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P(x,-) > pl(x € J)v(-).
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Small set and regeneration

P(x,A) = P(X, € AlXp_1 = X).

ASSUMPTION (Small set)
There exist J C X, a probability measure v and 3 > 0 such that

P(x,-) > pl(x € J)v(-).

Q(x,-) := P(x,-) — BI(x € J)v(-) is the , residual’
(sub-stochastic) kernel.

o If X,_1 ¢ Jthendraw X, ~ P(X,_1,-), no regeneration;
@ If X,_1 € Jthen
e with probability 1 — g draw X, ~ Q(Xs—1,-)/(1 — 8), no
regeneration;
e with probability 5 draw X, ~ v(-), Regeneration.
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necessary (Mykland et al. 1995).



Regeneration

Remark: Actual sampling from Q(X,_1,-)/(1 — () is not
necessary (Mykland et al. 1995).

Start with Xy ~ v(+) so that regeneration occurs at 7o = 0.
Times of regeneration partition a trajectory into iid blocks:

XOv"'7XT1—1s XT17"'7XT2—15 XTgu"'7XT3—1s

T T T
R R R

R = Regeneration



A sequential-regenerative estimator

0="Ty, Ty,..., Tr,...— moments of regeneration.

Fix n.

R(n) := min{r: T, > n}.

Estimator: o
R 1 R(n) ™
HTH(n) TH(n) ,z(:) f(X/)
0,...,T~|—17 T1, ...... , TR(,,)_1,...,n,...,TR(n)—1,
7 7 7 7
R R R n

The estimator uses the part of trajectory written in blue



@ Introduction

@ Computing integrals via MCMC
@ Accuracy bounds

Q Regeneration

@ Small set and regeneration
@ A sequential-regenerative estimator

e Accuracy bounds

@ Mean Square Error

@ Confidence estimation and Median of Averages
@ How tight are the bounds?

«0O>» «F>r « =

<

it
v

DA



Mean Square Error
The integral of interest and its MCMC estimator:

HZW(f)Z/Xf(X)W(X)an o =




Mean Square Error
The integral of interest and its MCMC estimator:

= /X FO)m(x)dx, Oy, = ! Z f(Xi)

THEOREM
Under Assumption (Small set),

2
() MSE = E(érﬂ(n) —0)? < Ua;(f) (1 + @) ;
(Il) E TR(n) < N+ o,

where




Proof

() Two identities of Abraham Wald (sequential analysis):
If R is a stopping time then
EZIR:1 Tk = ERET, where Tk = Tk — Tk_1,

Var 37, di = ERVard;, where d = > /7' (f(X;) — 0).

i=Tk_1

(i) Lorden’s theorem (1970, renewal theory).



A geometric drift condition

ASSUMPTION (Drift)

There exist a function u : X — [1,00), constants A < 1 and
C < oo such that

Au(x) forx & J,
cA forx € J,

Qu(x) < {

where Q(x,-) := P(x,-) — Bl(x € J)v(-) and
Qu(x) = [, Q(x,dy)u(y).




Explicit bounds under a drift condition

Bounds on o2,4(f) and 1 which depend explicitly on the
parameters \, 3, ¢ and 7(u):

THEOREM
If Assumptions (Small set), (Drift) hold and (f — 6)? < u then

4A1 +9 Ax(1+ A1)
o2(f) < m(U) T + V) Sy

14+A
pe <2(n(u) + 1) 21,
logc
log(1 — )~
Cc

1-5

where Ay =

and A, =4
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Confidence estimation

Goal:
P60 — 0] <e)>1-—a.

(given precision ¢ at a given level of confidence 1 — «).
We are to choose an estimator and a sufficient number of
samples.

Possible approaches:

Chebyshev inequality:
MSE

B9 0] > ) < =

Problem: appears to be too loose.

Exponential inequalities? Problems with this approach:
@ fis usually unbounded,
@ involve quantities difficult to compute explicitly.



Median of Averages (MA)

Generate m independent copies of the Markov chain and
compute estimators (averages):

X xW X i),
x{moxm o ox™ g,

Estimator MA:
§ = med (0(”, o ,9<m>) .



Median of Averages (MA)
0 =med (90, 4tm).
Idea (Jerrum, Valiant and Vazirani, 1986):

Fix an initial moderate level of confidence 1 —a< 1 — a and
use Chebyshev inequality to get

P(|0V) — 0| >e)<a (j=1,...,m).

Then boost the level of confidence from 1 —ato 1 — a by
computing a median:

P(16 — 0] > ¢) < %exp{—m/b} =a.

Optimizing the constants: 1 — a = 0.88031, b = 2.3147
(Niemiro and Pokarowski, 2009, J. Appl. Probab.)



How tight are the bounds?
Asymptotic level of confidence, based on CLT:
lim P(1f — 6] > ) = o,

for the number of samples
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(0 is a simple average over n samples)



How tight are the bounds?
Asymptotic level of confidence, based on CLT:

lim P(1f — 6] > ) = o,

for the number of samples

n~ ”ggsz(f) [¢*1(1 —a2)

(9 is a simple average over n samples)
Nonasymptotic level of confidence:

P(|d — 0] > ¢) < a,
for the expected number of samples

2
METg(py ~ mn~ C - Ua;gf)log(Za)”,

(0 is MA with sequential/regenerative averages)

Symbol ~ refers to a, e — 0.



Complexity comparison
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Complexity comparison

Asymptotic:

Nonasymptotic:

2
mIET,q(,,) ~mn~ C- Ua;énlog(Za)_1,

(0 is MA using sequential/regenerative averages)

1 _ 2 1
0771 - a/2)|" ~2log(20)”",  (a—0),
C ~19.34.



Problem

How to obtain practically applicable and explicitly computable
bounds on o2,(f) ?
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