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Fitting SDEs to Molecular Dynamics

MD data

X (n∆t) ∈ RN

Multiple Timescales
High frequency data
High dimension, only few
dimensions of chemical
interest
Diffusion good description at
some timescales only.
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Programme

Start from SDE

dx = b(x)dt + dB, x(0) = x0

and high-frequency discrete time observations xi .
Write down likelihood for b(·) on function space H.
Modify likelihood to make the local time L an (almost)
sufficient statistic.
Specify prior on function space H, compute posterior.
Make Bayesian framework rigorous.
Application: Toy example from Molecular Dynamics
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SDE properties - Girsanov

dx = b(x)dt + dB

Generates measure P on path space C ([0, T ], [0, 2π)).
P is absolutely continuous w.r.t. Q generated by Brownian
Motion.
The Radon-Nikodym derivative is

dP
dQ

= exp (I[b])

I[b] viewed as functional of the drift:

I[b] = −1
2

∫ T

0

(
b2(x)dt − 2b(x)dx

)
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Local Time

Local time is the empirical occupation density:

1
T

∫ T

0
f (xt)dt =

∫
R

f (a)
L(a)

T
da

L is continuous but not differentiable.
In the limit T →∞ it becomes smooth:

lim
T→∞

1
T

L = %∞
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The Likelihood Functional

I[b] = log
dP
dQ

= −1
2

∫ T

0

(
b2(x)dt − 2b(x)dx

)

Start from the Girsanov change of measure.
Apply the Ito formula for V (x) to rewrite the stochastic
integral as boundary terms plus correction.
Replace Integrals along the trajectory by integral against
local time L(a)da.
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The Likelihood Functional

I[b] =
1
2

(V (XT )− V (X0)) +
W
2

(V (2π)− V (0))−

1
2

∫ T

0

(
b2(x) + 2b′(x)

)
dt .

Start from the Girsanov change of measure.
Apply the Ito formula for V (x) to rewrite the stochastic
integral as boundary terms plus correction.
Replace Integrals along the trajectory by integral against
local time L(a)da.
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If local time was smooth

I[b] =Boundary− 1
2

∫ (
b2 + 2b′

)
Lda

=Boundary− 1
2

∫
b2L− 2bL′da

≤Boundary− ‖L‖∞‖b‖2
L2 − ‖b‖2

L2 − ‖L′‖2
L2

the log-likelihood I[b] is bounded above on b ∈ L2(0, 2π).
Taking the functional derivative yields the MLE

b̂ =
L′

2L
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Infinite Dimensional Trouble

−I[b] =

∫ 2π

0
|b(a)|2L(a)+b′(a)L(a)da

For smooth L the functional is
positive definit.
Quadratic positive definit
functionals are bounded
below.
BUT L is not differentiable!
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Infinite Dimensional Trouble

−I[b] =

∫ 2π

0
|b(a)|2L(a)︸ ︷︷ ︸

Term A

+ b′(a)L(a)︸ ︷︷ ︸
Term B

da

Quadratic in the L2-direction
(Term A)
Linear in the
Derivative-direction (Term B)
Hence cylindrical paraboloid -
not bounded below!
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Three Options

Boundary− 1
2

∫ 2π

0

(
|b(a)|2 + b′(a)

)
L(a)da.

1 Assume a parametric form b(x , θ)

2 Introduce a regularised version of L(a)da.
3 Introduce a prior measure on drift functions b(·) and

perform Bayesian estimation.
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Gaussian Prior on drift functions

Specify a prior Gaussian measure for zero-mean drift functions
by

Its Mean:
b0 ∈ H2

per([0, 2π])

Its Precision (operator): C0 = ∆2 on [0, 2π] periodic,
mean-zero.

Formally:

db ∝ exp

(
−
∫ 2π

0
|∆b(a)−∆b0(a)|2 da

)
dλ
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Finding the Posterior - formally

Multiply prior “density” by likelihood:

µ ∝ exp

(
−
∫ 2π

0
|∆b(a)|2 da

)
·exp

(∫ 2π

0
|b(a)|2L(a) + b′(a)L(a)da

)

Complete the square to find that the posterior is Gaussian
with

Mean (
∆2 + L

)
b̂ =

1
2

L′ + χ̃X0,XT + W

Posterior Covariance (
∆2 + L

)−1
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Posterior Mean is the solution of a PDE

Theorem
Let L ∈ C([0, 2π]) be continuous and periodic and not identically
zero. Then the PDE for the posterior mean

∆2u + Lu =
1
2

L′ + W + χ̃x0,xT (1)

has a unique weak solution u ∈ H2
per([0, 2π]).



Molecular Dynamics Data SDEs – Towards the likelihood Nonparametric Bayesian Extensions Summary

Robustness of the Posterior Mean

Theorem
There exists a constant C(W , ‖L‖∞) > 0 such that for all
admissible perturbed local times L̃ the deviation of the
perturbed posterior mean ũ from the unpterturbed posterior
mean u is bounded in the H2-norm:

‖ũ − u‖H2 ≤ C(W , ‖L‖∞)‖L̃− L‖L2 (2)
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Cleanup

Observe absolute continuity of posterior and prior
measure, ∆2 and ∆2 + L differ only in lower order
differential parts.
Compute the Radon-Nikodym derivative and identify with
the likelihood.
Simple estimate of local time from pointwise estimations
combined with Hölder continuity of local time, so that
‖L̂− L‖L2 is small.
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Numerical Treatment

Fourth order elliptic PDE with non-regular right hand side.
Use piecewise cubic polynomial base functions on each
finite element.

b(a) =
K∑

e=1

4∑
f=1

Be,f φe,f (a)
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Numerics: Samples from Posterior

dx = −sin(x) + 3cos2(x)sin(x)dt + dB

Second order
prior covariance:
A = ∆−2
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Numerics: Samples from Posterior

dx = −sin(x) + 3cos2(x)sin(x)dt + dB

First order prior
covariance:
A = ∆−1
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Samples from the Posterior are usable
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Convergence as T →∞

Gaussian boundary conditions with second order covariance
operator. T = 0.02
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Convergence as T →∞

Gaussian boundary conditions with second order covariance
operator. T = 50
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Convergence as T →∞

Gaussian boundary conditions with second order covariance
operator. T = 5000
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Rates of posterior contraction

For Z1 = b̂(0.38π)− b(0.38π) and Z2 =
∫ 2π

0 b̂(a) sin(a)da.
Questions:

Do we have a law of large numbers Zi → 0 as T →∞ ?
Do we get CLT-like convergence? Var(Zi) = O

( 1
T

)
(Numerical) Answers:

Numerically, limT→∞ Zi = 0 is observed.
Decay of Variance: Answer depends on i !
High frequency components of L′ can dominate the
convergence.
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Rate of Posterior Contraction – Smooth Functional
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Rate of Posterior Contraction – Point Evaluation
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Molecular Dynamics

MẌ (t) = −∇V (X (t))− γMẊ (t) +
√

2γkBTMḂ
X 7→ ω(X )



Molecular Dynamics Data SDEs – Towards the likelihood Nonparametric Bayesian Extensions Summary

Fitting Result

Whether data looks like a diffusion depends on timescale.
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Fitting Result

Posterior mean and standard deviation band for k = 1000:
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Extensions

Numerically, the method also works for
second order covariance operators
Gaussian boundary conditions
the whole real line

Future work:
Extension to higher dimensions (2,3)
Low-frequency data by sampling from missing local time.
Convergence properties for various test functionals
(singular limit problem in PDE theory)
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Summary

Nonparametric drift estimation for diffusions on the circle
can be performed rigorously for Gaussian prior (conjugate
prior).
Finite element implementation enables error control from
discrete time high frequency samples all the way to
numerically obtained posterior means.
Applications are in molecular dynamics and other areas
where data with multiple timescales pose problems.
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