
Nonasymptotic bounds on the estimation
error for regenerative MCMC1

Wojciech Niemiro

Nicolaus Copernicus University, Toruń and University of Warsaw
Poland

EPSRC Symposium Workshop on Markov Chain-Monte
Carlo

Warwick, March 2009

1Work partially supported by Polish Ministry of Science and Higher
Education Grant No. N N201387234.



Outline

1 Introduction
Computing integrals via MCMC
Accuracy bounds

2 Regeneration
Small set and regeneration
A sequential-regenerative estimator

3 Accuracy bounds
Mean Square Error
Confidence estimation and Median of Averages
How tight are the bounds?



Outline

1 Introduction
Computing integrals via MCMC
Accuracy bounds

2 Regeneration
Small set and regeneration
A sequential-regenerative estimator

3 Accuracy bounds
Mean Square Error
Confidence estimation and Median of Averages
How tight are the bounds?



Outline

1 Introduction
Computing integrals via MCMC
Accuracy bounds

2 Regeneration
Small set and regeneration
A sequential-regenerative estimator

3 Accuracy bounds
Mean Square Error
Confidence estimation and Median of Averages
How tight are the bounds?



1 Introduction
Computing integrals via MCMC
Accuracy bounds

2 Regeneration
Small set and regeneration
A sequential-regenerative estimator

3 Accuracy bounds
Mean Square Error
Confidence estimation and Median of Averages
How tight are the bounds?



Computing integrals via MCMC
We are to compute

θ =

∫
X

f (x)π(x)dx =: π(f ),

where
X – state space,
π – probability distribution on X ,

Markov chain

X0, X1, . . . , Xt , . . . P(Xt ∈ ·) → π(·), (t →∞).

MCMC estimator

θ̂T =
1
T

T−1∑
i=0

f (Xi) → θ (T →∞).



Computing integrals via MCMC
We are to compute

θ =

∫
X

f (x)π(x)dx =: π(f ),

where
X – state space,
π – probability distribution on X ,

Markov chain

X0, X1, . . . , Xt , . . . P(Xt ∈ ·) → π(·), (t →∞).

MCMC estimator

θ̂T =
1
T

T−1∑
i=0

f (Xi) → θ (T →∞).



Computing integrals via MCMC
We are to compute

θ =

∫
X

f (x)π(x)dx =: π(f ),

where
X – state space,
π – probability distribution on X ,

Markov chain

X0, X1, . . . , Xt , . . . P(Xt ∈ ·) → π(·), (t →∞).

MCMC estimator

θ̂T =
1
T

T−1∑
i=0

f (Xi) → θ (T →∞).



Accuracy bounds

Mean square error:

MSE = E (θ̂T − θ)2 ≤ ?

Confidence bounds:

P(|θ̂T − θ| > ε) ≤ ?
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Small set and regeneration

P(x , A) = P(Xn ∈ A|Xn−1 = x).

ASSUMPTION (Small set)
There exist J ⊆ X , a probability measure ν and β > 0 such that

P(x , ·) ≥ βI(x ∈ J)ν(·).

Q(x , ·) := P(x , ·)− βI(x ∈ J)ν(·) is the ,,residual”
(sub-stochastic) kernel.

If Xn−1 6∈ J then draw Xn ∼ P(Xn−1, ·), no regeneration;
If Xn−1 ∈ J then

with probability 1− β draw Xn ∼ Q(Xn−1, ·)/(1− β), no
regeneration;
with probability β draw Xn ∼ ν(·), Regeneration.
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Regeneration

Remark: Actual sampling from Q(Xn−1, ·)/(1− β) is not
necessary (Mykland et al. 1995).

Start with X0 ∼ ν(·) so that regeneration occurs at T0 = 0.
Times of regeneration partition a trajectory into iid blocks:

X0, . . . , XT1−1︸ ︷︷ ︸
T1

, XT1 , . . . , XT2−1︸ ︷︷ ︸
T2−T1

, XT2 , . . . , XT3−1︸ ︷︷ ︸
T3−T2

, . . .

↑ ↑ ↑
R R R

R = Regeneration
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A sequential-regenerative estimator

0 = T0, T1, . . . , Tr , . . . – moments of regeneration.

Fix n.

R(n) := min{r : Tr ≥ n}.

Estimator:

θ̂TR(n)
=

1
TR(n)

TR(n)−1∑
i=0

f (Xi).

0, . . . , T1 − 1, T1, . . . . . . , TR(n)−1, . . . , n, . . . , TR(n)− 1, TR(n), . . .

↑ ↑ ↑ ↑ ↑
R R R n R

The estimator uses the part of trajectory written in blue
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Mean Square Error
The integral of interest and its MCMC estimator:

θ = π(f ) =

∫
X

f (x)π(x)dx , θ̂TR(n)
=

1
TR(n)

TR(n)−1∑
i=0

f (Xi)

THEOREM
Under Assumption (Small set),

(i) MSE = E (θ̂TR(n) − θ)2 ≤ σ2
as(f )
n

(
1 +

µ2

n

)
,

(ii) E TR(n) ≤ n + µ2,

where

σ2
as(f ) =

1
ET1

E

T1−1∑
i=0

(f (Xi)− θ)

2

, µ2 =
ET 2

1
ET1

− 1.
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Proof

(i) Two identities of Abraham Wald (sequential analysis):

If R is a stopping time then

E
∑R

i=1 τk = EREτ1, where τk = Tk − Tk−1,

Var
∑R

i=1 dk = ERVard1, where dk =
∑Tk−1

i=Tk−1
(f (Xi)− θ).

(ii) Lorden’s theorem (1970, renewal theory).



A geometric drift condition

ASSUMPTION (Drift)
There exist a function u : X → [1,∞), constants λ < 1 and
c < ∞ such that

Qu(x) ≤

{
λu(x) for x 6∈ J,

cλ for x ∈ J,

where Q(x , ·) := P(x , ·)− βI(x ∈ J)ν(·) and
Qu(x) :=

∫
X Q(x , dy)u(y).



Explicit bounds under a drift condition

Bounds on σ2
as(f ) and µ2 which depend explicitly on the

parameters λ, β, c and π(u):

THEOREM
If Assumptions (Small set), (Drift) hold and (f − θ)2 ≤ u then

σ2
as(f ) ≤ π(u)

4A1 + 9
1− λ

+
√

π(u)
A2(1 + A1)

(1− λ)3/2 ,

µ2 ≤ 2 (π(u) + 1)
1 + A1

1− λ
,

where A1 =
log c

log(1− β)−1 ,

and A2 = 4
√

c
1− β

.



Confidence estimation
Goal:

P(|θ̂ − θ| ≤ ε) ≥ 1− α.

(given precision ε at a given level of confidence 1− α).
We are to choose an estimator and a sufficient number of
samples.

Possible approaches:

Chebyshev inequality:

P(|θ̂ − θ| > ε) ≤ MSE
ε2 .

Problem: appears to be too loose.

Exponential inequalities? Problems with this approach:
f is usually unbounded,
involve quantities difficult to compute explicitly.
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Median of Averages (MA)

Generate m independent copies of the Markov chain and
compute estimators (averages):

X (1)
0 , X (1)

1 , . . . , X (1)
t , . . . 7−→ θ̂(1),

· · ·

X (m)
0 , X (m)

1 , . . . , X (m)
t , . . . 7−→ θ̂(m).

Estimator MA:
θ̂ = med

(
θ̂(1), . . . , θ̂(m)

)
.



Median of Averages (MA)

θ̂ = med
(
θ̂(1), . . . , θ̂(m)

)
.

Idea (Jerrum, Valiant and Vazirani, 1986):

Fix an initial moderate level of confidence 1− a < 1− α and
use Chebyshev inequality to get

P(|θ̂(j) − θ| > ε) ≤ a (j = 1, . . . , m).

Then boost the level of confidence from 1− a to 1− α by
computing a median:

P(|θ̂ − θ| > ε) ≤ 1
2

exp{−m/b} = α.

Optimizing the constants: 1− a = 0.88031, b = 2.3147
(Niemiro and Pokarowski, 2009, J. Appl. Probab.)



How tight are the bounds?
Asymptotic level of confidence, based on CLT:

lim
ε→0

P(|θ̂ − θ| > ε) = α,

for the number of samples

n ∼ σ2
as(f )
ε2

[
Φ−1(1− α/2)

]2
,

(θ̂ is a simple average over n samples)

Nonasymptotic level of confidence:

P(|θ̂ − θ| > ε) ≤ α,

for the expected number of samples

mETR(n) ∼ mn ∼ C · σ2
as(f )
ε2 log(2α)−1,

(θ̂ is MA with sequential/regenerative averages)

Symbol ∼ refers to α, ε → 0.
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Complexity comparison

Asymptotic:

n ∼ σ2
as(f )
ε2

[
Φ−1(1− α/2)

]2
,

Nonasymptotic:

mETR(n) ∼ mn ∼ C · σ2
as(f )
ε2 log(2α)−1,

(θ̂ is MA using sequential/regenerative averages)

[
Φ−1(1− α/2)

]2
∼ 2 log(2α)−1, (α → 0),

C ≈ 19.34.
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Problem

How to obtain practically applicable and explicitly computable
bounds on σ2

as(f ) ?
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