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MARKOV CHAIN MONTE CARLO
SETTING:

We are interested in evaluating

p=FEzf(X) X eX

We know 7 only up to a normalizing constant
POSSIBLE SOLUTION:

Construct an ergodic Markov chain

P(X,A) =Pr(X, € AlX,_1 = X) ACX
stationary with respect to «: #P =

Simulate the Markov chain: Xg, X71...Xpn ~ P
MCMC estimator of u:

fin = 5 321 £(X3)




HOW GOODIS THE MCMC ESTIMATE?

Under regularity conditions:

e 7 IS also the unique limiting distribution
I1P*(X,-) == ()[| — O, n — 0o

e LLN and CLT hold (bias of order 1/n)

thus a measure of efficiency of the MCMC
estimator is its ASYMPTOTIC VARIANCE

lim _nVarg [[in]

V(f,P)

O
=02+2Y p
k=1
where

o?(f) = Varz f(X)

pk(fa P) — COVW[f(XO)v f(Xk)]



We can reduce the asymptotic variance by:

e decreasing o2(f)
— substituting functions

e decreasing pi(f, P)
— avoiding backtracking
— delaying rejection
— inducing negative correlation



Improve relative efficiency by decreasing
o2(f) via function substitution

Instead of estimateing p = Ex(f) via jun(f)
reduce variance by substituting f with f s.t.:

Ideally:

Ew(f) = Ex(f) = u

o?(f) << o2(f)

~~

= |d?(f)=0!!!




General recipe to construct f
(Assaraf & Caffarel, 1999, 2000):
use auxiliary operator H(x,y) and function ¢

H needs to be

e Hermitian (self adjoint)

e [H(z,y)\/m(y)dy =0

¢ needs to be integrable

Define
JH(z,y)o(y)dy
= f(x) + Af(x)
v/ ()

flz) = f(=) +

By construction: |E;(f) = E(f) = u




flz) = f(z) + Af(x)

A f(x) = control variate

Could generalize:

fz) = f(z) + 01A1f(x) + 0202 f(x) + ...
lid setting: optimal choice of 8, is available

MCMC setting: hard to find non trivial control
variates and to estimate optimal 6;



The optimal choice for (H, ¢) can be obtained
by imposing

o(f) =0

or, equivalently

f=un
which leads to the fundamental equation:

[ Hw,9)é@)dy = —\/n(@)f(2) — pf]

hard to solve exactly but can find approximate
solutions:

e Select an operator H

e parametrize ¢

e optimally choose the parameters by
minimizing o (f ) over an MCMC simulation

e run a new Markov chain and estimate u by
a(f) instead of a(f)



Choice of H: Given a reversible kernel P

Hwp) = | T 2P @) - 8 - )]
and, letting ¢ = \% we get:

f(2) = f@) = [ P, p)B() — $(y)ldy
This choice it exploited by Dellaportas et al.

e Need closed form expression for conditional
expectation of ¢ or a rnd scan Gibbs sam-
pler to estimate it

e They argue that ¢ should be close to the
solution to Poisson equation

e f and Af should be highly correlated

e [ hey find the optimal 6



General setting: X ¢ R4

13 52
H=—— V

PI= RO

where
1 d 92,/m(x)
Vi(z) = > 2

2. /7(2) i=1 97

so that:

He(x)

v/ ()

T he fundamental equation in this setting becomes:

Hp(z) = —\/m(x)[f(x) — pf]

f(z) = f(z) +



Choice of ¢

optimal choice: exact solution of the
fundamental equation

sub-optimal choice: parametrize ¢ and
choose the parameters to minimize o(f)

If we parametrize ¢ in terms of a multiplica-
tive constant ¢ and then minimize o(f ) with
respect to ¢, the optimal choice of c is

_ B @)Af (@)
Er(Af(x))?
and, for this value of the parameter we obtain
o2(F) = o2(f) — [Ewéf(w)Af(H?Q))]Q
~(Af(z))

thus, regardless of the choice of ¢, a variance
reduction in the MCMC estimator is obtained
by going from f to f




Useful R functions:

e construction of H:
“fdHess” is used to get the Hessian
(uses finite differences)

e construction of ¢:
“optim” is used to get the parameters
(uses simulated annealing, quasi-Newton or
conjugate gradients methods)
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TOY EXAMPLES:
Gaussian and Student-T target distributions
to gain insight on functional form of ¢

Univariate case:

functions of interest:

filx) =z, fo(z) =22
Bivariate case:

functions of interest:
fil@)=z1, folz) =27, f3(z) ==z125

Length of simulations

first MC (to estimate ¢ parameters): T = 100
second MC (to estimate p via f): n = 150
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UNIVARIATE STD GAUSSIAN

n(x) = exp(~3 )

filz) ==z

Exact solution to the fundamental equation
IS available

¢1(x) = (—202%z),/m (z)

¢1(zx) = —a(z — c) exp{—b(z — )*}

fi fi a b c

mean | 0.030 | 0.0005 Exact sol. 2.00 | 0.25 | 0.00

var 1.022 0.001 Estimated sol. | 2.00 | 0.25 | 0.01
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fo(x)= x?
po(z) = (—0?2? — 2po?x) /7 ()

p2(z) = —a(z — c)? exp{-b(z — )}

f2 fQ a b C
mean | 0.901 | 1.000 Exact sol. 1.00 0.25 0.00
var 1.387 | 0.044 || Estimated sol. | 0.985 | 0.247 | -0.015
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Target = N(0,1), f(x) ==

o — f(x)=x
- - o)
. - HOM) )
f

x values
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N(p=1,02=2)
filz) ==

fa(z) = a°

exact f1 and f>, MC simulation n = 150

~ ~

J1 J1 J2 J2

ar [ 0.912 1 2.824 3

52 | 2.013 | 2.28e-22 | 9.377 | 3.53e-21
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Univariate Student-T with g =5

file) ==

fa(z) = 22

exact f; and f>, MC simulation n = 150

J1 f1 J2 f2

Q) T

5 -0.271 | 1.65e-12 | 1.834 1.666
1.778 | 5.19e-22 | 20.536 | 1.32e-23
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Robustness of ¢

For Student-T when f () = «,

2 1

— 3 g
d1 () —\<31 _ga: —|—21 _ga:) v/ 7 (x).

7

P(x)

The same structure as in the normal case, but
with a higher degree polynomial.

We verified robustness against misspecification

of P (x): despite we imposed a first order P(x)
we still obtained 93% variance reduction
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From MC to MCMC

V(L,P)= X%, %+ 1)02=02+2%22

Y

T = Integrated autocor. time

=

T = Sokal's adaptive truncated
correlogram estimate
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TARGET: Student-T (5 df)

Same ¢ functions as for the Gaussian case

We used random walk MCMC sampler

with different oy,

We report mean of 7 (variances)
over 10 MC simulations

filz) ==z
T ocpw = 0.1 opw = 0.2 ocrw = 0.5 opw = 1
fi1 | 100.16 (33.2) | 80.39 (34.1) | 45.23 (23.1) | 13.32 (7.2)
fi| 7.73 (1.8) 3.45 (1.9) 1.48 (0.1) 1.23 (0.2)
fo(z) = 22
T crww = 0.1 ocrw = 0.2 ocpw = 0.5 opw = 1
fo | 79.14 (20.8) | 63.66 (32.5) | 23.84 (11.5) | 14.18 (14.5)
fo| 1.86 (2.3) 8.17 (2.7) 1.30 (0.36) 2.58 (2.0)
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MCMC for N(p = 1,02 = 2)
filz) ==

fa(z) = a°

exact f1 and f>, MCMC simulation n = 150

~

J1 f1 J2 J2
ﬁf 0.080 1 3,193 3

52| 2.563 | 4.8e-20 | 13.209 | 1.31e-19
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MCMC for univariate Student-T with g =5

filz) ==

fa(z) = a°

exact f1 and f>, MCMC simulation n = 150

J1 f1 J2 fo
fi; | 0.095 | 2.08e-12 | 1.55 | 1.666

52 1.551|1.08e-22 | 4.077 | 6.51e-24
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BIVARIATE CASE:

functions of interest:
fi(z) = =1
fa(z) = a2

f3(x) = x120

auxiliary functions:

$1(x) = —a(z1—c) exp{—[d(z1—c)*+b(zo— )]}
p2(z) = —a(z1—c)? exp{—[d(z1—c)*+b(x2— )]}
$3(z) = —a(z1-22—c f) exp{—[b(z1—c)?+d(z2—f)?]}
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MCMC for bivariate Normal

(11, p2) =(2,1)
(0-170-2> — (47 1)7 p=0.6

exact f1, fo, f3, MCMC simulation n = 150

~

f1 fi fo fo f3 f3
nr || 1.683 2.549 5.366 8 2.136 3.2
a? 2 2.0le-16 | 33.937 | 1.19e-14 | 7.14 | 7.11e-17
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Bivariate Student-T, g=7

exact f1, fo, f3 , MCMC simulation n = 150

J1 f1 J2 2 /3 f3

fr || -0.09 | 7.29e-10 | 1.049 1.4 -0.038 | -4,31e-12

52 | 1.04 | 1.02e-17 | 5.44 | 1.92e-17 1.25 1.95e-21
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Other examples considered:

e Simple Bayesian models

e Credit risk models

Note: Rao-Blackwellization can be seen as a
special case of this:

replace f(z') by a conditional expectation
naturally reduces the variance
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Poisson-Gamma model
[(y;|0) ~ Po(6), i=1,---,s=30;
h(0) ~ Ga(la = 4,8 =4).

We are interested in the first moment of the
posterior distributior;, in this case we have the
exact solution: B+a24i_281y¢ = 4.058824.

1. run a first MCMC simulation of length 1000
(burn-in of 100);

2. minimize the variance of f, obtained using
¢»1 (case univ. normal)

3. run 100 parallel MCMC chains, each of
length 10000 (burn-in of 150 steps);

4. compute, on each chain, /?Lf, ﬁf and the

between chain variances, ﬁ% and 17%



Poisson-Gamma model

single chain
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Poisson-Gamma model
parallel chains
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Simple credit risk model

We analyze a sample of 124 firms that gave
rise to problematic credit and a sample of 200
healthy firms

Bayesian logistic regression model

7r (@|y, 33‘) X iljl 9;?73 (1-— Qi)l_yip (ﬁ) ,

_ e (aB)
C(y;|0;) ~ Be(8;), 0;= o (%T@ :

where X; is a vector of four balance sheet indi-
cators + intercept

We use a non informative improper prior on

B = (61, 82,83, B4, Bs5)

28
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We run an initial M-H of length 300 (after a
burn in of 700) and over this initial sample
we estimate the optimal parameters of the ¢
function for f;(8) =8;,j=1,---,5

¢ (8) = (W61 + ¥z + 1305 + viBa + 1485 ) \/7 (Bly, )



Estimated parameters

] i fi 57 6% % var-red
1| -1.4761 | -1.4339 | 0.0507 | 0.0015 97.04
2 ] -1.0337 | -1.0138 | 0.0664 | 0.0018 97.28
3 || -0.2858 | -0.2830 | 0.0825 | 0.0043 94.78
4 || -0.9687 | -0.9746 | 0.0630 | 0.0007 98.88
51 0.8279 | 0.7756 | 0.0317 | 0.0012 96.21

With 50000 iterations only, the zero-variance
estimator is close to the 500 000 standard MCMC

estimator

So one should run a 100 times longer Markov
chain to achieve the same precision
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Estimated ¢ parameters

il A 7 7 i i

1] -0.0946 | -0.0133 | -0.0575 | -0.0464 | 0.0121
2 | -0.0151 | -0.1582 | 0.0593 | 0.0161 | 0.0551
3 | -0.0563 | 0.0605 | -0.1927 | 0.0147 | -0.0355
4 | -0.0461 | 0.0193 | 0.0141 | -0.1011 | 0.0035
5| 0.0106 | 0.0597 | -0.0345 | 0.0001 | -0.0625

This matrix is close to —23 where 3 is the var-
cov matrix of MCMC sampled 8 so we argue
we can skip the optimization phase of ¢
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Computational issues

When ¢ (z) = P (z) /7 (z)
and P(x) is a polynomial, then

2
(1)) = -3 3 | Vet g 5P @) +2 (5 P@) ) (/7@ )
i=1 U ¢ !

If P(x) is a first order polynomial, then:

d
F@) = 1@ =3 Y | (- (o))

1=1 O

the optimal ¢ parameters are close to —23

We can write a fast computing version of f

fie (@) = f (z) — 25 x VIn (7 (z))
e NoO optimization needed

e Only first derivative of target necessary
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Extended credit risk model: estimate the de-
fault probability of companies that apply to
banks for loan

DIFFICULTIES

e default events are rare events

e analysists may have strong prior opinions

e Observations are exchangeable within sectors

e different sectors might present
similar behaviors relative to risk
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THE DATA

7520 companies

1.6 % of which defaulted

7 macro-sectors (identified by experts)

4 performance indicators (derived by experts
from balance sheet)

Dimension | % Default

Sector 1 63 0%

Sector 2 638 1.41%
Sector 3 1343 1.49%
Sector 4 1164 1.63%
Sector 5 1526 1.51%
Sector 6 315 9.52%
Sector 7 2471 0.93%
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We used four explanatory variables

e Variable 1 measures the overall economic
performance of the firm

e Variable 2 is related to the ability of the
firm to pick-up external funds

e Variable 3 is related to the ability of the
firm to generate cash flow to finance its
short term activities

e Variable 4 measures the inefficiency in
administrating commercial activities
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THE MODEL

Bayesian hierarchical logistic regression model

Notation:
° Ny number of companies belonging to
sector |y, 9=1,---,7

e y(i;): binary response of company i
i =1,---,n;|in sector j. |y = 1 < default

e z(ij): 4x1 vector of covariates (performance
indicators) for company i in sector j

e . 7 X 1 vector of intercepts
one for each sector

e 3:4 x 1 vector of slopes
one for each performance indicator

PARAMETERS of INTEREST: o and 3
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PRIORS:

Oéj|Ma70a ~ Nl(ﬂaagg) Vj
o ~ N1(0, 64)
02 ~ G(25/9,5/9)

B ~ N4 (0,64 X Iz)

POSTERIOR:

W(Q,Q,Ma,aaw,aﬁ) X H Q?j(ij)(l—ﬁij)l_y(ij)
i i
p(ajlpa; 0a) P(pa)p(oa) p(B)

where
_ exploy + 2'(4;) 0]
Oij = -
1 + expla; + 2/(i;)0]
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We focus on the functionals

fk (ﬂ) — Nk where ﬂ — (ga Qa :LLOMO-OK)

¢ as in the univariate normal case

1. A Markov chain of lenght 50000 is run,
(burn-in of 10000) to sample =« (g\y,:c);

2. The target var-cov matrix of n, 25, is es-
timated along the simulated chain. This
estimate, 3>, is used to parametrize the o
functions to compute f with the “fast ver-
sion’” of our algorithm, i.e.

fic (n) = fie(n) =25 > vIn (x (nly. 2))

3. We evaluate fj (Q) on a second MCMC
sample of length 3 000.
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=2

=2

o%var.red.

Mk fiy, iif 5% i

m =oa1 | -6.5122 | -6.4548 | 1.8261 | 0.7731 | 57.67
M = as | -5.3699 | -6.5122 | 0.1546 | 0.0166 | 89.24
s = as | -5.1055 | -5.1296 | 0.0884 | 0.0113 | 8&7.21
na = as | -4.8881 | -4.9179 | 0.0876 | 0.0086 | 90.16
s = as | -5.2247 | -5.2446 | 0.0869 | 0.0112 | 8&7.14
ne = as | -3.9072 | -3.9560 | 0.1057 | 0.0170 | 83.91
n7 = a7 | -6.3274 | -6.3539 | 0.1097 | 0.0131 | 88.06
ns = B1 | -0.0942 | -0.0901 | 0.0032 | 0.0005 | 83.83
no = B> | -1.2452 | -1.2649 | 0.0999 | 0.0078 | 92.23
nmo = B3 | -1.4105 | -1.4295 | 0.0415 | 0.0049 | 88.26
m1 = Ba | 0.0870 | 0.0868 | 0.0027 | 0.0002 | 92.73
M2 = fa | -5.2806 | -5.3548 | 0.3840 | 0.1114 | 70.98
ms = 0o | 1.3738 | 1.4248 | 0.1883 | 0.1601 | 15.00




General form of the ¢ solution of the funda-
mental equation in termf od « and f:

linear differential equation, not homogeneous
with variable coefficients

find the associated Green function

intuition on the structure of ¢
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