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Hidden Markov Models

I {Xt} is a Markov chain with transition kernel Q and initial
distribution χ

P (Xt+1 ∈ A |Xt) = Q(Xt,A)

I The observations {Yt} are conditionally independent given {Xt}
with conditional density g

P (Yt ∈ A |Xt) =
∫

A
g(Xt, y)λ(dy) .



Motivations

I Statistical inference in general state-space models involves
computing the posterior distribution φs:s′|t:T of a batch of state
variables Xs:s′ conditioned on a batch of observations Yt:T .

I Nonlinearity or non-Gaussianity render analytic solutions
intractable. The posterior distribution can be computed in closed
form only in very specific cases.

I Problem: How to handle general state and measurement
equations without putting strong a priori constraints on the
behaviour of the posterior distributions.



Sequential Monte Carlo

I Among these, Sequential Monte Carlo (SMC) methods play a
central role.

I SMC methods refer to a class of algorithms designed for
approximating a sequence of probability distributions over a
sequence of probability spaces by updating recursively in time a
set of random particles with associated nonnegative weights.

I These algorithms are all based on selection and mutation and
combine sequential importance sampling ideas together with
sampling importance resampling.



Smoothing using SMC

I The recursive formulas generating the filtering distribution φχ,T|0:T
and the joint smoothing distributions φχ,0:T|0:T are closely related.

φχ,T|0:T(f ) =

∫
φχ,0:T−1|T−1(dxt−1)Q(xt−1, dxt)g(xt, yt)f (xt)∫
φχ,0:T−1|T−1(dxt−1)Q(xt−1, dxt)g(xt, yt)

φχ,0:T|0:T(f ) =

∫
·· ·
∫
φχ,0:T−1|T−1(dx0:t−1)Q(xt−1, dxt)g(xt, yt)f (x0:t)∫
·· ·
∫
φχ,0:T−1|T−1(dx0:t−1)Q(xt−1, dxt)g(xt, yt)

.

I the particle paths and their associated weights is a weighted
sample approximating φ0:T|0:T .



Depletion of the particle path
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Figure: path trajectories for an AR(1) observed in noise



Problems

I Particle paths can be used successfully for estimating the
smoothing joint smoothing distribution for small values of the
time horizon T or any marginal smoothing distribution φs|0:T , with
s ≤ T, when s and T are close;

I However, when T is large or when s and T are remote, the
associated particle approximations become inaccurate.

I Calls for alternative solutions.



The backward and forward Markov chains

I Conditionally on the observations Y0:T , the state sequence
{Xs}s≥0 is a time-inhomogeneous Markov chain:

E [ f (Xt) |X0:t−1,Y0:T ] = E [ f (Xt) |Xt−1,Yt:T ] .

I This property remains true in the time-reversed direction.

E [ f (Xt) |Xt+1:T ,Y0:T ] = E [ f (Xt) |Xt+1,Y0:t] .

I Given T and an initial distribution χ, the backward kernel
Bχ,s(xs+1, ·) is defined as

bχ,t(xt+1, x) def=
φχ,t|t(x)q(x, xt+1)∫
φχ,t|t(x)q(x, xt+1) dx

.



Joint smoothing distribution

I The joint smoothing distribution is

φχ,s:T|T(f ) = Eχ [ f (Xs:T) |Y0:T ]

=
∫
· · ·
∫

f (xs:T) Bχ,s(xs+1, dxs)φχ,s+1:T|T(dxs+1:T) .

where φχ,T:T|T = φχ,T|T is the filtering distribution at time T.
I If f depends on the first component xs only, the marginal

smoothing distribution is:

φχ,s|T(f ) =
∫∫

f (xs) Bχ,s(xs+1, dxs)φχ,s+1|T(dxs+1) .



The FFBS algorithm

I The FFBS shares many similarities with the forward-backward
(Baum-Welsh) algorithm in finite state-space HMM. This is a
two-passes algorithm.

I The particle filter is executed, while storing the weighted sample{(
ξi

t , ω
i
t

)}N
i=1, 1 ≤ t ≤ T;

I secondly, starting with the particle approximation of φχ,t|t,
t = 0, . . . ,T, the importance weights are recursively updated
backward in time by combining

1. particle estimates of the fixed interval smoothing distribution
φχ,s+1:T|T

2. the filtering distribution estimate φχ,s|s.
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Particle Approximation of the Joint Smoothing
Distribution

I For 1 ≤ s ≤ t ≤ T, define ξis:t
s:t

def= (ξis
s , . . . , ξ

it
t ), the set of all possible

particle paths
I The FFBS approximation of the joint smoothing distribution is

φ̂χ,s:T|T(dxs:T) ∝
N∑

js:T=1

ωjs:T
s|T δξjs:T

s:T
(dxs:T) ,

I The support of the joint smoothing distribution is the set of all
possible paths... this is why the depletion is expected to be less
extreme.... still, the support of the smoothing distribution is
selected in the forward pass !



Particle Approximation of the Joint Smoothing
Distribution

I Beware: The number of such paths grows exponentially with the
horizon T − s... of course, this is not implementable except if one
is interested in estimating "fixed" dimensional marginal
distribution

I The theory is however more transparent (and in fact the proofs
essentially requires) to proceed with the full joint distribution...



The FFBS algorithm
I Consider the approximation of the joint smoothing distribution:

φ̂χ,s+1:T|T(dxs+1:T) ∝
N∑

js+1:T=1

ω
js+1:T

s+1|Tδξjs+1:T
s+1:T

(dxs+1:T) ,

I Approximate the backward smoothing kernel by

B̂χ,s(xs+1, dxs) =
N∑

i=1

ωi
sq(ξi

s, xs+1)∑N
`=1 ω

`
s q(ξ`s , xs+1)

δξi
s
(dxs)

I Substituting the particle approximations of the backward kernel
and the joint smoothing distribution into the backward recursion

φχ,s:T|T(f ) =
∫
· · ·
∫

f (xs:T) Bχ,s(xs+1, dxs)φχ,s+1:T|T(dxs+1:T)

yields to the updating rule for the weights :

ωjs:T
s|T =

ωjs
s q(ξjs

s , ξ
js+1
s+1)∑N

`=1 ω
`
s q(ξ`s , ξ

js+1
s+1)

ω
js+1:T

s+1|T .



The FFBS as an importance sampling estimator

I The support of this particle estimator are the set of the NT−s+1

possible particle paths {ξjs:T
s:T }.

I The importance weight of these path particles is computed as if
the path particle ξjs:T

s:T were simulated by drawing forward in time,
for s < t ≤ T, ξjt

t in the set {ξi
t}N

i=1 conditionally independently
from the distribution

Ω−1
t−1

N∑
`=1

ω`t−1q(ξ`t−1, ·) , i = 1, . . . ,N ,

which approximates the predictive distribution φχ,t|t−1.



The FFBS as an importance sampling estimator

I Beware: The particle paths are not independent ! this
approximation would be approximately correct for a finite block of
particles selected randomly, using propagation of chaos property.

I This is why standard results on importance sampling estimators
cannot be applied to that context.

I This calls for the derivation of specific results.



Questions

I Asymptotic In which sense the FFBS estimator is consistent ?
asymptotically normal ?

I Non-asymptotic Can we derive non-asymptotic exponential
deviation bounds ?

I Time Uniform results Provided that the kernel Q is properly
mixing, does the deviation bound may be shown to be bounded
in the long run ? Does the asymptotic variance remain bounded
?

I Better algorithms ?

We derive all these results in the case where the auxiliary particle
filter is used in the forward pass.



Auxiliary Particle Filter

I Sample {(Ii
s, ξ

i
s)}N

i=1 from the proposal distribution

πs|s(i, xs) ∝ ωi
s−1ϑs(ξi

s−1)ps(ξi
s−1, xs) ,

where {ϑs(ξi
s−1)}N

i=1 are the adjustment multiplier weights and ps

is the proposal transition density function.
I Each draw (Ii

s, ξ
i
s) is assigned to the weight

ωi
s

def=
q(ξIi

s
s−1, ξ

i
s)gs(ξi

s)

ϑs(ξ
Ii
s

s−1)ps(ξ
Ii
s

s−1, ξ
i
s)
,

I
{

(ξi
s, ω

i
s)
}N

i=1 approximates the target distribution φχ,s|s.



Assumptions

I There exist two constants 0 < σ− ≤ σ+ <∞, such that, for any
(x, x′) ∈ X× X,

σ− ≤ q(x, x′) ≤ σ+ .

I In addition, there exists a constant c− > 0 such that,∫
χ(dx0)g0(x0) ≥ c− and for all t ≥ 1,

inf
x∈X

∫
q(x, x′)gt(x′)dx′ ≥ c− > 0 .

Note that we do not assume that the likelihood is lower bounded,
which is a less stringent assumption than usually done... the proofs
are more tricky.



Forward and backward stability

`s,t(xs, xt)
def=
∫
· · ·
∫

q(xs, xs+1)gs+1(xs+1)
t−1∏

u=s+1

q(xu, xu+1)gu+1(xu+1)dxs+1:t−1

Proposition
Under the strong ergodicity condition, for all χ, χ′, s ≤ t and any
bounded measurable functions h,∣∣∣∣∫∫ χ(dxs)`s,t(xs, xt)h(xt)dxt∫∫

χ(dxs)`s,t(xs, xt)dxt
−
∫∫

χ′(dxs)`s,t(xs, xt)h(xt)dxt∫∫
χ′(dxs)`s,t(xs, xt)dxt

∣∣∣∣ ≤ ρt−s osc (h) ,

where ρ def= 1− σ−/σ+. For any bounded non-negative measurable
functions f and f ′,∣∣∣∣∫∫ χ(dxs)h(xs)`s,t(xs, xt)f (xt)dxt∫∫

χ(dxs)`s,t(xs, xt)f (xt)dxt
−
∫∫

χ(dxs)h(xs)`s,t(xs, xt)f ′(xt)dxt∫∫
χ(dxs)`s,t(xs, xt)f ′(xt)dxt

∣∣∣∣ ≤ ρt−s osc (h) ,



Time-Uniform exponential inequality

Proposition
Under the strong mixing assumption, the filtering distribution satisfies
a time-uniform exponential deviation inequality, i.e. there exist
constants B and C such that, for all integers N and t ≥ 0, all
measurable functions h and all ε > 0,

P

[∣∣∣∣∣N−1
N∑

i=1

ωi
th(ξi

t)−
φχ,t|t−1(gth)
φχ,t−1|t−1(ϑt)

∣∣∣∣∣ ≥ ε
]
≤ Be−CNε2/|h|2∞ ,

P
[∣∣∣φ̂χ,t|t(h)− φχ,t|t(h)

∣∣∣ ≥ ε] ≤ Be−CNε2/ osc2(h) .



A glimpse at the proof

W.l.o.g., assume that φχ,t|t(h) = 0 and decompose as φ̂χ,t|t(h)

φ̂χ,t|t(h) =
t∑

s=1

(
Bs,t(h)
Bs,t(1)

− Bs−1,t(h)
Bs−1,t(1)

)
+

B0,t(h)
B0,t(1)

,

where

Bs,t(h) = N−1
N∑

i=1

ωi
s

Ls,t(ξi
s, h)

|Ls,t(·, 1)|∞
.

and derive an exponential bound for all these terms.
I the stability of the filter allows to bound the oscillation norm of

Ls,t(ξi
s, h)/Ls,t(ξi

s, 1) by a quantity proportional to ρt−s osc (h)
I Ls,t(ξi

s, 1)/ |Ls,t(·, 1)|∞ is bounded.
I The proof is then based on the Hoeffding inequality... but is tricky

because the denominator (normalization) is random! Requires a
special formulation which uses that Ls,t(ξi

s, h)/Ls,t(ξi
s, 1) is

bounded.



Time-Uniform deviation: marginal smoothing

Theorem
Assume the mixing condition. Then, there exist constants
0 ≤ B, C <∞ such that for all integers N, s, and T, s ≤ T, all ε > 0,

P
[∣∣∣φ̂χ,s|T(h)− φχ,s|T(h)

∣∣∣ ≥ ε] ≤ Be−CNε2/ osc2(h) .

The error does not build up (contrarily to what was initially thought).
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Conclusions

I Theory behind FFBS is now fully understood. Contrarily to what
was thought, time-uniform asymptotics are preserved for mixing
kernels.

I Two main problems remain:
1. The complexity is generally high (grows as the square of the

number of particles, though significant complexity reduction can be
achieved in general): the two-filter algorithm is a solution.

2. The support of the smoothing distribution is the same than the
support of the filtering distribution: better algorithms can be
obtained using either pilot sampling or iterative filtering.
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