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Motivation

» Repeated MCMC under different samples :
e Bayesian p-values. X° = observed sample
Let H.(X) = E™[h(0)|X] be a test statistic and
P[H(X) > H(X°)] = p(X°) : a p value to evaluate p(X°)
compute
@ Forj=1,..J XU) ~ P and compute H(X\))

BUT... H(X®) evaluated using MCMC Yt — Time consuming
« Bayesian cross validation : Need of computing H(X("),
where X(=/) ¢ X for many (/).

e Evaluation of procedures by simulations

» prior sensitivity analysis : Need to compute H,(X) for
different ;.
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Framework

» Bayesian model
X~f, 00O, 0~m,

» Object of interest H.(X) = E"[h(0)|X]
» Evaluation with MCMC (0%)_, = MC (r(.|X))

F(X) = lT S~ h(ot)
t

» New sample: Y £ X

Ho(Y) = Jo h(O)[F(Y1]0)/f(X|0)]dm(0]X)
" Jo L(Y10)/f(X|0)]dm(0]X)
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Jo hO)F(Y10)/f(X|6)]dn(6]X)

HalY) = S0 (X 0)lam(@1X)

So No need to run a new MCMC : use IS on (0'); :

[y S h@)w(e'y.x) _ hw

Zl?-:1 W(917y7 X) w ’
where
for(¥) 7'(9)
9 =29 ' 1) =
W( 7.y7 X) fgt(X), Or W(077T 77T) 7T(0) b

» Much quicker
» How good/bad is it ?
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Convergence

» Back to the theory on MCMC convergence :
e Consistency (in T) : OK if MC ergodic
e rate : In the original MC : estimation of the function

h(9) = h(e)';gxyz

~— [ ~—

Usual tools e Asymptotic Variance
,yz — m,r(x)z
mz (y)2

¢ Variance estimation : Same asy var as

h(@)ww))( w(tr)  h(o)w(oy) )
A(w(0)) \E

E(
Z(0n) = —% (W(9)  E-(h(0)w(0))

{Hﬁvar(v‘v) + var(hw) — 2cov(w, h_w)Hﬂ} :

qQ/ 25



Outline

@ Theoretical properties

@ Behaviour of the weights

10/ 25



Behaviour of the weights

Wity x) = {40 6) = (8h)/m(01y)

X = (X1, ..., Xn) 4 y =1, ..., ¥n) + regul. condits =

W(e) _ en(éx—éy)’/(ﬁo)(é)—éx)“ + O(n_1/2)),

vargs (W(0) | x,¥y) = exp {n(@x — 0 I(6) (6" — HAV)} -1

» Stability 6 +# §Y — Instability.
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Stabilization by recentering

» Simple stabilization

~ A / f n|pn/
0, = 0; + 6V —6*, w(6;) = (6D F(y"16%)

_ 2\t ) 71/2
w@foe) 0P

e Very effective if posterior not too strongly multimodal
e Often 6* complicated to calculate : Two-step procedure
» Compute centering

é’y _ Zt OtWt
Dot Wi

» Apply centering
9; =0 + éy — 5)(

» Conditions x and y have marginally the same distribution
but are not nece. indpdt.

see also MacEachern+Perrugia
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Regression example (explicit calculations)

» Problem : Test for
Ho : Vi~ N(B0,0%) Hi:Yi~ N(Bo+ Bi1x;,07)
» test procedure : || < e versus|fi| > e =
Ho iff H(Y) = E™ [512\3/] <e
» pb : Choice of ¢ ? = use of p-value

Under Hy 0 = (5o, o) unknown =- Use of conditional predictive

p'Value (Bayarri+Berger, Robbins et al., Robert + Rousseau, Fraser + Rousseau)
p(Y?) = /@ Po[H(Y) > H(Y?)|0]dmo(610) = PolH(Y) > H(Y°)|d]
Special case here : 7(fp, #1,0) x 1/0 and n = 250.
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Sy — 7i)?
(n—4)3(x —Xx)?’

H(y) = Ex (87 | y.x) = 5 +

> Algorithm for each p-value
o [Y'[fo,8] ~ f(Y]0) = Ug + MCMC = (¢|Y") ¥ = (o, 51, 0),

o Forj =2, ..., J Simulate [Y/|5, 5] © f(Y|A)

eVj =2, .. Jcompute wy(s!, Y/, Y1) and ¢/ and

t\2

Hs(Y)) = 2’;(51), and also E, ([7’12 | Y’)
t Wit

/ t\\2 N R

HCS‘] — Zt VZVS((M/‘i;I) ) ’ (wi’)/ — ¢l‘ + wj _ 1/)1
tot

HCSZ _ Zt Vg;(&ff)”)zj (W)” _ 1/)1+ EW[¢|Yj] - En[w|y1]
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Results

250 p-values and for each : J = 1000 (M.C samples) and

T = 10% (MCMC samples) with burn-in = 1000

MCMC p-value

MLE centered IS p-value

0.4 0.6 0.8
"Exact" p-value

0.4 0.6 0.8
"Exact" p-value

Posterior mean centered IS p-value

0.2

0.4 0.6
"Exact" p-value

0.8

0.4 0.6
"Exact" p-value

0.8
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Weights

FiG.: Blue line is a kernel density estimate of the calculated variance
of the normalised IS weights. Red line is the density of a x?
distribution.
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Remarks

@ Weights : close to asymptotic
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Remarks

@ Weights : close to asymptotic
@ IS simple : OK but not marvelous
@ IS recentered (MLE or posterior) : much better

@ posterior distribution : close to Gaussian = perfect for
recentering.
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GOF : Nonparametric example

» Problem
Ho:f.e F against Hy:f, ¢ F, F={f,0 O cRY}
» Nonparametric model for 7¢ (VW+RR+R)
Fy|6)~ Gy, veS on[0,1] Ty gy, =1
If Y ~ fythen F(Y | 8) ~U(0,1). Model :
LW 10,9)=Hy[0)g(Fy|0)[v),0€0, veS

» prior on H;
dmi(0,v¢) = dmo(0)dn(v)
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Test

» Test statistic (Bayesian) H(x) = E.,[d(1,9(- | ©)) | x]
» p-value

p(x®) = /e PolH(y) > H(x®)|d]mo(0)d0

» Set up here fy = exp(8) mo = I'(y1,72) m1 = mixture of
triangular distributions (fixed partition, random weights)
= (kw), keN,weS={ze[0,1K,z =1},

K
9y [w, k) = Y wihi(y;k), (k)= C(p)p*, k=1,
i=0

7T(w ‘ k) = 'D(Ozo’k, e 7ak,k)7
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Algorithm

o yl(0¥ ~ f(y|0¥ = 0%)
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Algorithm

o y'6* ~ f(y|0¥ = 6~)
@ MCMC = RIMCMC 7t = (6!, k!, w!) for =(n|y")

Compute  H(y")
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Algorithm
o y'|0X ~ f(y|0¥ = 6~)
@ MCMC = RIMCMC n! = (6!, k!, w!) for x(n|y")
Compute  H(y")
o V=2 ..Jy 2y id)

_ 2 My Hoo)

Compute  wi(n',y',y") = H(y') = p(x°) J
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Algorithm

o y'|0X ~ f(y|0¥ = 6~)

@ MCMC = RIMCMC 5! = (6, k!, w!) for m(n|y")
Compute  H(y")

o V=2 ..Jy 2y id)

_ 22 Ty Hexo)
o J

@ Recentering : only on k = 2 : MLE or posterior mean of
(0, wy) Because

Compute  wi(n', ¥/, y") = H(y') = p(x°)

Pk =2lyy,....yn] =1+0p(1), if y=(1,...¥n) € Ho
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results

n =250, x° ~ exp(1/4), J = 1000, T = 100000 with burn-in =
5000 and 250 p-values
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weights
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conclusion

@ IS in MCMC for repeated sampling : promising
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@ Other improvements : If data set y/ too different from y' IS
not too good : consider (y', ..., y%) cunemneucetal
e for each : 1 MCMC
e New y/ : choose best y', 1 =1, ..., Jy compute IS with it.

@ Excellent for prior sensitivity analysis
@ Non stationarity = bad.
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