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Molecular Dynamics Data

Fitting SDEs to Molecular Dynamics

MD data

X(nAt) e RN

@ Multiple Timescales
@ High frequency data

@ High dimension, only few
dimensions of chemical
interest

@ Diffusion good description at
some timescales only.



SDEs — Towards the likelihood

Programme

Start from SDE
dx = b(x)dt + dB, x(0) = Xxp

and high-frequency discrete time observations x;.
@ Write down likelihood for b(-) on function space H.

@ Modify likelihood to make the local time L an (almost)
sufficient statistic.

@ Specify prior on function space H, compute posterior.
Make Bayesian framework rigorous.

@ Application: Toy example from Molecular Dynamics



SDEs — Towards the likelihood

SDE properties - Girsanov

dx = b(x)dt+ dB

@ Generates measure P on path space C ([0, T], [0, 27)).



SDEs — Towards the likelihood

SDE properties - Girsanov

dx = b(x)dt+ dB

@ Generates measure P on path space C ([0, T], [0, 27)).
@ P is absolutely continuous w.r.t. Q generated by Brownian

Motion.
@ The Radon-Nikodym derivative is
ar
aQ - exp (/[b])

I[b] viewed as functional of the drift:

I - —% /0 T(bz(x)dt—Zb(x)dx)



SDEs — Towards the likelihood

Local Time

Local time is the empirical occupation density:

)
;Aammzéﬂ@ﬁ@w

@ L is continuous but not differentiable.
@ Inthe limit T — oo it becomes smooth:

1
lim =L =™

T—o0



SDEs — Towards the likelihood
The Likelihood Functional

1] = log & = —% / ' (£P(x)at — 2b(x)0x)

0

@ Start from the Girsanov change of measure.



SDEs — Towards the likelihood

The Likelihood Functional

6] = —% /0 ' (P00t — 26(x)0x)

@ Start from the Girsanov change of measure.

@ Apply the Ito formula for V(x) to rewrite the stochastic
integral as boundary terms plus



SDEs — Towards the likelihood

The Likelihood Functional

6] = (V(Xr) — V(X)) + 5 (V(@r) — V(0)-

% /0 ' (6P(x) +2b/(x)) et

@ Start from the Girsanov change of measure.

@ Apply the lto formula for V(x) to rewrite the stochastic
integral as boundary terms plus .

@ Replace Integrals along the trajectory by integral against
local time L(a)da.



SDEs — Towards the likelihood

The Likelihood Functional

6] = (V(Xr) — V(X)) + 5 (V(@r) — V(0)-

;/0‘27 (b7(a) +26/(a)) L(a)de.

@ Start from the Girsanov change of measure.

@ Apply the lto formula for V(x) to rewrite the stochastic
integral as boundary terms plus .

@ Replace Integrals along the trajectory by integral against
local time L(a)da.



SDEs — Towards the likelihood

If local time was smooth

/[b] =Boundary — ;/ <b2 + 2b’) Lda

=Boundary — % / b?L —2bl'da

<Boundary — [|Lloc|b]| 7> — [Ib]F2 — I L'||72

e the log-likelihood /[b] is bounded above on b € L2(0, 27).



SDEs — Towards the likelihood

If local time was smooth

/[b] =Boundary — ;/ <b2 + 2b’) Lda

=Boundary — % / b?L —2bl'da

<Boundary — [|Lloc|b]| 7> — [Ib]F2 — I L'||72

e the log-likelihood /[b] is bounded above on b € L2(0, 27).
@ Taking the functional derivative yields the MLE

/

b:ﬂ



SDEs — Towards the likelihood

Infinite Dimensional Trouble

I[b]

2
_I[b] = /0 \b(a)[2L(a)+b (a)L(a)da

@ For smooth L the functional is &

positive definit.

@ Quadratic positive definit
functionals are bounded
below.

@ BUT L is not differentiable!




SDEs — Towards the likelihood

Infinite Dimensional Trouble

1[b]
27
_Ib] = / Ib(a)[2L(a) + b/ (a)L(a) da
0 —— —{—
Term A Term B

L , , (0.0)
@ Quadratic in the L2-direction

(Term A) f g
@ Linear in the ;_/1)

Derivative-direction (Term B)

@ Hence cylindrical paraboloid -
not bounded below! (0,-2)




SDEs — Towards the likelihood

Three Options

Boundary — % /0 ” (1b@P + b(a)) La)da.

@ Assume a parametric form b(x, 0)
@ Introduce a regularised version of L(a)da.

© Introduce a prior measure on drift functions b(-) and
perform Bayesian estimation.



Nonparametric Bayesian

Gaussian Prior on drift functions

Specify a prior Gaussian measure for zero-mean drift functions
by
@ Its Mean:
by € Hz.([0,27])
@ lts Precision (operator): Co = A? on [0, 2] periodic,
mean-zero.
Formally:

2
db o exp (— / [Ab(a) — Aby(a)[? da) dA
0



Nonparametric Bayesian

Finding the Posterior - formally

Multiply prior “density” by likelihood:

2 21
11 o exp (- /O Ab(a)]? da) xp ( /0 Ib(a)PL(a) + b’(a)L(a)da)



Nonparametric Bayesian

Finding the Posterior - formally

Multiply prior “density” by likelihood:

2 21
11 o exp (- /O Ab(a)]? da) xp ( /0 Ib(a)PL(a) + b’(a)L(a)da)

Complete the square to find that the posterior is Gaussian
with
@ Mean
(A2+L)b: U+ Sxoxr + W

@ Posterior Covariance

(A2 + L)_1



Nonparametric Bayesian

Posterior Mean is the solution of a PDE

Theorem

Let L € C([0,27]) be continuous and periodic and not identically
zero. Then the PDE for the posterior mean

1
A2U+LUZ§LI+ W + Xxo.xr (1)

has a unique weak solution u € Hz([0, 2]).




Nonparametric Bayesian

Robustness of the Posterior Mean

Theorem

There exists a constant C(W, ||L||~) > 0 such that for all
admissible perturbed local times L the deviation of the
perturbed posterior mean t from the unpterturbed posterior
mean u is bounded in the H?-norm:

18 = ullpe < C(W, ILJloo)IIL = L2 ()

<




Nonparametric Bayesian

Cleanup

@ Observe absolute continuity of posterior and prior
measure, A and A2 + L differ only in lower order
differential parts.

@ Compute the Radon-Nikodym derivative and identify with
the likelihood.

@ Simple estimate of local time from pointwise estimations
combined with Hélder continuity of local time, so that
|IL — L||;2 is small.



Nonparametric Bayesian

Numerical Treatment

g

@ Fourth order elliptic PDE with non-regular right hand side.

@ Use piecewise cubic polynomial base functions on each
finite element.

K 4
b(a) =Y > Berber(a)

e=1 f=1



Nonparametric Bayesian

Numerics: Samples from Posterior

dx = —sin(x)+ 3cos?(x)sin(x)dt + dB

Farces — Final ime T=2000,3 Samples from 82-Pasterior

Second order
prior covariance:
A=A2




Nonparametric Bayesian

Numerics: Samples from Posterior

dx = —sin(x)+ 3cos?(x)sin(x)dt + dB

Farces — Final ime T=2000,2 Samples from 81-Pasterior

First order prior
covariance:
A=A




Nonparametric Bayesian

the Posterior are usable

‘Sample from posterior force
¢ Evaluation points for posterior force

4 50 100 150 200 250 300 350 400 450 500

Sample from SDE with poslenor drift sample

M T

Xt




Nonparametric Bayesian

Convergence as T — oo

Gaussian boundary conditions with second order covariance
operator. T =0.02

Robin-boundary: bondary variance=10, T=0.02

5
— P psterior Mean|
2 Truth
samples
3
ol

bix)




Nonparametric Bayesian

Convergence as T — oo

Gaussian boundary conditions with second order covariance
operator. T =50

Robin-bourdary: bordary variance=10, T=50

5
— P psterior Mean|
2 Truth
samples
3

bix)




Nonparametric Bayesian

Convergence as T — oo

Gaussian boundary conditions with second order covariance
operator. T =5000

Robin-boundary: bondary variance=10, T=5000

— P psterior Mean|
------ Truth
samples

bix)
o




Nonparametric Bayesian

Rates of posterior contraction

For Z; = b(0.387) — b(0.387) and Z, = [" b(a) sin(a)da.
Questions:

@ Do we have a law of large numbers Z; - 0as T — oo ?

@ Do we get CLT-like convergence? Var(Z) = O ()



Nonparametric Bayesian

Rates of posterior contraction

For Z; = b(0.387) — b(0.387) and Z, = [" b(a) sin(a)da.
Questions:
@ Do we have a law of large numbers Z; - 0as T — oo ?
@ Do we get CLT-like convergence? Var(Z) = O ()
(Numerical) Answers:
@ Numerically, limr_ ., Z; = 0 is observed.
@ Decay of Variance: Answer depends on /!
High frequency components of L' can dominate the
convergence.



Nonparametric Bayesian

Rate of Posterior Contraction — Smooth Functional

Wariance of Posterior Marginal Mean - smooth marginalisation

o N=35
o M=71
MN=100
——LEQ fit to N=100, slope=-1.0284

log(/ar)




Nonparametric Bayesian

Rate of Posterior Contraction — Point Evaluation

Yariance of Posterior Marginal Mean - paint marginalisation
0~

o MN=35
[s)
-1 N=71
5 e o N=100
g e B ——LSQ fit to N=50, slope=-0.90036
B 18 B [pomse LSQ fit to N=100, slope=-0.4133:
e .
m
=
[my]
S -4f
_5_
5
s
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Nonparametric Bayesian
Molecular Dynamics

Butane Samplepath - Langevin Dynamics

—VV(X(t) — yMX(t) + \/2vkg TMB
X — w(X)

MX(t) =



Nonparametric Bayesian

Fitting Result

Whether data looks like a diffusion depends on timescale.

Apparent diffusivity of MD samplepath vs. subsampling
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Nonparametric Bayesian

Fitting Result

Posterior mean and standard deviation band for k = 1000:

Butane data: Posterior Drift Functions




Extensions

Extensions

Numerically, the method also works for
@ second order covariance operators
@ Gaussian boundary conditions
@ the whole real line
Future work:
@ Extension to higher dimensions (2,3)
@ Low-frequency data by sampling from missing local time.

@ Convergence properties for various test functionals
(singular limit problem in PDE theory)



Summary

Summary

@ Nonparametric drift estimation for diffusions on the circle
can be performed rigorously for Gaussian prior (conjugate
prior).

@ Finite element implementation enables error control from
discrete time high frequency samples all the way to
numerically obtained posterior means.

@ Applications are in molecular dynamics and other areas
where data with multiple timescales pose problems.
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