Zero Variance MCMC

Antonietta Mira

joint with D. Bressanini e P. Tenconi

University of Insubria, Varese, Italy

Warwick, EPSRC Symposium, March 2009

MARKOV CHAIN MONTE CARLO SETTING:

We are interested in evaluating

$$\left| \mu = E_{\pi} f(X) \right| \qquad X \in \mathcal{X}$$

We know π only up to a normalizing constant

POSSIBLE SOLUTION

Construct an ergodic Markov chain

$$P(X,A) = \Pr(X_n \in A | X_{n-1} = X)$$
 $A \subset \mathcal{X}$

stationary with respect to π : $\pi P = \pi$

Simulate the Markov chain: $X_0, X_1 ... X_n \sim P$ MCMC estimator of μ :

$$\left| \widehat{\mu}_{n} = \frac{1}{n} \sum_{i=1}^{n} f(X_{i}) \right|$$

HOW GOOD IS THE MCMC ESTIMATE?

Under regularity conditions:

ullet π is also the unique limiting distribution

$$||P^n(X,\cdot) - \pi(\cdot)|| \to 0, \qquad n \to \infty$$

• LLN and CLT hold (bias of order 1/n)

thus a measure of efficiency of the MCMC estimator is its ASYMPTOTIC VARIANCE

$$V(f,P) = \lim_{n \to \infty} n \operatorname{Var}_{\pi}[\widehat{\mu}_n]$$

$$= \sigma^2 + 2\sum_{k=1}^{\infty} \rho_k$$

where

$$\sigma^2(f) = \operatorname{Var}_{\pi} f(X)$$

$$\rho_k(f, P) = \operatorname{Cov}_{\pi}[f(X_0), f(X_k)]$$

We can reduce the asymptotic variance by:

- decreasing $\sigma^2(f)$
 - \rightarrow substituting functions
- decreasing $\rho_k(f, P)$
 - → avoiding backtracking
 - \rightarrow delaying rejection
 - → inducing negative correlation

Improve relative efficiency by decreasing $\sigma^2(f)$ via function substitution

Instead of estimateing $\mu = E_{\pi}(f)$ via $\hat{\mu}_{n}(f)$ reduce variance by substituting f with \tilde{f} s.t.:

$$E_{\pi}(\tilde{f}) = E_{\pi}(f) = \mu$$

$$\sigma^{2}(\tilde{f}) << \sigma^{2}(f)$$

Ideally:
$$\tilde{f} = \mu$$
 \Longrightarrow $\sigma^2(\tilde{f}) = 0$!!!

General recipe to construct \tilde{f} (Assaraf & Caffarel, 1999, 2000): use auxiliary operator H(x,y) and function ϕ

H needs to be

Hermitian (self adjoint)

•
$$\int H(x,y)\sqrt{\pi(y)}dy = 0$$

ϕ needs to be integrable

Define

$$\tilde{f}(x) = f(x) + \frac{\int H(x,y)\phi(y)dy}{\sqrt{\pi(x)}} = f(x) + \Delta f(x)$$

By construction:
$$E_{\pi}(f) = E_{\pi}(\tilde{f}) = \mu$$

$$\tilde{f}(x) = f(x) + \Delta f(x)$$

 $\Delta f(x) = \text{control variate}$

Could generalize:

$$\tilde{f}(x) = f(x) + \theta_1 \Delta_1 f(x) + \theta_2 \Delta_2 f(x) + \dots$$

iid setting: optimal choice of θ_i is available

MCMC setting: hard to find non trivial control variates and to estimate optimal θ_i

The optimal choice for (H,ϕ) can be obtained by imposing

 $\left[\begin{array}{c} \sigma(\tilde{f} \) \ = \ 0 \end{array} \right]$ $\left[\tilde{f} \ = \ \mu \right]$

or, equivalently

which leads to the fundamental equation:

$$\int H(x,y)\phi(y)dy = -\sqrt{\pi(x)}[f(x) - \mu_f]$$

hard to solve exactly but can find approximate solutions:

- \bullet select an operator H
- \bullet parametrize ϕ
- optimally choose the parameters by minimizing $\sigma(\tilde{f}$) over an MCMC simulation
- ullet run a new Markov chain and estimate μ by $\widehat{\mu}(\widetilde{f})$ instead of $\widehat{\mu}(f)$

Choice of H: Given a reversible kernel P

$$H(x,y) = \sqrt{\frac{\pi(x)}{\pi(y)}} [P(x,y) - \delta(x-y)]$$

and, letting $\tilde{\phi} = \frac{\phi}{\sqrt{\pi}}$ we get:

$$\tilde{f}(x) = f(x) - \int P(x,y) [\tilde{\phi}(x) - \tilde{\phi}(y)] dy$$

This choice it exploited by Dellaportas et al.

- Need closed form expression for conditional expectation of $\tilde{\phi}$ or a rnd scan Gibbs sampler to estimate it
- \bullet They argue that $\tilde{\phi}$ should be close to the solution to Poisson equation
- ullet f and Δf should be highly correlated
- ullet They find the optimal heta

General setting: $X \in \Re^d$

$$H = -\frac{1}{2} \sum_{i=1}^{d} \frac{\partial^2}{\partial x_i^2} + V(x)$$

where

$$V(x) = \frac{1}{2\sqrt{\pi(x)}} \sum_{i=1}^{d} \frac{\partial^2 \sqrt{\pi(x)}}{\partial x_i^2}$$

so that:

$$\tilde{f}(x) = f(x) + \frac{H\phi(x)}{\sqrt{\pi(x)}}$$

The fundamental equation in this setting becomes:

$$H\phi(x) = -\sqrt{\pi(x)}[f(x) - \mu_f]$$

Choice of ϕ

optimal choice: exact solution of the fundamental equation

sub-optimal choice: parametrize ϕ and choose the parameters to minimize $\sigma(\tilde{f})$

If we parametrize ϕ in terms of a multiplicative constant c and then minimize $\sigma(\tilde{f})$ with respect to c, the optimal choice of c is

$$c = \frac{[E_{\pi}(f(x)\Delta f(x))]^2}{E_{\pi}(\Delta f(x))^2}$$

and, for this value of the parameter we obtain

$$\sigma^{2}(\tilde{f}) = \sigma^{2}(f) - \frac{\left[E_{\pi}(f(x)\Delta f(x))\right]^{2}}{E_{\pi}(\Delta f(x))^{2}}$$

thus, regardless of the choice of ϕ , a variance reduction in the MCMC estimator is obtained by going from f to \tilde{f}

Useful R functions

- construction of *H*:
 "fdHess" is used to get the Hessian (uses finite differences)
- construction of ϕ : "optim" is used to get the parameters (uses simulated annealing, quasi-Newton or conjugate gradients methods)

TOY EXAMPLES

Gaussian and Student-T target distributions to gain insight on functional form of ϕ

Univariate case:

functions of interest:

$$f_1(x) = x, \quad f_2(x) = x^2$$

Bivariate case:

functions of interest:

$$f_1(x) = x_1, \quad f_2(x) = x_1^2, \quad f_3(x) = x_1 x_2$$

Length of simulations

first MC (to estimate ϕ parameters): T = 100 second MC (to estimate μ via \tilde{f}): n = 150

UNIVARIATE STD GAUSSIAN

$$\pi(x) = \exp(-\frac{1}{2} \frac{(x-\mu)^2}{\sigma^2})$$

$$f_1(x) = x$$

Exact solution to the fundamental equation is available

$$\phi_1(x) = (-2\sigma^2 x) \sqrt{\pi(x)}$$

$$\phi_1(x) = -a(x-c) \exp\{-b(x-c)^2\}$$

	f_1	$ ilde{f}_1$		a	b	c
mean	0.030	0.0005	Exact sol.	2.00	0.25	0.00
var	1.022	0.001	Estimated sol.	2.00	0.25	0.01

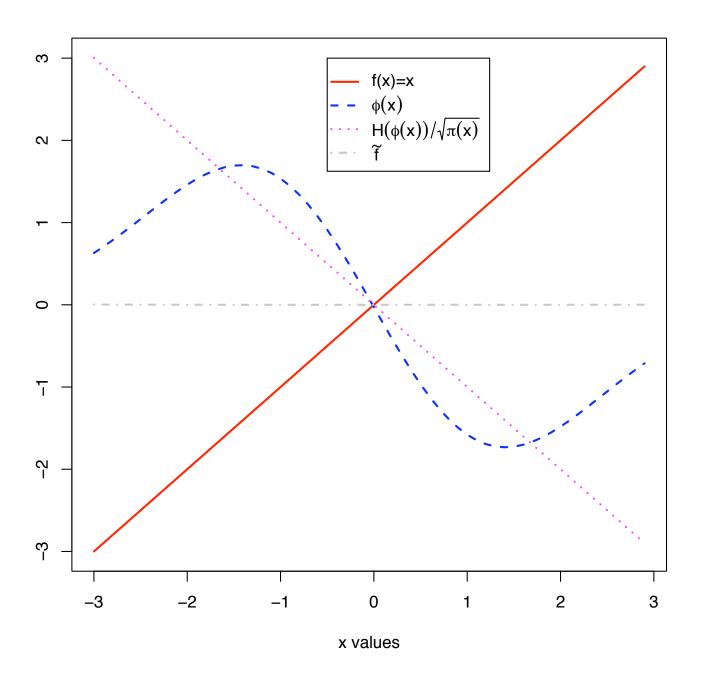
$$f_2(x) = x^2$$

$$\phi_2(x) = (-\sigma^2 x^2 - 2\mu\sigma^2 x)\sqrt{\pi(x)}$$

$$\phi_2(x) = -a(x-c)^2 \exp\{-b(x-c)^2\}$$

	f_2	$ ilde{f}_2$		a	b	c
mean	0.901	1.000	Exact sol.	1.00	0.25	0.00
var	1.387	0.044	Estimated sol.	0.985	0.247	-0.015

Target = N(0,1), f(x) = x



$$N(\mu = 1, \sigma^2 = 2)$$

$$f_1(x) = x$$

$$f_2(x) = x^2$$

exact \tilde{f}_1 and \tilde{f}_2 , MC simulation n = 150

	f_1	$ ilde{f_1}$	f_2	$ ilde{f}_2$
$oxedsymbol{\widehat{\mu}_f}$	0.912	1	2.824	3
$\hat{\sigma}_f^2$	2.013	2.28 <mark>e-22</mark>	9.377	3.53 <mark>e-21</mark>

Univariate Student-T with g=5

$$f_1(x) = x$$

$$f_2(x) = x^2$$

exact \tilde{f}_1 and \tilde{f}_2 , MC simulation n = 150

	f_1	$ ilde{f_1}$	f_2	$ ilde{f}_2$
$\lceil \widehat{\mu}_f ceil$	-0.271	1.65e-12	1.834	1.666
$ \hat{\sigma}_f^2 $	1.778	5.19 <mark>e-22</mark>	20.536	1.32 <mark>e-23</mark>

Robustness of ϕ

For Student-T when f(x) = x,

$$\phi_1(x) = \underbrace{\left(\frac{2}{3}\frac{1}{1-g}x^3 + 2\frac{g}{1-g}x\right)}_{P(x)} \sqrt{\pi(x)}.$$

The same structure as in the normal case, but with a higher degree polynomial.

We verified robustness against misspecification of P(x): despite we imposed a first order P(x) we still obtained 93% variance reduction

From MC to MCMC

$$V(f,P) = \left(2\sum_{k=1}^{\infty} \frac{\rho_k}{\sigma^2} + 1\right)\sigma^2 = \sigma^2 + 2\sum_{k=1}^{\infty} \rho_k$$

$$\downarrow \downarrow$$

 $\tau =$ integrated autocor. time

 $\downarrow \downarrow$

 $\hat{\tau}$ = Sokal's adaptive truncated correlogram estimate

TARGET: Student-T(5 df)

Same ϕ functions as for the Gaussian case

We used random walk MCMC sampler with different σ_{RW}

We report mean of $\hat{\tau}$ (variances) over 10 MC simulations

$$f_1(x) = x$$

$\widehat{ au}$	$\sigma_{RW} = 0.1$	$\sigma_{RW} = 0.2$	$\sigma_{RW} = 0.5$	$\sigma_{RW}=1$
f_1	100.16 (33.2)	80.39 (34.1)	45.23 (23.1)	13.32 (7.2)
<i>J</i> 1	100:10 (00:1)	(0.12)	(20.2)	
$ ilde{f}_1$	7.73 (1.8)	3.45 (1.9)	1.48 (0.1)	1.23 (0.2)

$$f_2(x) = x^2$$

$\widehat{ au}$	$\sigma_{RW} = 0.1$	$\sigma_{RW} = 0.2$	$\sigma_{RW} = 0.5$	$\sigma_{RW}=1$
f_2	79.14 (20.8)	63.66 (32.5)	23.84 (11.5)	14.18 (14.5)
$ ilde{f}_2$	1.86 (2.3)	8.17 (2.7)	1.30 (0.36)	2.58 (2.0)

MCMC for $N(\mu = 1, \sigma^2 = 2)$

$$f_1(x) = x$$

$$f_1(x) = x$$
$$f_2(x) = x^2$$

exact \tilde{f}_1 and \tilde{f}_2 , MCMC simulation n = 150

	f_1	$ ilde{f}_1$	f_2	$ ilde{f}_2$
$oxedsymbol{\widehat{\mu}_f}$	0.080	1	3,193	3
$\hat{\sigma}_f^2$	2.563	4.8 <mark>e-20</mark>	13.209	1.31e-19

MCMC for univariate Student-T with g=5

$$f_1(x) = x$$

$$f_2(x) = x^2$$

exact \tilde{f}_1 and \tilde{f}_2 , MCMC simulation n = 150

	f_1	$ ilde{f_1}$	f_2	$ ilde{f}_2$
$\left \widehat{\mu}_f \right $	0.095	2.08e-12	1.55	1.666
$\hat{\sigma}_f^2$	1.551	1.08 <mark>e-22</mark>	4.077	6.51 <mark>e-24</mark>

BIVARIATE CASE

functions of interest:

$$f_1(x) = x_1$$
 $f_2(x) = x_1^2$
 $f_3(x) = x_1 x_2$

auxiliary functions:

$$\phi_1(x) = -a(x_1 - c) \exp\{-[d(x_1 - c)^2 + b(x_2 - f)^2]\}$$

$$\phi_2(x) = -a(x_1 - c)^2 \exp\{-[d(x_1 - c)^2 + b(x_2 - f)^2]\}$$

$$\phi_3(x) = -a(x_1 \cdot x_2 - c \cdot f) \exp\{-[b(x_1 - c)^2 + d(x_2 - f)^2]\}$$

MCMC for bivariate Normal

$$(\mu_1, \mu_2) = (2, 1)$$

 $(\sigma_1, \sigma_2) = (4, 1), \ \rho = 0.6$

exact \tilde{f}_1 , \tilde{f}_2 , \tilde{f}_3 , MCMC simulation n = 150

	$\int f_1$	$ ilde{f}_1$	f_2	$ ilde{f}_2$	f_3	$ ilde{f}_{3}$
$\widehat{\mu}_f$	1.683	2.549	5.366	8	2.136	3.2
$\left \hat{\sigma}_f^2 \right $	2	2.01 <mark>e-16</mark>	33.937	1.19 <mark>e-14</mark>	7.14	7.11e-17

Bivariate Student-T, g = 7

exact \tilde{f}_1 , \tilde{f}_2 , \tilde{f}_3 , MCMC simulation n = 150

	$ f_1$	$ ilde{f}_1$	f_2	$ ilde{f}_2$	f_3	$ ilde{f}$ 3
$oxedsymbol{\widehat{\mu}}_f$	-0.09	7.29e-10	1.049	1.4	-0.038	-4,31e-12
$\left \; \widehat{\sigma}_f^2 \; ight $	1.04	1.02 <mark>e-17</mark>	5.44	1.92 <mark>e-17</mark>	1.25	1.95 <mark>e-21</mark>

Other examples considered:

- Simple Bayesian models
- Credit risk models

Note: Rao-Blackwellization can be seen as a special case of this:

replace $f(x^i)$ by a conditional expectation naturally reduces the variance

Poisson-Gamma model

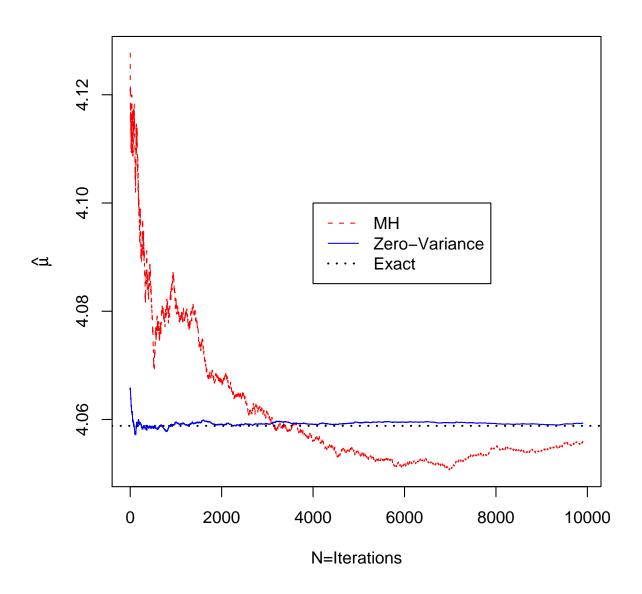
$$l(y_i|\theta) \sim Po(\theta), \quad i = 1, \dots, s = 30;$$

 $h(\theta) \sim Ga(\alpha = 4, \beta = 4).$

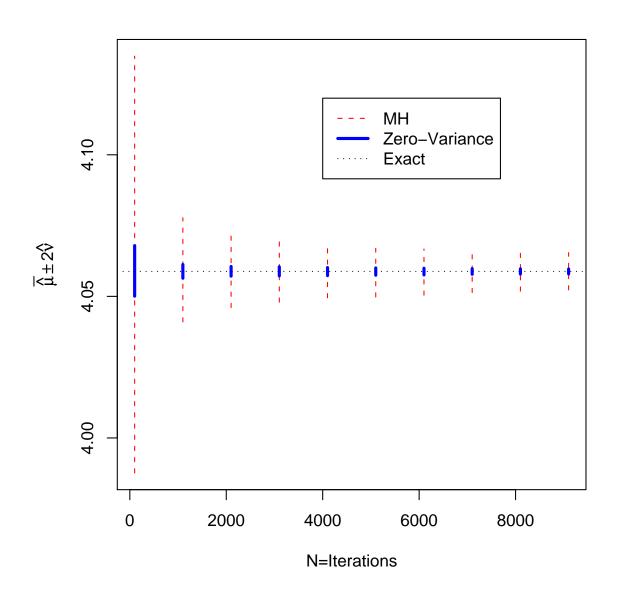
We are interested in the first moment of the posterior distribution, in this case we have the exact solution: $\frac{\beta + \sum_{i=1}^{s} y_i}{\alpha + s} = 4.058824$.

- 1. run a first MCMC simulation of length 1000 (burn-in of 100);
- 2. minimize the variance of \tilde{f} , obtained using ϕ_1 (case univ. normal)
- 3. run 100 parallel MCMC chains, each of length 10000 (burn-in of 150 steps);
- 4. compute, on each chain, $\widehat{\mu}_f$, $\widehat{\mu}_{\widetilde{f}}$ and the between chain variances, $\widehat{\nu}_f^2$ and $\widehat{\nu}_{\widetilde{f}}^2$.

Poisson-Gamma model single chain



Poisson-Gamma model parallel chains



Simple credit risk model

We analyze a sample of 124 firms that gave rise to problematic credit and a sample of 200 healthy firms

Bayesian logistic regression model

$$\pi\left(\underline{\beta}|y,x\right) \propto \prod_{i=1}^{s} \theta_{i}^{y_{i}} (1-\theta_{i})^{1-y_{i}} p\left(\underline{\beta}\right),$$

$$\ell\left(y_i|\theta_i\right) \sim Be(\theta_i), \quad \theta_i = \frac{\exp\left(\underline{x}_i^T\underline{\beta}\right)}{1 + \exp\left(\underline{x}_i^T\underline{\beta}\right)}, \quad i = 1, \cdots, s$$

where $\underline{\mathbf{x}}_i$ is a vector of four balance sheet indicators + intercept

We use a non informative improper prior on $\beta = (\beta_1, \beta_2, \beta_3, \beta_4, \beta_5)$

We run an initial M-H of length 300 (after a burn in of 700) and over this initial sample we estimate the optimal parameters of the ϕ function for $f_j(\beta) = \beta_j, j = 1, \dots, 5$

$$\phi^{j}\left(\underline{\beta}\right) = \left(\gamma_{1}^{j}\beta_{1} + \gamma_{2}^{j}\beta_{2} + \gamma_{3}^{j}\beta_{3} + \gamma_{4}^{j}\beta_{4} + \gamma_{5}^{j}\beta_{5}\right)\sqrt{\pi\left(\underline{\beta}|y,x\right)}$$

Estimated parameters

j	$\hat{\mu}_{f_j}$	$\hat{\mu}_{ ilde{f}_{j}}$	$\hat{\sigma}_{f_j}^2$	$\hat{\sigma}_{ ilde{f}_{i}}^{2}$	% var-red
1	-1.4761	-1.4339	0.0507	0.0015	97.04
2	-1.0337	-1.0138	0.0664	0.0018	97.28
3	-0.2858	-0.2830	0.0825	0.0043	94.78
4	-0.9687	-0.9746	0.0630	0.0007	98.88
5	0.8279	0.7756	0.0317	0.0012	96.21

With 50 000 iterations only, the zero-variance estimator is close to the 500 000 standard MCMC estimator

So one should run a 100 times longer Markov chain to achieve the same precision

Estimated ϕ parameters

j	$ig \widehat{\gamma}_1^j$	$\widehat{\gamma}_2^j$	$\hat{\gamma}_3^j$	$\widehat{\gamma}_{ extsf{4}}^{j}$	$\hat{\gamma}_5^j$
1	-0.0946	-0.0133	-0.0575	-0.0464	0.0121
2	-0.0151	-0.1582	0.0593	0.0161	0.0551
3	-0.0563	0.0605	-0.1927	0.0147	-0.0355
4	-0.0461	0.0193	0.0141	-0.1011	0.0035
5	0.0106	0.0597	-0.0345	0.0001	-0.0625

This matrix is close to $-2\hat{\Sigma}$ where $\hat{\Sigma}$ is the varcov matrix of MCMC sampled $\underline{\beta}$ so we argue we can skip the optimization phase of ϕ

Computational issues

When $\phi(\underline{x}) = P(\underline{x}) \sqrt{\pi(\underline{x})}$ and P(x) is a polynomial, then

$$(H\phi)(x) = -\frac{1}{2} \sum_{i=1}^{d} \left[\sqrt{\pi(x)} \frac{\partial^{2}}{\partial x_{i}^{2}} P(x) + 2 \left(\frac{\partial}{\partial x_{i}} P(x) \right) \left(\frac{\partial}{\partial x_{i}} \sqrt{\pi(x)} \right) \right]$$

If P(x) is a first order polynomial, then:

$$\tilde{f}(x) = f(x) - \frac{1}{2} \sum_{i=1}^{d} \left[a_i \left(\frac{\partial}{\partial x_i} \ln \pi(x) \right) \right]$$

the optimal ϕ parameters are close to $-2\hat{\Sigma}$

We can write a **fast computing** version of \tilde{f}

$$\tilde{f}_k(\underline{x}) = f_k(\underline{x}) - 2\hat{\Sigma} \times \nabla \ln (\pi(\underline{x}))$$

- No optimization needed
- Only first derivative of target necessary

Extended credit risk model: estimate the default probability of companies that apply to banks for loan

DIFFICULTIES

- default events are rare events
- analysists may have strong prior opinions
- observations are exchangeable within sectors
- different sectors might present similar behaviors relative to risk

THE DATA

7520 companies

- 1.6 % of which defaulted
- 7 macro-sectors (identified by experts)
- 4 performance indicators (derived by experts from balance sheet)

	Dimension	% Default
Sector 1	63	0%
Sector 2	638	1.41%
Sector 3	1343	1.49%
Sector 4	1164	1.63%
Sector 5	1526	1.51%
Sector 6	315	9.52%
Sector 7	2471	0.93%

We used four explanatory variables

- Variable 1 measures the overall economic performance of the firm
- Variable 2 is related to the ability of the firm to pick-up external funds
- Variable 3 is related to the ability of the firm to generate cash flow to finance its short term activities
- Variable 4 measures the inefficiency in administrating commercial activities

THE MODEL

Bayesian hierarchical logistic regression model

Notation:

- n_j : number of companies belonging to sector $j, \ j=1,\cdots,7$
- $y(i_j)$: binary response of company i $[i = 1, \cdots, n_j] \text{ in sector } j. \quad y = 1 \Leftrightarrow \text{default}$
- $\underline{x}(i_j)$: 4×1 vector of covariates (performance indicators) for company i in sector j
- $\underline{\alpha}$: 7 × 1 vector of intercepts one for each sector
- $\underline{\beta}$: 4 × 1 vector of slopes one for each performance indicator

PARAMETERS of INTEREST: $\underline{\alpha}$ and β

PRIORS

$$\alpha_{j}|\mu_{\alpha}, \sigma_{\alpha} \sim N_{1}(\mu_{\alpha}, \sigma_{\alpha}^{2}) \qquad \forall j$$

$$\mu_{\alpha} \sim N_{1}(0, 64)$$

$$\sigma_{\alpha}^{2} \sim G(25/9, 5/9)$$

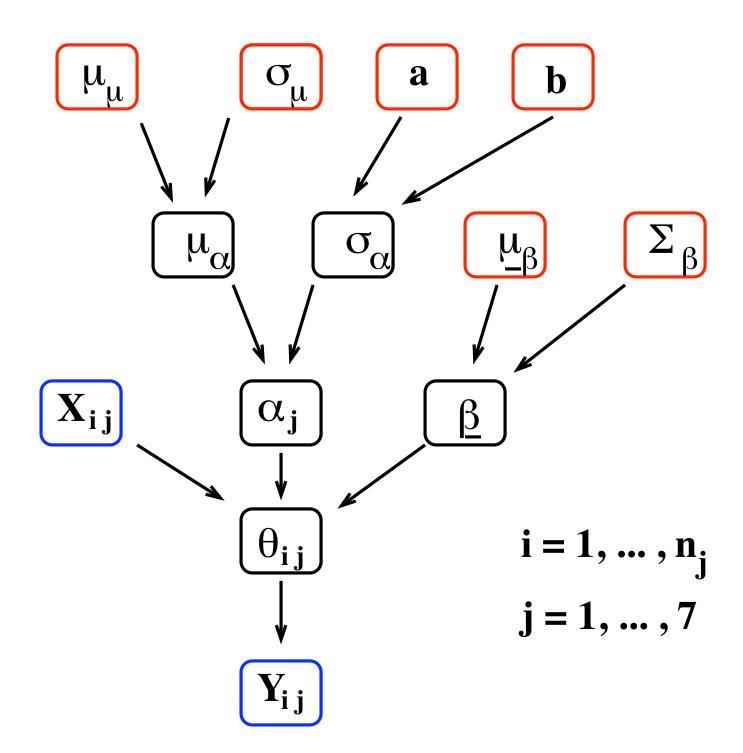
$$\beta \sim N_{4}(\underline{0}, 64 \times I_{4})$$

POSTERIOR

$$\pi(\underline{\alpha}, \underline{\beta}, \mu_{\alpha}, \sigma_{\alpha} | y, x) \propto \prod_{j} \prod_{i} \theta_{ij}^{y(i_{j})} (1 - \theta_{ij})^{1 - y(i_{j})}$$
$$\prod_{j} p(\alpha_{j} | \mu_{\alpha}, \sigma_{\alpha}) \ p(\mu_{\alpha}) p(\sigma_{\alpha}) \ p(\underline{\beta})$$

where

$$\theta_{ij} = \frac{\exp[\alpha_j + \underline{x}'(i_j)\underline{\beta}]}{1 + \exp[\alpha_j + \underline{x}'(i_j)\underline{\beta}]}$$



We focus on the functionals

$$f_k\left(\underline{\eta}\right) = \eta_k$$
 where $\underline{\eta} = (\underline{\alpha}, \underline{\beta}, \mu_{\alpha}, \sigma_{\alpha})$

 ϕ as in the univariate normal case

- 1. A Markov chain of lenght 50 000 is run, (burn-in of 10 000) to sample $\pi\left(\underline{\eta}|y,x\right)$;
- 2. The target var-cov matrix of $\underline{\eta}$, Σ_{π} , is estimated along the simulated chain. This estimate, $\widehat{\Sigma}$, is used to parametrize the ϕ functions to compute \widetilde{f} with the "fast version" of our algorithm, i.e.

$$ilde{f}_{k}\left(\underline{\eta}
ight)=f_{k}\left(\underline{\eta}
ight)-2\hat{\Sigma} imes riangledown\left(\pi\left(\underline{\eta}|y,x
ight)
ight)$$
 ;

3. We evaluate $\tilde{f}_k\left(\underline{\eta}\right)$ on a second MCMC sample of length 3000.

η_k	$\hat{\mu}_{f_k}$	$\hat{\mu}_{ ilde{f}_k}$	$\widehat{\sigma}_{f_k}^2$	$\hat{\sigma}_{ ilde{f}_k}^2$	%var.red.
$\eta_1 = \alpha_1$	-6.5122	-6.4548	1.8261	0.7731	57.67
$\eta_2 = \alpha_2$	-5.3699	-6.5122	0.1546	0.0166	89.24
$\eta_3 = \alpha_3$	-5.1055	-5.1296	0.0884	0.0113	87.21
$\eta_4 = \alpha_4$	-4.8881	-4.9179	0.0876	0.0086	90.16
$\eta_5 = \alpha_5$	-5.2247	-5.2446	0.0869	0.0112	87.14
$\eta_6 = \alpha_6$	-3.9072	-3.9560	0.1057	0.0170	83.91
$\eta_7 = \alpha_7$	-6.3274	-6.3539	0.1097	0.0131	88.06
$\eta_8 = \beta_1$	-0.0942	-0.0901	0.0032	0.0005	83.83
$\eta_9 = \beta_2$	-1.2452	-1.2649	0.0999	0.0078	92.23
$\eta_{10} = \beta_3$	-1.4105	-1.4295	0.0415	0.0049	88.26
$\eta_{11}=\beta_4$	0.0870	0.0868	0.0027	0.0002	92.73
$\eta_{12} = \mu_{\alpha}$	-5.2806	-5.3548	0.3840	0.1114	70.98
$\eta_{13} = \sigma_{\alpha}$	1.3738	1.4248	0.1883	0.1601	15.00

General form of the ϕ solution of the fundamental equation in termf od π and f: linear differential equation, not homogeneous with variable coefficients find the associated Green function intuition on the structure of ϕ