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Introduction

Much theory on creating efficient random walk Metropolis
(RWM) algorithms.

Some applies to special cases, some more generally.

This talk:
1. Compares and contrasts a selection of RWM theory on scaling
and shaping.
2. Uses this and other theory to suggest (often incremental)

algorithmic improvements.

3. Examines algorithm performance on a non-trivial testing
ground (the Markov Modulated Poisson Process).



The Random Walk Metropolis

The RWM algorithm explores a d-dimensional target density 7(x)
by creating a Markov chain using a d-dimensional jump proposal
density A=9 r(y/\) with r(—y) = r(y).



The Random Walk Metropolis

The RWM algorithm explores a d-dimensional target density 7(x)

by creating a Markov chain using a d-dimensional jump proposal
density A=9 r(y/\) with r(—y) = r(y).

From current position X; propose a jump Y7.
Accept with probability a(x;,y?) = min [1, 7(x; + y})/7(x;)]
If accept X1 < X 4+ Y* otherwise X «+— X.



The Metropolis within Gibbs

The MwG algorithm explores a d-dimensional target density 7(x)
by creating a Markov chain.

Jumps are proposed and accepted as for the RWM but have
dimension d* < d.

A deterministic MwG algorithm updates subsets of the
components of x in some predetermined order.

A random scan MwG algorithm chooses at random the subset of
components of x to be updated.



Integrated Autocorrelation Time

We wish to estimate E [f(X)] by n~! ST f(x(i))_

The MCMC sample is correlated and so the standard error of the
estimate is Var [f(X)] /nefr where nes < n is the effective sample
size.
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We will use ACT to compare the output of the different MCMC
algorithms.



Integrated Autocorrelation Time

We wish to estimate E [f(X)] by n~! ST f(x(i))_

The MCMC sample is correlated and so the standard error of the
estimate is Var [f(X)] /nefr where nes < n is the effective sample
size.

For a stationary chain, let v; = Corr [f(Xx), f (Xk+i)]-

The integrated autocorrelation time (ACT) is
¢ =1+23 77, and neg = n/7.
We will use ACT to compare the output of the different MCMC

algorithms.

Finite sample so use 7 = 1+ 2 Z’l_l A; where [ is the first lag
such that 4; < 0.05.



Squared jumping distances
Could measure theoretical efficiency in terms of expected squared
Euclidean jump distance:
3 Eue = E || Xis1 — XiI?] -
Maximising the Euclidean square jump distance for a component is

equivalent to minimising the lag-1 autocorrelation for that
component.



Squared jumping distances

Could measure theoretical efficiency in terms of expected squared
Euclidean jump distance:

S3 Eue = E|[|Xi41 — Xi|

Maximising the Euclidean square jump distance for a component is
equivalent to minimising the lag-1 autocorrelation for that
component.

For an elliptical target with contours along lines of constant
x'E " 1x an alternative measure would be the expected square
jump distance

53 =K [(Xi—i-l - Xi)/ (X (Xiy1— )]
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Speed of a limiting diffusion

Consider a single component (e.g. the first) of the d-dimensional

chain at iteration / and denote it Xl(c,{).

Define a speeded up continuous time process which mimics the
first component of the chain as

CIC)
Wi = X7y (1)

Under certain circumstances it is possible to show that the (weak)
limit limg_ o Wt(d) is a Langevin diffusion.

The speed of this diffusion is another measure of the algorithm’s
efficiency.



Optimal scaling (1)

Roberts and Rosenthal (2001) consider a target with independent
components

d
7T(X) = H C,' f(C;X;),
i=1
where E[C;] =1 and E [C?] = b < co. A Gaussian proposal is
used: A\Z where Z ~ N(0,1).

It is shown that subject to moment conditions on f, and provided
X\ = p/dY/?, for some fixed p, then as d — oo, C; Wt(d) (from 1)
does approach a Langevin diffusion.



Optimal scaling (1)

Roberts and Rosenthal (2001) consider a target with independent
components

d
7T(X) = H C,' f(C;X;),
i=1

where E[C;] =1 and E [C?] = b < co. A Gaussian proposal is
used: A\Z where Z ~ N(0,1).

It is shown that subject to moment conditions on f, and provided
X\ = p/dY/?, for some fixed p, then as d — oo, C; Wt(d) (from 1)
does approach a Langevin diffusion.

The speed of this diffusion is 2@y x C2/b , where

1
ay =20 <—§ull/2>

is the acceptance rate,and [/ is a measure of roughness.



Optimal scaling (2)

Bedard (2007) considers targets with independent components and
a triangular sequence of inverse scale coefficients ¢; 4, and shows a
similar result provided

max; c,-2d

—— — 0. 2
Z?:l Ci2,d )



Optimal scaling (3)

Sherlock and Roberts (2009) consider sequences of elliptically
symmetric targets X(9) explored by a spherically symmetric
proposal AZ(?) and use ESJD as a measure of efficiency.

For many spherically symmetric distributions, as d — oo all of the
mass converges to a particular radius. It is shown than if
A= p/dY? x k)gd)/kﬁd), and

and the inverse scale parameters of the axes of the elliptical target
satisfy 2 then
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Sherlock and Roberts (2009) consider sequences of elliptically
symmetric targets X(9) explored by a spherically symmetric
proposal AZ(?) and use ESJD as a measure of efficiency.

For many spherically symmetric distributions, as d — oo all of the
mass converges to a particular radius. It is shown than if
A= p/dY? x k)gd)/kﬁd), and

and the inverse scale parameters of the axes of the elliptical target
satisfy 2 then

d - .
k(d)25°2’(”)ﬂ“‘2 ag  with ag(p) =20 <_§ﬂ>.



Optimal scaling (4)

Optimising the efficiency measure w.r.t. p and substituting gives
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Optimal scaling (4)

Optimising the efficiency measure w.r.t. p and substituting gives

2.38 2.38 k{9

)\d = m (R and R) and )\d =

Both lead to an optimal acceptance rate of 0.234.

Algorithm 1: proposal Y ~ N(0,\2/) with A chosen so that the
acceptance rate is between 0.2 and 0.3.



Optimal scaling (5)

NB The limiting optimal acceptance rate need not be 0.234 - e.g.
Bedard (2008), Sherlock and Roberts (2009).



Optimal scaling for MwG (1)

Neal and Roberts (2006) consider the behaviour of the random
scan MwG algorithm on a target with iid components.



Optimal scaling for MwG (1)

Neal and Roberts (2006) consider the behaviour of the random
scan MwG algorithm on a target with iid components.

The optimal scale parameter is larger than for a full update (since
the dimension of the update is smaller) but the limiting optimal
acceptance rate is still 0.234.



Optimal scaling for MwG (2)

Sherlock (2006) considers a deterministic MwG algorithm on a
sequence of elliptical targets (subject to 2) with updates proposed
from a spherical distribution, but allowing different scalings for
different sub-blocks of principal components of the ellipse.

For equal-sized sub-blocks the limiting relative efficiency (compared
the optimal RWM with a single spherical proposal) is shown to be

e
— 1\ 1
By

where ¢2; is the mean of the squares of the inverse scale
parameters for the i sub-block.

'mwG /RWM =



Optimal scaling for MwG (3)

An optimally tuned MwG algorithm (for orthogonal sub-blocks)
will be more efficient than a single block update.

Algorithm 2: MwG with proposed jumps Y; ~ N(0, A?) optimised
along each component (« = 0.4).



Optimal shaping (1)

Sherlock (2006) considers elliptical targets explored either using an
optimally tuned spherical proposal or and optimally tuned elliptical
proposal of the same shape and orientation as the target.



Optimal shaping (1)

Sherlock (2006) considers elliptical targets explored either using an
optimally tuned spherical proposal or and optimally tuned elliptical
proposal of the same shape and orientation as the target.

For a sequence where the target with dimension d has elliptical
axes with inverse scale parameters ¢4 1, ..., Cq,4, the limiting ratio
of expected squared Euclidean jump distances is

-1
H 1 d -2
limg .o (H > i1 Cd,i)

: 1 d 2
Ilmd_)oo d Zi:l Cd,i

I'sph/ell =



Optimal shaping (2)

Roberts and Rosenthal (2001) examine targets of the form

[T cGf(Cix)

and compare the efficiencies of the limiting Langevin diffusions for
spherical Gaussian proposals and Gaussian proposals with inverse
scale parameter C; for the it" component.



Optimal shaping (2)

Roberts and Rosenthal (2001) examine targets of the form

[T cGf(Cix)

and compare the efficiencies of the limiting Langevin diffusions for
spherical Gaussian proposals and Gaussian proposals with inverse
scale parameter C; for the it" component.

The limiting efficiency was found to be
E [C?]

lidiid = — 2
d/iid E[C]Z



Optimal shaping (3)

We should therefore explore the target using a proposal with a
similar shape and orientation to the target.

Algorithm 3: use 1000 iterations from Algorithm 1 to estimate
the covariance matrix X then propose from N(0, AX) with A
chosen to give an acceptance rate between 0.2 and 0.3.



Exploring heavy tails

There is evidence (e.g. Roberts, 2003) to suggest that a heavy
tailed proposal should better explore a heavy tailed target.

Algorithm 4 proposes from a Cauchy distribution with modal
hessian , and scaling chosen so as to minimise the ACT.



Exploring heavy tails

There is evidence (e.g. Roberts, 2003) to suggest that a heavy
tailed proposal should better explore a heavy tailed target.

Algorithm 4 proposes from a Cauchy distribution with modal
hessian , and scaling chosen so as to minimise the ACT.

An alternative strategy is to transform the target to one with
lighter tails. Dellaportas and Roberts (2003) use a random walk on
the posterior for the log of each parameter: the multiplicative
random walk.

Algorithm 5 uses a Gaussian proposal on a transformed parameter
set {logb1,...,logbs}, with shape matrix estimated as for
Algorithm 3 (but on the log parameters!).



Adaptive MCMC (1)

Rather than estimating X and A from finite tuning runs, we could
let a single algorithm learn from its own output.

It is important that changes to the MCMC kernel become
vanishingly small as iteration i — oo (e.g. Roberts and Rosenthal,

2007).



Adaptive MCMC (1)

Rather than estimating X and A from finite tuning runs, we could
let a single algorithm learn from its own output.

It is important that changes to the MCMC kernel become
vanishingly small as iteration i — oo (e.g. Roberts and Rosenthal,
2007).

Algorithm 6 uses a random walk on the posterior for the log
parameters. The jump proposal is
Y { N (0, me,,) w.p. 1-—90
N (0, %)\SI) w.p. d.

Here 6 = 0.05, d = 4, and }A:,, is estimated from the logarithms of
the posterior sample to date.



Adaptive MCMC (2)

Y N (0, me,,) w.p. 1—90
N(0,2X31)  w.p. 6.
A few minutes were spent tuning the block multiplicative random
walk with proposal variance %)\%I to give at least a reasonable

value for Ao (acceptance rate ~ 0.3), although this is not stricly
necessary.



Adaptive MCMC (2)

Y ~ N (0, me,,) w.p. 1—90
N(0,2X31)  w.p. 6.

A few minutes were spent tuning the block multiplicative random
walk with proposal variance %)\%I to give at least a reasonable
value for Ao (acceptance rate ~ 0.3), although this is not stricly
necessary.

m was updated as follows: if the proposal was rejected then

m < —m — A/i'/?, otherwise m < —m + 2.3A/i*/2. This leads to
an equilibrium acceptance rate of 1/3.3 (A is some small fixed
quantity).



The MMPP

A Markov modulated Poisson process (MMPP) is a Poisson
process, the intensity of which, A\(X;), depends on the state of a
continuous time discrete space Markov chain X;.
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Figure: Two 2-state cts time MCs simulated from generator Q with
g12 = @21 = 1; rug plots show events from MMPPs simulated from these
chains, with intensity v = (10,30) (upper) and 1) = (10, 17) (lower).
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The MMPP Test Data

Simulated test data was from 100 secs of MMPPs with
g12 = q21 = 1 and either ¢ = (10,30) (D1 - 3 replicates) or
1 = (10,17) (D2 - 3 replicates).

D1 - more events + easier to distinguish the state of the
underlying chain = lighter tails + parameters (11,2, g12, g21)
closer to orthogonal.

D2 - fewer events + harder to distinguish the state of the
underlying chain = heavier tails 4+ parameters far from orthogonal.



Using problem specific information

When v ~ 1)» can Taylor expand likelihood in 1) about 1.

Leads to a new reparamterisation with new parameters
approximately orthogonal (when v, =~ 1)7).

Algorithm 7: MwG updates on the new parameters, multiplicative
where possible (3/4).



Analysis

Priors: Exponential, with mean the known “true” parameter value.
Runs of 10 000 iterations (+ burn in of 1000)

Accuracy? Compared with 100 000 iterations of a Gibbs sampler
(Sherlock and Fearnhead, 2006). All OK.

Efficiency: ACT (mutiplied by 4 for MwG).
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lighter tails.
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ACT Results (1)

All algorithms performed better on D1 than D2 because D1 has
lighter tails.

Alg2 (MwG, N(0, 1)) 2-3 times better than Algl for D1 but
only 1.5 times better than Algl for D2, as parameters closer to
orthogonal for D1.

Alg3 (N(0,%)) 4-6 times better than Algl (N(0, \21)).

Improvements in Alg2 and Alg3 best for 1) as Algl limited by
variance of q.
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) for both algorithms!

More negative proposals? 3 not representative away from the
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ACT Results (2)

A

Alg4 (Cauchy, X) performs ~ 1.5 times worse than Alg3 (Normal,
) for both algorithms!

More negative proposals? 3 not representative away from the
modes?

Alg5 (Multiplicative, Normal, ):A*) performs the same as Alg3 for
D1 and ~ 1.5 — 2 times better than Alg3 for D2.
Heavier tails.

Algb (Adap, mult; Normal, ZA*) performs the same as Algb for D1
and 1-1.5 times better than Algb for D2.
Takes > 1000 iterations to estimate X7



ACT Results (3)

Alg7 (Reparameterisation; MwG, mult. where possible, Normal)
performs ~ 2 times worse than Algb (Adap, mult; Normal, X,) for
D1 but performance is very similar to Algb for D2.

Alg7 was designed for cases such as D2.



Summary

@ Two different approaches to optimising RWM.

@ Apply to different distributions (independent components /
elliptical contours).

@ Use different measures (diffusion speed / ESJD)

@ Suggest similar methods for producing efficient algorithms.



Summary

Two different approaches to optimising RWM.

Apply to different distributions (independent components /
elliptical contours).

Use different measures (diffusion speed / ESJD)
Suggest similar methods for producing efficient algorithms.

Algorithms perform as might be expected, except for the
Cauchy proposal - worse.

On the heavier tailed data set, the adaptive algorithm
performs as well as the algorithm which uses problem specific
knowledge.
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