞∑
i=1

{
a2

i + aibi + (b−1
i ai)

α
}
<∞. (13)

For instance, we can set ak = 1/kη for some η ∈ (1/2, 1). In
this case, (12) is satisfied for any τ > 1/η − 1, and (13) is satisfied by
setting bk = C/kξ for some constants C and ξ ∈ (1− η, η − 1

α
).
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Convergence theorem of SAMCMC (Andrieu et al., 2005)

Theorem 0.1 Assume the conditions (A1), (A3), and (A4) hold. Let
ασ denote the number of iterations for which the σ-th truncation occurs
in the stochastic approximation MCMC simulation. Let X0 ⊂ X be such
that supx∈X0

V (x) <∞ and thatK0 ⊂ VM0 , where VM0 is defined in
(A1). Then there exists a number σ such thatασ <∞ a.s.,ασ+1 = ∞
a.s., and {θk} has no truncation for k ≥ ασ, i.e.,

θk+1 = θk + akH(θk, xk+1), ∀ k ≥ ασ,

and
θk → θ∗, a.s.
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Noise decomposition

Lemma 0.1 Assume the conditionsA1,A3 andA4 hold. If supx V (x) <
∞ andασ <∞, then there existRd-valued random processes {ek}k≥1,
{νk}k≥1, and {ςk}k≥1 defined on a probability space (Ω,F ,P) such
that when k > ασ,

(i) εk = ek + νk + ςk.

(ii) {ek} is a martingale difference sequence, and 1√
n

∑n
k=1 ek −→ N(0, Q)

in distribution, where Q = limk→∞E(eke
′
k).

(iii) ‖νk‖ = O(a
(1+τ)/2
k ), where τ is given in condition (A4).

(iv) ‖∑n
k=0 akςk‖ = O(an).
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Asymptotic normality of θ̄k

Theorem 0.2 Assume the conditions (A1), (A2), (A3), and (A4) hold.
If supx V (x) < ∞ and K0 ⊂ VM0 , where VM0 is defined in (A1).
Then we have √

k(θ̄k − θ∗) −→ N(0,Γ)

where Γ = F−1Q(F−1)′, F = ∂h(θ∗)/∂θ is negative definite, Q =
limk→∞E(eke

′
k), and ek is as defined in Lemma 0.1.
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Asymptotic Efficiency

Definition 0.1 Consider the stochastic approximation algorithm (2). Let
{Zn}n≥0, given as a function of {θn}n≥0, be a sequence of estimators
of θ∗. The algorithm {Zn}n≥0 is said to be asymptotically efficient if

√
n(Zn − θ∗) −→ N

(
0, F−1Q̃(F−1)′

)
, (14)

where F = ∂h(y∗)/∂y, and Q̃ is the asymptotic covariance matrix of
(1/
√
n)

∑n
k=1 εk.
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Asymptotic Efficiency of θ̄k

Theorem 0.3 Assume the conditions (A1), (A2), (A3), and (A4) hold.
If supx V (x) < ∞ and K0 ⊂ VM0 , where VM0 is defined in (A1),
then θ̄k is asymptotically efficient.
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Basic Idea

• Partition the sample space into different subregions: E1, . . . , Em,⋃M
i=1Ei = X , and Ei ∩ Ej = ∅ for i 6= j.

• Let gi =
∫

Ei
ψ(x)dx, and choose π = (π1, . . . , πm), πi ≥ 0,

and
∑

i πi = 1.

• Sampling from the distribution

pθ(x) ∝
m∑

i=1

ψ(x)

eθ(i)
I(x ∈ Ei).

If θ(i) = log(gi/πi) for all i, sampling from pθ(x) will result in a
random walk in the space of subregions with each subregion being
sampled with probability πi (viewing each subregion as a “single
point”). Therefore, sampling from pθ(x) can avoid the local trap
problem encountered in sampling from f(x).
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SAMC Algorithm

(a) (Sampling) Simulate a sample xk+1 by a single MH update with
the target distribution

fθk
(x) ∝

m−1∑
i=1

ψ(x)

eθ
(i)
k

I{x∈Ei} + ψ(x)I{x∈Em}, (15)

provided that Em is non-empty, i.e., ωm > 0. Note that the as-
sumption wm > 0 is only made for the reason of theoretical sim-
plicity. As a practical matter, this is not necessary.
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(a.1) Generate y according to a proposal distribution q(xk, y).

(a.2) Calculate the ratio

r = eθ
(J(xk))

k −θ
(J(y))
k

ψ(y)q(y, xk)

ψ(xt)q(xk, y)
,

where J(z) denotes the index of the subregion that the sam-
ple z belongs to.

(a.3) Accept the proposal with probability min(1, r). If it is ac-
cepted, set xk+1 = y; otherwise, set xk+1 = xk.
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Continuation of Algorithm

(b) (Weight updating) Set

θ
(i)

k+ 1
2

= θ
(i)
k + ak+1

(
I{xk+1∈Ei} − πi

)
, i = 1, . . . ,m− 1.

(16)

(c) (Varying truncation) If θk+ 1
2
∈ Kσk

, then set (θk+1, xk+1) =

(θk+ 1
2
, xk+1) and σk+1 = σk; otherwise, set (θk+1, xk+1) =

T(θk, xk) and σk+1 = σk + 1, where σk and T(·, ·) are as
defined in Section 2.
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To show that the trajectory averaging estimator is asymptotically effi-
cient for SAMC, we assume the following conditions.

(C1) The sample spaceX is compact, and f(x) is bounded away from
0 and ∞. The proposal distribution q(x, y) used in step (a.1) of
the SAMC algorithm satisfies the condition: For every x ∈ X ,
there exist ε1 and ε2 such that

‖x− y‖ ≤ ε1 =⇒ q(x, y) ≥ ε2, (17)

where ‖z‖ denotes the norm of the vector z.

(C2) The sequence {ak} is positive and non-increasing,

lim
k→∞

(kak) = ∞,
ak − ak+1

ak

= o(ak+1), (18)

and for some τ ∈ (0, 1)

∞∑

k=1

a
(1+τ)/2
k√
k

<∞. (19)



Stochastic Approximation Monte Carlo Algorithm

Theoretical Results

Theorem 0.4 (Convergence) Assume the conditions (C1) and (C2).
Then there exists a number σ such that ασ <∞ a.s., ασ+1 = ∞ a.s.,
and {θk} given by the SAMC algorithm has no truncation for k ≥ ασ,
i.e.,

θk+1 = θk + akH(θk, xk+1), ∀ k ≥ ασ, (20)

and
θk → θ∗, a.s., (21)

whereH(θk, xk+1) =
(
I{xk+1∈E1} − π1, . . . , I{xk+1∈Em−1} − πm−1

)′
,

θ∗ = c1m−1+
(

log(ω1/π1), . . ., log(ωm−1/πm−1)
)′

, c = − log(ωm/πm),

and 1m−1 denotes an (m− 1)-vector of ones.
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Theorem 0.5 (Asymptotic Efficiency) Assume the conditions (C1) and
(C2). Then θ̄k is asymptotically efficient; that is,

√
k(θ̄k − θ∗) −→ N(0,Γ) as k →∞,

where Γ = F−1Q(F−1)′, F = ∂h(θ∗)/∂θ is negative definite, and
Q = limk→∞E(eke

′
k).
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Theorem 0.6 (Weighted averaging) Assume the conditions (C1) and
(C2). For a set of samples generated by SAMC, the random variable/vector
Y generated by

P (Y = yi) =

∑n
t=1 e

θtJ(xt)I(xt = yi)∑n
t=1 e

θtJ(xt)
, i = 1, . . . , n′,

is asymptotically distributed as f(·).

This implies that for an integrable function h(x), the expectation
Efh(x) can be estimated by

Êfh(x) =

∑n
t=1 e

θtJ(xt)h(xt)∑n
t=1 e

θtJ(xt)
. (22)

As n → ∞, Êfh(x) → Efh(x) for the same reason that the usual
importance sampling estimate converges (Geweke, 1989).
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Let gt(x,w) be the joint distribution of the sample (x,w) drawn at
iteration t, where w = exp(θtJ(x)). The principle of IWIW (invariance
with respect to importance weights, Wong and Liang, 1997; Liang, 2002)
can be defined as follows:

The joint distribution gt(x,w) is said to be correctly weighted with
respect to a distribution f(x) if

∫
wgt(x,w)dw ∝ f(x). (23)

A transition rule is said to satisfy IWIW if it maintains the correctly weighted
property for the joint distribution gt(x,w) whenever an initial joint distri-
bution is correctly weighted.

Theorem 0.7 Assume the conditions (C1) and (C2). Then SAMC asymp-
totically satisfies the IWIW principle.
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x 1 2 3 4 5 6 7 8 9 10
f(x) 1 100 2 1 3 3 1 200 2 1

Table 1: The unnormalized mass function of the 10-state distribution.

The sample space was partitioned according to the mass function
into five subregions: E1 = {8}, E2 = {2}, E3 = {5, 6}, E4 =
{3, 9} and E5 = {1, 4, 7, 10}. The desired sampling distribution is set
to

πi ∝ 1

1 + i
, i = 1, . . . , 5.

The transition proposal matrix was set to a stochastic matrix with each
row being generated independently from the Dirichlet distributionDir(1, . . . , 1),
and the gain factor sequences we tried included

ak =
T0

max{kη, T0} , T0 = 10, η ∈ {0.6, 0.7, 0.8, 0.9, 1.0}.
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Figure 1: Progression plot of π̂k, the realized sampling frequency of the five subregions
E1, . . . , E5, obtained in a single run of SAMC.



SAMC Applications Demonstration

Table 2: Comparison of two estimators of ω = (200, 100, 6, 4, 4): the trajectory
averaging estimator ω̂ and the conventional SAMC estimator ω̃, where each row corre-
sponds to one component of ω. The simulations are done with the desired distribution:
πi ∝ 1/(1 + i) for i = 1, . . . , 5, “bias” and “sd” are calculated based on 100 inde-
pendent runs, and “rmse” is calculated as the square root of “bias2+sd2”.

η = 0.7 η = 0.8 η = 0.9
bias sd rmse bias sd rmse bias sd rmse
-0.81 0.52 0.96 -0.15 0.33 0.36 0.03 0.21 0.21
0.71 0.49 0.87 0.14 0.31 0.34 -0.03 0.20 0.20

ω̃ 0.04 0.03 0.05 0.01 0.01 0.02 0.00 0.01 0.01
0.02 0.02 0.03 0.00 0.01 0.01 0.00 0.01 0.01
0.03 0.02 0.04 0.01 0.01 0.02 0.01 0.01 0.01

-0.24 0.09 0.26 -0.02 0.11 0.11 0.00 0.1 0.10
0.19 0.09 0.21 0.00 0.10 0.10 -0.01 0.1 0.10

ω̂ 0.03 0.00 0.03 0.01 0.00 0.01 0.00 0.0 0.01
0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.0 0.00
0.02 0.00 0.02 0.01 0.00 0.01 0.02 0.0 0.02
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x 1 2 3 4 5 6 7 8 9 10
f(x) 1 100 2 1 3 3 1 200 2 1

Table 3: The unnormalized mass function of the 10-state distribution.

Table 4: Comparison of SAMC and MH for the 10-state example, where the Bias and
Standard Error (of the Bias) were calculated based on 100 independent runs.

Algorithm Bias (×10−3) Standard Error (×10−3) CPU time (seconds)
SAMC -0.528 1.513 0.38

MH -3.685 4.634 0.20

This time our goal is to estimate EfX , the mean of the distribution.
The sample space was partitioned according to the mass function

into five subregions: E1 = {8}, E2 = {2}, E3 = {5, 6}, E4 =
{3, 9} and E5 = {1, 4, 7, 10}. The desired sampling distribution is
uniform over 5 subregions.
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Figure 2: Computational results for the 10-state example. (a) Autocorrelation plot of
the MH samples. (b) Autocorrelation plot of the SAMC samples. (c) Log-weight of the
SAMC samples.


