Nonasymptotic bounds on the estimation error for regenerative MCMC ${ }^{1}$

Wojciech Niemiro

Nicolaus Copernicus University, Toruń and University of Warsaw Poland

EPSRC Symposium Workshop on Markov Chain-Monte Carlo
Warwick, March 2009

[^0] Education Grant No. N N201387234.

Outline

(1) Introduction

- Computing integrals via MCMC
- Accuracy bounds

Outline

(9) Introduction

- Computing integrals via MCMC
- Accuracy bounds
(2) Regeneration
- Small set and regeneration
- A sequential-regenerative estimator

Accuracy bounds

- Mean Square Error
- Confidence estimation and Median of Averages
- How tight are the bounds?

Outline

(9) Introduction

- Computing integrals via MCMC
- Accuracy bounds
(2) Regeneration
- Small set and regeneration
- A sequential-regenerative estimator
(3) Accuracy bounds
- Mean Square Error
- Confidence estimation and Median of Averages
- How tight are the bounds?

(1) Introduction

- Computing integrals via MCMC
- Accuracy bounds
(2) Regeneration
- Small set and regeneration
- A sequential-regenerative estimator

3 Accuracy bounds

- Mean Square Error
- Confidence estimation and Median of Averages
- How tight are the bounds?

Computing integrals via MCMC

We are to compute

$$
\theta=\int_{\mathcal{X}} f(x) \pi(x) \mathrm{d} x=: \pi(f)
$$

where

- \mathcal{X} - state space,
- π - probability distribution on \mathcal{X},

Markov chain

MCMC estimator

Computing integrals via MCMC

We are to compute

$$
\theta=\int_{\mathcal{X}} f(x) \pi(x) \mathrm{d} x=: \pi(f)
$$

where

- \mathcal{X} - state space,
- π - probability distribution on \mathcal{X},

Markov chain

$$
X_{0}, X_{1}, \ldots, X_{t}, \ldots \quad \mathbb{P}\left(X_{t} \in \cdot\right) \rightarrow \pi(\cdot), \quad(t \rightarrow \infty)
$$

MCMC estimator

Computing integrals via MCMC

We are to compute

$$
\theta=\int_{\mathcal{X}} f(x) \pi(x) \mathrm{d} x=: \pi(f)
$$

where

- \mathcal{X} - state space,
- π - probability distribution on \mathcal{X},

Markov chain

$$
X_{0}, X_{1}, \ldots, X_{t}, \ldots \quad \mathbb{P}\left(X_{t} \in \cdot\right) \rightarrow \pi(\cdot), \quad(t \rightarrow \infty)
$$

MCMC estimator

$$
\hat{\theta}_{T}=\frac{1}{T} \sum_{i=0}^{T-1} f\left(X_{i}\right) \rightarrow \theta \quad(T \rightarrow \infty)
$$

Accuracy bounds

Mean square error:

$$
\mathrm{MSE}=\mathbb{E}\left(\hat{\theta}_{T}-\theta\right)^{2} \leq ?
$$

Accuracy bounds

Mean square error:

$$
\mathrm{MSE}=\mathbb{E}\left(\hat{\theta}_{T}-\theta\right)^{2} \leq ?
$$

Confidence bounds:

$$
\mathbb{P}\left(\left|\hat{\theta}_{T}-\theta\right|>\varepsilon\right) \leq ?
$$

(1) Introduction

- Computing integrals via MCMC
- Accuracy bounds

(2) Regeneration

- Small set and regeneration
- A sequential-regenerative estimator

3 Accuracy bounds

- Mean Square Error
- Confidence estimation and Median of Averages
- How tight are the bounds?

Small set and regeneration

$$
P(x, A)=\mathbb{P}\left(X_{n} \in A \mid X_{n-1}=x\right) .
$$

ASSUMPTION (Small set)

There exist $J \subseteq \mathcal{X}$, a probability measure ν and $\beta>0$ such that

$$
P(x, \cdot) \geq \beta \mathbb{I}(x \in J) \nu(\cdot) .
$$

Small set and regeneration

$$
P(x, A)=\mathbb{P}\left(X_{n} \in A \mid X_{n-1}=x\right) .
$$

ASSUMPTION (Small set)

There exist $J \subseteq \mathcal{X}$, a probability measure ν and $\beta>0$ such that

$$
P(x, \cdot) \geq \beta \mathbb{I}(x \in J) \nu(\cdot)
$$

$Q(x, \cdot):=P(x, \cdot)-\beta \mathbb{I}(x \in J) \nu(\cdot)$ is the ,,residual" (sub-stochastic) kernel.

Small set and regeneration

$$
P(x, A)=\mathbb{P}\left(X_{n} \in A \mid X_{n-1}=x\right)
$$

ASSUMPTION (Small set)

There exist $J \subseteq \mathcal{X}$, a probability measure ν and $\beta>0$ such that

$$
P(x, \cdot) \geq \beta \mathbb{I}(x \in J) \nu(\cdot)
$$

$Q(x, \cdot):=P(x, \cdot)-\beta \mathbb{I}(x \in J) \nu(\cdot)$ is the ,,residual" (sub-stochastic) kernel.

- If $X_{n-1} \notin J$ then draw $X_{n} \sim P\left(X_{n-1}, \cdot\right)$, no regeneration;
- If $X_{n-1} \in J$ then
- with probability $1-\beta$ draw $X_{n} \sim Q\left(X_{n-1}, \cdot\right) /(1-\beta)$, no regeneration;
- with probability β draw $X_{n} \sim \nu(\cdot)$, Regeneration.

Regeneration

Remark: Actual sampling from $Q\left(X_{n-1}, \cdot\right) /(1-\beta)$ is not necessary (Mykland et al. 1995).

Start with $X_{0} \sim \nu(\cdot)$ so that regeneration occurs at $T_{0}=0$.
Times of regeneration partition a trajectory into iid blocks:

Regeneration

Remark: Actual sampling from $Q\left(X_{n-1}, \cdot\right) /(1-\beta)$ is not necessary (Mykland et al. 1995).

Start with $X_{0} \sim \nu(\cdot)$ so that regeneration occurs at $T_{0}=0$. Times of regeneration partition a trajectory into iid blocks:

$R=$ Regeneration

A sequential-regenerative estimator

$$
0=T_{0}, T_{1}, \ldots, T_{r}, \ldots-\text { moments of regeneration. }
$$

Fix n.

$$
R(n):=\min \left\{r: T_{r} \geq n\right\} .
$$

Estimator:

$$
\hat{\theta}_{T_{R(n)}}=\frac{1}{T_{R(n)}} \sum_{i=0}^{T_{R(n)}-1} f\left(X_{i}\right) .
$$

$0, \ldots, T_{1}-1$,	$T_{1}, \ldots \ldots$,	$T_{R(n)-1}, \ldots, n, \ldots, T_{R}(n)-1$,	$T_{R(n)}, \ldots$	
\uparrow	\uparrow	\uparrow	\uparrow	\uparrow
R	R	R	n	R

The estimator uses the part of trajectory written in blue
(1) Introduction

- Computing integrals via MCMC
- Accuracy bounds
(2) Regeneration
- Small set and regeneration
- A sequential-regenerative estimator
(3) Accuracy bounds
- Mean Square Error
- Confidence estimation and Median of Averages
- How tight are the bounds?

Mean Square Error

The integral of interest and its MCMC estimator:

$$
\theta=\pi(f)=\int_{\mathcal{X}} f(x) \pi(x) \mathrm{d} x, \quad \hat{\theta}_{T_{R(n)}}=\frac{1}{T_{R(n)}} \sum_{i=0}^{T_{R(n)}-1} f\left(X_{i}\right)
$$

THEOREM
Under Assumption (Small set)

Mean Square Error

The integral of interest and its MCMC estimator:

$$
\theta=\pi(f)=\int_{\mathcal{X}} f(x) \pi(x) \mathrm{d} x, \quad \hat{\theta}_{T_{R(n)}}=\frac{1}{T_{R(n)}} \sum_{i=0}^{T_{R(n)}-1} f\left(X_{i}\right)
$$

THEOREM
Under Assumption (Small set),
(i) MSE $=\mathbb{E}\left(\hat{\theta}_{T_{R(n)}}-\theta\right)^{2} \leq \frac{\sigma_{a s}^{2}(f)}{n}\left(1+\frac{\mu_{2}}{n}\right)$,
(ii) $\mathbb{E} T_{R(n)} \leq n+\mu_{2}$,
where

$$
\sigma_{a s}^{2}(f)=\frac{1}{\mathbb{E} T_{1}} \mathbb{E}\left[\sum_{i=0}^{T_{1}-1}\left(f\left(X_{i}\right)-\theta\right)\right]^{2}, \quad \mu_{2}=\frac{\mathbb{E} T_{1}^{2}}{\mathbb{E} T_{1}}-1 .
$$

Proof

(i) Two identities of Abraham Wald (sequential analysis):

If R is a stopping time then
$\mathbb{E} \sum_{i=1}^{R} \tau_{k}=\mathbb{E} R \mathbb{E} \tau_{1}$, where $\tau_{k}=T_{k}-T_{k-1}$,
$\operatorname{Var} \sum_{i=1}^{R} d_{k}=\mathbb{E} R \operatorname{Var} d_{1}$, where $d_{k}=\sum_{i=T_{k-1}}^{T_{k}-1}\left(f\left(X_{i}\right)-\theta\right)$.
(ii) Lorden's theorem (1970, renewal theory).

A geometric drift condition

ASSUMPTION (Drift)

There exist a function $u: \mathcal{X} \rightarrow[1, \infty)$, constants $\lambda<1$ and $c<\infty$ such that

$$
Q u(x) \leq \begin{cases}\lambda u(x) & \text { for } x \notin J \\ c \lambda & \text { for } x \in J\end{cases}
$$

where $Q(x, \cdot):=P(x, \cdot)-\beta \mathbb{\mathbb { I }}(x \in J) \nu(\cdot)$ and
$Q u(x):=\int_{\mathcal{X}} Q(x, d y) u(y)$.

Explicit bounds under a drift condition

Bounds on $\sigma_{a s}^{2}(f)$ and μ_{2} which depend explicitly on the parameters λ, β, c and $\pi(u)$:
THEOREM
If Assumptions (Small set), (Drift) hold and $(f-\theta)^{2} \leq u$ then

$$
\begin{aligned}
& \sigma_{a s}^{2}(f) \leq \pi(u) \frac{4 A_{1}+9}{1-\lambda}+\sqrt{\pi(u)} \frac{A_{2}\left(1+A_{1}\right)}{(1-\lambda)^{3 / 2}} \\
& \mu_{2} \leq 2(\pi(u)+1) \frac{1+A_{1}}{1-\lambda} \\
& \text { where } A_{1}=\frac{\log c}{\log (1-\beta)^{-1}} \\
& \text { and } A_{2}=4 \sqrt{\frac{c}{1-\beta}}
\end{aligned}
$$

Confidence estimation

Goal:

$$
\mathbb{P}(|\hat{\theta}-\theta| \leq \varepsilon) \geq 1-\alpha .
$$

(given precision ε at a given level of confidence $1-\alpha$). We are to choose an estimator and a sufficient number of samples.

Possible approaches:
Chebyshev inequality:

Problem: appears to be too loose.

Exponential inequalities? nroblems with this approach - f is usually unbounded, - involve quantitins diffinult to compute explicitly

Confidence estimation

Goal:

$$
\mathbb{P}(|\hat{\theta}-\theta| \leq \varepsilon) \geq 1-\alpha
$$

(given precision ε at a given level of confidence $1-\alpha$).
We are to choose an estimator and a sufficient number of samples.

Possible approaches:
Chebyshev inequality:

$$
\mathbb{P}(|\hat{\theta}-\theta|>\varepsilon) \leq \frac{\mathrm{MSE}}{\varepsilon^{2}}
$$

Problem: appears to be too loose.
Exponential inequalities? Problems with this approach: - f is usually unbounded,

Confidence estimation

Goal:

$$
\mathbb{P}(|\hat{\theta}-\theta| \leq \varepsilon) \geq 1-\alpha
$$

(given precision ε at a given level of confidence $1-\alpha$).
We are to choose an estimator and a sufficient number of samples.

Possible approaches:
Chebyshev inequality:

$$
\mathbb{P}(|\hat{\theta}-\theta|>\varepsilon) \leq \frac{\mathrm{MSE}}{\varepsilon^{2}}
$$

Problem: appears to be too loose.
Exponential inequalities? Problems with this approach:

- f is usually unbounded,
- involve quantities difficult to compute explicitly.

Median of Averages (MA)

Generate m independent copies of the Markov chain and compute estimators (averages):

$$
\begin{aligned}
& X_{0}^{(1)}, X_{1}^{(1)}, \ldots, X_{t}^{(1)}, \ldots \quad \longmapsto \quad \hat{\theta}^{(1)} \\
& \cdots \\
& X_{0}^{(m)}, X_{1}^{(m)}, \ldots, X_{t}^{(m)}, \ldots \quad \longmapsto \quad \hat{\theta}^{(m)}
\end{aligned}
$$

Estimator MA:

$$
\hat{\theta}=\operatorname{med}\left(\hat{\theta}^{(1)}, \ldots, \hat{\theta}^{(m)}\right)
$$

Median of Averages (MA)

$$
\hat{\theta}=\operatorname{med}\left(\hat{\theta}^{(1)}, \ldots, \hat{\theta}^{(m)}\right) .
$$

Idea (Jerrum, Valiant and Vazirani, 1986):
Fix an initial moderate level of confidence $1-\boldsymbol{a}<1-\alpha$ and use Chebyshev inequality to get

$$
\mathbb{P}\left(\left|\hat{\theta}^{(j)}-\theta\right|>\varepsilon\right) \leq a \quad(j=1, \ldots, m) .
$$

Then boost the level of confidence from $1-\boldsymbol{a}$ to $1-\alpha$ by computing a median:

$$
\mathbb{P}(|\hat{\theta}-\theta|>\varepsilon) \leq \frac{1}{2} \exp \{-m / b\}=\alpha .
$$

Optimizing the constants: $1-a=0.88031, b=2.3147$ (Niemiro and Pokarowski, 2009, J. Appl. Probab.)

How tight are the bounds?

Asymptotic level of confidence, based on CLT:

$$
\lim _{\varepsilon \rightarrow 0} \mathbb{P}(|\hat{\theta}-\theta|>\varepsilon)=\alpha
$$

for the number of samples

$$
n \sim \frac{\sigma_{a s}^{2}(f)}{\varepsilon^{2}}\left[\Phi^{-1}(1-\alpha / 2)\right]^{2}
$$

($\hat{\theta}$ is a simple average over n samples)
Nonasymptotic level of confidence:
for the expected number of samples
($\hat{\theta}$ is MA with sequential/regenerative averages)

How tight are the bounds?

Asymptotic level of confidence, based on CLT:

$$
\lim _{\varepsilon \rightarrow 0} \mathbb{P}(|\hat{\theta}-\theta|>\varepsilon)=\alpha
$$

for the number of samples

$$
n \sim \frac{\sigma_{a s}^{2}(f)}{\varepsilon^{2}}\left[\Phi^{-1}(1-\alpha / 2)\right]^{2}
$$

($\hat{\theta}$ is a simple average over n samples)
Nonasymptotic level of confidence:

$$
\mathbb{P}(|\hat{\theta}-\theta|>\varepsilon) \leq \alpha
$$

for the expected number of samples

$$
m \mathbb{E} T_{R(n)} \sim m n \sim C \cdot \frac{\sigma_{a s}^{2}(f)}{\varepsilon^{2}} \log (2 \alpha)^{-1}
$$

($\hat{\theta}$ is MA with sequential/regenerative averages)
Symbol \sim refers to $\alpha, \varepsilon \rightarrow 0$.

Complexity comparison

Asymptotic:

$$
n \sim \frac{\sigma_{a s}^{2}(f)}{\varepsilon^{2}}\left[\Phi^{-1}(1-\alpha / 2)\right]^{2}
$$

Nonasymptotic:

$$
m \mathbb{E} T_{R(n)} \sim m n \sim C \cdot \frac{\sigma_{a s}^{2}(f)}{\varepsilon^{2}} \log (2 \alpha)^{-1}
$$

($\hat{\theta}$ is MA using sequential/regenerative averages)

Complexity comparison

Asymptotic:

$$
n \sim \frac{\sigma_{a s}^{2}(f)}{\varepsilon^{2}}\left[\Phi^{-1}(1-\alpha / 2)\right]^{2}
$$

Nonasymptotic:

$$
m \mathbb{E} T_{R(n)} \sim m n \sim C \cdot \frac{\sigma_{a s}^{2}(f)}{\varepsilon^{2}} \log (2 \alpha)^{-1}
$$

($\hat{\theta}$ is MA using sequential/regenerative averages)

$$
\begin{aligned}
{\left[\Phi^{-1}(1-\alpha / 2)\right]^{2} } & \sim 2 \log (2 \alpha)^{-1}, \quad(\alpha \rightarrow 0) \\
C & \approx 19.34
\end{aligned}
$$

Problem

How to obtain practically applicable and explicitly computable bounds on $\sigma_{\text {as }}^{2}(f)$?

[^0]: ${ }^{1}$ Work partially supported by Polish Ministry of Science and Higher

