Use of Importance sampling with MCMC algorithms

J. Rousseau

CEREMADE, Université Paris-Dauphine

Warwick
Joint work with C. Guihennec, R. McVinish, K. Mengersen,
D. Nur

Outline

- General ideas
 - Motivation
 - Framework
- 2 Theoretical properties
 - Limit results
 - Behaviour of the weights
 - Stabilization by recentering
- Some simulated examples
 - test in regression

Outline

- General ideas
 - Motivation
 - Framework
- 2 Theoretical properties
 - Limit results
 - Behaviour of the weights
 - Stabilization by recentering
- Some simulated examples
 - test in regression

Motivation

- Repeated MCMC under different samples :
- Bayesian p-values. X^o = observed sample Let $H_\pi(X) = E^\pi[h(\theta)|X]$ be a test statistic and $P[H(X) > H(X^o)] = p(X^o)$: a p value to evaluate $p(X^o)$ compute
 - For $j = 1, ...J X^{(j)} \sim P$ and compute $H(X^{(j)})$

BUT... $H(X^{(t)})$ evaluated using MCMC $\forall t \longrightarrow \text{Time consuming}$

- Bayesian cross validation : Need of computing $H(X^{(-l)})$, where $X^{(-l)} \subset X$ for many (-l).
- Evaluation of procedures by simulations
- ▶ prior sensitivity analysis : Need to compute $H_{\pi_j}(X)$ for different π_j .

Motivation

- Repeated MCMC under different samples :
- Bayesian p-values. X^o = observed sample Let $H_\pi(X) = E^\pi[h(\theta)|X]$ be a test statistic and $P[H(X) > H(X^o)] = p(X^o)$: a p value to evaluate $p(X^o)$ compute
 - For $j = 1, ...J X^{(j)} \sim P$ and compute $H(X^{(j)})$

•

$$\hat{p}(X^o) = \frac{1}{J} \sum_{j=1}^{J} \mathbb{I}_{H(X^{(j)}) > H(X^o)}$$

BUT... $H(X^{(t)})$ evaluated using MCMC $\forall t \longrightarrow \text{Time consuming}$

- Bayesian cross validation : Need of computing $H(X^{(-l)})$, where $X^{(-l)} \subset X$ for many (-l).
- Evaluation of procedures by simulations
- ▶ prior sensitivity analysis : Need to compute $H_{\pi_j}(X)$ for different π_j .

Outline

- General ideas
 - Motivation
 - Framework
- 2 Theoretical properties
 - Limit results
 - Behaviour of the weights
 - Stabilization by recentering
- Some simulated examples
 - test in regression

Framework

Bayesian model

$$X \sim f_{\theta}, \quad \theta \in \Theta, \quad \theta \sim \pi,$$

- ▶ Object of interest $H_{\pi}(X) = E^{\pi}[h(\theta)|X]$
- ▶ Evaluation with MCMC $(\theta^t)_{t=1}^T = MC(\pi(.|X))$

$$\hat{H}_{\pi}(X) = \frac{1}{T} \sum_{t} h(\theta^{t})$$

▶ New sample : $Y \stackrel{d}{=} X$

$$H_{\pi}(Y) = \frac{\int_{\Theta} h(\theta) [f(Y|\theta)/f(X|\theta)] d\pi(\theta|X)}{\int_{\Theta} [f(Y|\theta)/f(X|\theta)] d\pi(\theta|X)}$$

$$H_{\pi}(Y) = \frac{\int_{\Theta} h(\theta) [f(Y|\theta)/f(X|\theta)] d\pi(\theta|X)}{\int_{\Theta} [f(Y|\theta)/f(X|\theta)] d\pi(\theta|X)}$$

So No need to run a new MCMC : use IS on $(\theta^t)_t$:

$$\hat{H} = \frac{\sum_{t=1}^{T} h(\theta^t) w(\theta^t, y, x)}{\sum_{t=1}^{T} w(\theta^t, y, x)} = \frac{\bar{hw}}{\bar{w}},$$

where

$$w(\theta, y, x) = \frac{f_{\theta^t}(y)}{f_{\theta^t}(x)}, \quad \text{or} \quad w(\theta, \pi', \pi) = \frac{\pi'(\theta)}{\pi(\theta)},$$

- Much quicker
- How good/bad is it?

Outline

- General ideas
 - Motivation
 - Framework
- 2 Theoretical properties
 - Limit results
 - Behaviour of the weights
 - Stabilization by recentering
- Some simulated examples
 - test in regression

Convergence

- Back to the theory on MCMC convergence :
- Consistency (in T): OK if MC ergodic
- rate : In the original MC : estimation of the function

$$\tilde{h}(\theta) = h(\theta) \frac{f(Y|\theta)}{f(X|\theta)}$$

Usual tools • Asymptotic Variance

$$\gamma^2 = \frac{m_{\pi}(x)^2}{m_{\pi'}(y)^2} \left[H_{\pi}^2 \text{var}(\bar{w}) + \text{var}(\bar{hw}) - 2\text{cov}(\bar{w}, \bar{hw}) H_{\pi} \right].$$

Variance estimation : Same asy var as

$$Z(\theta_t) = \frac{\mathbb{E}_{\pi}(h(\theta)w(\theta))}{\mathbb{E}_{\pi}(w(\theta))} \left(\frac{w(\theta_t)}{\mathbb{E}_{\pi}(w(\theta))} - \frac{h(\theta_t)w(\theta_t)}{\mathbb{E}_{\pi}(h(\theta)w(\theta))} \right)$$

Outline

- General ideas
 - Motivation
 - Framework
- 2 Theoretical properties
 - Limit results
 - Behaviour of the weights
 - Stabilization by recentering
- Some simulated examples
 - test in regression

Behaviour of the weights

$$w(\theta, y, x) = \frac{f_{\theta^t}(y)}{f_{\theta^t}(x)}, \quad \tilde{w}(\theta) = \pi(\theta|x)/\pi(\theta|y)$$

$$x = (x_1, ..., x_n) \stackrel{d}{=} y = (y_1, ..., y_n) + \text{regul. condits} \Rightarrow$$

$$\tilde{w}(\theta) = e^{n(\hat{\theta}^x - \hat{\theta}^y)'I(\theta_0)(\theta - \hat{\theta}^x)} (1 + O(n^{-1/2})),$$

$$\text{var}_{as}(\tilde{w}(\theta) \mid x, y) = \exp\left\{n(\hat{\theta}^x - \hat{\theta}^y)'I(\theta_0)(\hat{\theta}^x - \hat{\theta}^y)\right\} - 1.$$

▶ Stability $\hat{\theta}^x \neq \hat{\theta}^y \longrightarrow$ Instability.

Outline

- General ideas
 - Motivation
 - Framework
- 2 Theoretical properties
 - Limit results
 - Behaviour of the weights
 - Stabilization by recentering
- Some simulated examples
 - test in regression

Stabilization by recentering

► Simple stabilization

$$\theta'_t = \theta_t + \hat{\theta}^y - \hat{\theta}^x, \quad w'(\theta_t) = \frac{\pi(\theta'_t)f(y^n|\theta'_t)}{\pi(\theta_t)f(x^n|\theta_t)} = 1 + O_P(n^{-1/2})$$

- Very effective if posterior not too strongly multimodal
- Often $\hat{\theta}^{x}$ complicated to calculate : Two-step procedure
- ▶ Compute centering

$$\tilde{\theta}^{y} = \frac{\sum_{t} \theta_{t} \mathbf{w}_{t}}{\sum_{t} \mathbf{w}_{t}}$$

Apply centering

$$\theta_t' = \theta_t + \tilde{\theta}^y - \tilde{\theta}^x$$

► Conditions *x* and *y* have marginally the same distribution but are not nece. indpdt.

see also MacEachern+Perrugia

Outline

- General ideas
 - Motivation
 - Framework
- 2 Theoretical properties
 - Limit results
 - Behaviour of the weights
 - Stabilization by recentering
- Some simulated examples
 - test in regression

Regression example (explicit calculations)

▶ Problem : Test for

$$H_0: Y_i \sim \mathcal{N}(\beta_0, \sigma^2) \quad H_1: Y_i \sim \mathcal{N}(\beta_0 + \beta_1 x_i, \sigma^2)$$

▶ test procedure : $|\beta_1| < \epsilon$ versus $|\beta_1| \ge \epsilon \Rightarrow$

$$H_0$$
 iff $H(Y) = E^{\pi} \left[\beta_1^2 | Y \right] < \epsilon$

▶ **pb : Choice of** ϵ ? \Rightarrow use of ρ -value Under H_0 $\theta = (\beta_0, \sigma)$ unknown \Rightarrow Use of conditional predictive ρ -value (Bayarri+Berger, Robbins et al., Robert + Rousseau, Fraser + Rousseau)

$$p(Y^{o}) = \int_{\Theta} P_{\theta}[H(Y) > H(Y^{0})|\hat{\theta}] d\pi_{0}(\theta|\hat{\theta}) = P_{\theta}[H(Y) > H(Y^{0})|\hat{\theta}]$$

Special case here : $\pi(\beta_0, \beta_1, \sigma) \propto 1/\sigma$ and n = 250.

$$H(y) = \mathbb{E}_{\pi} \left(\beta_1^2 \mid y, x \right) = \hat{\beta}_1^2 + \frac{\sum (y_i - \hat{y}_i)^2}{(n-4)\sum (x_i - \bar{x})^2},$$

▶ Algorithm for each *p*-value

•
$$[Y^1|\hat{\beta}_0,\hat{\sigma}] \sim f(Y|\hat{\theta}) = \mathcal{U}_E + \text{MCMC } \pi(\psi|Y^1) \ \psi = (\beta_0,\beta_1,\sigma),$$

$$\rightarrow \psi^t$$
, $t = 1, ..., T$

- For j = 2, ..., J Simulate $[Y^j | \hat{\beta}_0, \hat{\sigma}] \stackrel{\textit{iid}}{\sim} f(Y | \hat{\theta})$
- $\forall j = 2, ..., J$ compute $w_t(\psi^t, Y^j, Y^1)$ and $\hat{\psi}^j$ and

$$H_{\mathcal{S}}(Y^j) = \frac{\sum_t w_t(\beta_1^t)^2}{\sum_t w_t}, \text{ and also } \mathbb{E}_{\pi}\left(\beta_1^2 \mid Y^j\right)$$

$$H_{CS1} = \frac{\sum_{t} w'_{t}((\beta_{1}^{t})')^{2}}{\sum_{t} w'_{t}}, \quad (\psi^{t})' = \psi^{t} + \hat{\psi}^{j} - \hat{\psi}^{1}$$

$$H_{CS2} = \frac{\sum_{t} w_{t}"((\beta_{1}^{t})")^{2}}{\sum_{t} w_{t}"}, \quad (\psi^{t})" = \psi^{t} + E^{\pi}[\psi|Y^{j}] - E^{\pi}[\psi|Y^{1}]$$

Results

250 *p*-values and for each : J = 1000 (M.C samples) and $T = 10^5$ (MCMC samples) with burn-in = 1000

Weights

Fig.: Blue line is a kernel density estimate of the calculated variance of the normalised IS weights. Red line is the density of a χ_1^2 distribution.

Weights : close to asymptotic

- Weights : close to asymptotic
- IS simple : OK but not marvelous

- Weights : close to asymptotic
- IS simple : OK but not marvelous
- IS recentered (MLE or posterior) : much better

- Weights : close to asymptotic
- IS simple : OK but not marvelous
- IS recentered (MLE or posterior): much better
- posterior distribution : close to Gaussian ⇒ perfect for recentering.

GOF: Nonparametric example

Problem

$$H_0: f_* \in \mathcal{F}$$
 against $H_1: f_* \notin \mathcal{F}$, $\mathcal{F} = \{f_\theta, \theta \in \Theta \subset \mathbb{R}^d\}$

▶ Nonparametric model for \mathcal{F}^c (VW+RR+R)

$$F(y \mid \theta) \sim G_{\psi}, \quad \psi \in \mathcal{S} \quad \text{on } [0,1] \quad \exists \psi_0; g_{\psi_0} \equiv 1$$

If $Y \sim f_{\theta}$ then $F(Y \mid \theta) \sim \mathcal{U}(0, 1)$. Model:

$$f_*(y \mid \theta, \psi) = f(y \mid \theta)g(F(y \mid \theta) \mid \psi), \theta \in \Theta, \quad \psi \in S$$

 \triangleright prior on H_1

$$d\pi_1(\theta,\psi) = d\pi_0(\theta)d\pi(\psi)$$

Test

- ▶ Test statistic (Bayesian) $H(x) = \mathbb{E}_{\pi_1}[d(1, g(\cdot \mid \psi)) \mid x]$
- ▶ p-value

$$p(x^0) = \int_{\Theta} P_{\theta}[H(y) > H(x^0)|\hat{\theta}] \pi_0(\theta) d\theta$$

▶ Set up here $f_{\theta} \equiv \exp(\theta) \; \pi_0 = \Gamma(\gamma_1, \gamma_2) \; \pi_1 = \text{mixture of triangular distributions (fixed partition, random weights)}$ $\psi = (k, \omega), \; k \in \mathbb{N}, \; \omega \in \mathcal{S}_k = \{z \in [0, 1]^k; \sum_{i=0}^k z_i = 1\},$

$$g(y \mid \omega, k) = \sum_{i=0}^{k} \omega_{i} h_{i}(y; k), \quad \pi(k) = C(\rho) \rho^{k}, \quad k \geq 1,$$

$$\pi(\omega \mid k) = \mathcal{D}(\alpha_{0,k}, \dots, \alpha_{k,k}),$$

•
$$y^1|\hat{\theta}^x \sim f(y|\hat{\theta}^y = \hat{\theta}^x)$$

- $y^1 | \hat{\theta}^x \sim f(y | \hat{\theta}^y = \hat{\theta}^x)$
- MCMC = RJMCMC $\eta^t = (\theta^t, k^t, \omega^t)$ for $\pi(\eta|y^1)$

Compute $H(y^1)$

- $y^1 | \hat{\theta}^x \sim f(y | \hat{\theta}^y = \hat{\theta}^x)$
- MCMC = RJMCMC $\eta^t = (\theta^t, k^t, \omega^t)$ for $\pi(\eta|y^1)$

Compute $H(y^1)$

• $\forall j = 2, ..., J \ y^j \stackrel{d}{=} y^1$ (iid)

Compute
$$w_t(\eta^t, y^j, y^1) \Rightarrow H(y^j) \Rightarrow p(x^0) = \frac{\sum_j \mathbb{I}_{H(y^j) > H(x^0)}}{J}$$

- $y^1 | \hat{\theta}^x \sim f(y | \hat{\theta}^y = \hat{\theta}^x)$
- MCMC = RJMCMC $\eta^t = (\theta^t, k^t, \omega^t)$ for $\pi(\eta|y^1)$

Compute
$$H(y^1)$$

• $\forall j = 2, ..., J \ y^j \stackrel{d}{=} y^1$ (iid)

Compute
$$w_t(\eta^t, y^j, y^1) \Rightarrow H(y^j) \Rightarrow p(x^0) = \frac{\sum_j \mathbb{I}_{H(y^j) > H(x^0)}}{J}$$

• Recentering : only on k = 2 : MLE or posterior mean of (θ, w_1) Because

$$P^{\pi}[k=2|y_1,...,y_n]=1+o_P(1), \quad \text{if} \quad y=(y_1,...,y_n)\in H_0$$

results

n = 250, $x^0 \sim \exp(1/4)$, J = 1000, T = 100000 with burn-in = 5000 and 250 p-values

weights

• IS in MCMC for repeated sampling : promising

- IS in MCMC for repeated sampling : promising
- curse of dimensionality not so severe

- IS in MCMC for repeated sampling : promising
- curse of dimensionality not so severe
- Much quicker

- IS in MCMC for repeated sampling : promising
- curse of dimensionality not so severe
- Much quicker
- possible simple improvements : recentering (+ rescaling)

- IS in MCMC for repeated sampling : promising
- curse of dimensionality not so severe
- Much quicker
- possible simple improvements : recentering (+ rescaling)
- Other improvements: If data set y^j too different from y^1 IS not too good: consider $(y^1,...,y^{J_0})$ Guihenneuc et al.
 - for each: 1 MCMC
 - New y^{j} : choose best y^{l} , $l = 1, ..., J_{0}$ compute IS with it.

- IS in MCMC for repeated sampling : promising
- curse of dimensionality not so severe
- Much quicker
- possible simple improvements : recentering (+ rescaling)
- Other improvements: If data set y^j too different from y^1 IS not too good: consider $(y^1,...,y^{J_0})$ Guihenneuc et al.
 - for each : 1 MCMC
 - New y^j : choose best y^l , $l = 1, ..., J_0$ compute IS with it.
- Excellent for prior sensitivity analysis

- IS in MCMC for repeated sampling : promising
- curse of dimensionality not so severe
- Much quicker
- possible simple improvements : recentering (+ rescaling)
- Other improvements: If data set y^j too different from y^1 IS not too good: consider $(y^1,...,y^{J_0})$ Guihenneuc et al.
 - for each : 1 MCMC
 - New y^j : choose best y^l , $l = 1, ..., J_0$ compute IS with it.
- Excellent for prior sensitivity analysis
- Non stationarity ⇒ bad.