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Yves Atchadé (Based partly on joint work with Gersende Fort)Central limit theorems for adaptive MCMC: some old and new



Introduction
Fixed-target AMCMC
Equi-Energy sampler

Introduction

Markov Chain Monte Carlo (MCMC) is a popular tool for Monte Carlo
simulations.

(X ,B, λ) a meas. space. Want to sample from π(x)λ(dx).

MCMC: a recipe to construct ergodic Markov chains {Xn, n ≥ 0}
with state space (X ,B) and with invariant distribution π.
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Introduction

Central limit theorems play an important role in MCMC.

1 Quantify uncertainty in MCMC estimates.
2 Comparing algorithms.
3 Serving as a stopping rule.

There are many CLT for Markov chains (See e.g. G. Jones’ review).
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Introduction

Adaptive MCMC: you update the transition kernel (TK) of the
sampler as it runs.

Can be used to improve performances in a variety of situations. Can
be useful for MCMC softwares.

What do we know about central limit theorems for adaptive MCMC?

Yves Atchadé (Based partly on joint work with Gersende Fort)Central limit theorems for adaptive MCMC: some old and new
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Outline

CLT for fixed-target AMCMC

CLT for the Equi-Energy sampler
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Fixed-target AMCMC

A large class of adaptive MCMC algorithms can be described as follows.

Given π on (X ,B, λ), let {Pθ, θ ∈ Θ} a family of TK. Pθ is inv.
wrt π for all θ ∈ Θ.

Define some optimality criterion.

Definition

An adaptive Markov chain is a random process {(Xn, θn),Fn, n ≥ 0}
such that

Xn+1|Fn ∼ Pθn
(Xn, ·), and θn+1 ∈ Fn+1.
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Fixed-target AMCMC

Many possibilities for the optimality criterion.

Maximize the square-jump distance as in the example (Prasarica &
Gelman (2005), Andrieu & Robert (2001)).

Target a given acceptance rate Andrieu & Robert (2001)), (Atchade
& Rosenthal (2005)).

Moment matching (Haario et al. (2001)).

Minimize the Kulback-Leibler between the proposal and the target
(Andrieu & Moulines (2005), Holden et al. (2009), Giordani &
Kohn (2008)).
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Yves Atchadé (Based partly on joint work with Gersende Fort)Central limit theorems for adaptive MCMC: some old and new



Introduction
Fixed-target AMCMC
Equi-Energy sampler

Fixed-target AMCMC

Many possibilities for the optimality criterion.

Maximize the square-jump distance as in the example (Prasarica &
Gelman (2005), Andrieu & Robert (2001)).

Target a given acceptance rate Andrieu & Robert (2001)), (Atchade
& Rosenthal (2005)).

Moment matching (Haario et al. (2001)).

Minimize the Kulback-Leibler between the proposal and the target
(Andrieu & Moulines (2005), Holden et al. (2009), Giordani &
Kohn (2008)).
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Fixed-target AMCMC

Let {(Xn, θn),Fn, n ≥ 0} the adaptive chain.

Xn+1|Fn ∼ Pθn
(Xn, ·), and θn+1 = θn + γnH(θn, Xn+1).

Objectives: We want conditions under which n−1/2
∑n

k=1 f̄ (Xk ) ⇒ Z ,
f̄ = f − π(f ).

Definition

Dβ(θ, θ′) := sup
x∈X

sup
|f |

Vβ≤1

|Pθf (x) − Pθ′ f (x)|
V β(x)

.
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Fixed-target AMCMC

Theorem (Andrieu-Moulines (2005))

Assume

(A1) Pθ is invariant wrt π, φ-irreducible, aperiodic and there
exist a 1-small set C , V : X → [1, +∞), λ ∈ (0, 1) and
constants b such that for any θ ∈ Θ, PθV ≤ λV + b1C .

(A2) Dβ(θ, θ′) ≤ C |θ − θ′|, θ, θ′ ∈ Θ.

(A3) γn = O(n−1) and supθ∈Θ |H(θ, ·)|V α < ∞.

(A4) |θn − θ⋆| Prob→ 0.

Then for |f |V β < ∞ (2β + α < 1), n−1/2
∑n

k=1 f̄ (Xk) ⇒ N(0, σ2(f ))
where

σ2(f ) = π(|f̄ |2) + 2
∑

j≥1

π
(

f̄ P j
θ⋆

f̄
)

.
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Fixed-target AMCMC

There are many MCMC algorithms that are not geometrically ergodic.

1 If
∫

es|x|π(dx) = ∞, for all s > 0

the Random Walk Metropolis algorithm cannot be geometrically
ergodic. (Jarner & Tweedie (2001)).

2 If lim inf|x|→∞
|∇ log π(x)|

|x| = ∞ or lim inf|x|→∞ |∇ log π(x)| = 0, then

the Metropolis Adjusted Langevin algorithm cannot be
geometrically ergodic. (Roberts & Tweedie (1996)).
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Fixed-target AMCMC

Theorem (Atchade-Fort (2009))

Assume

(B1) Pθ is invariant wrt π, φ-irreducible, aperiodic and there
exist a 1-small set C , V : X → [1, +∞), α ∈ (0, 1/2) and
constants b, c such that for any θ ∈ Θ
PθV ≤ V − cV 1−α(x) + b1C .

(B2) Dβ(θ, θ′) ≤ C |θ − θ′|, θ, θ′ ∈ Θ.

(B3) γn = O(n−1) and sup(x,θ)∈X×Θ |H(θ, x)| < ∞.
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Fixed-target AMCMC

Practical consequence:
In a MCMC simulation problem where uniform drift condition of the form

PθV (x) ≤ V (x) − φ ◦ V (x) + b1C (x)

is available, we recommend adaptive MCMC.

In such cases, AMCMC algorithms are very stable.

When good ideas are available on how to adapt, AMCMC perform
better than plain MCMC.
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Fixed-target AMCMC

A quick comment on the proof:

Similar to the proof of Andrieu & Moulines (2005).

Based on Poisson equation.
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Fixed-target AMCMC

Let {Zn} be a Markov chain with t.k. P and inv. dist. π. Let f s.t.
π(f ) = 0. Notation: Pf (x) :=

∫

P(x , dy)f (y).

Suppose that

g =

∞
∑

k=0

Pk f ,

exists. Then
g(x) − Pg(x) = f (x).

We can use g to approximate partial sum of Markov chains by
martingales.
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Fixed-target AMCMC

In the non-geometric case, solutions to the Poisson equation are hard to
work with.

If PV ≤ V − χ + b1C ⇒ f ≤ χ implies |g | ≤ V .

If PθV ≤ V − V 1−α + b1C ⇒ for |f | ≤ V β , |g | ≤ V β+α.

gθ − gθ′ =
∑

j≥0

P j
θ ◦ (Pθ − Pθ′) ◦

∑

j≥0

P j
θ′ f (x).

So that
|gθ − gθ′| ≤ V β+2α.
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Fixed-target AMCMC

The solution is to work with H(x , y) = g(y) − Pg(x).

Theorem (Maxwell-Woodroofe (2000))

Define Vn(f ) =
∥

∥

∥

∑n−1
k=0 Pk f

∥

∥

∥

L2(π)
. If

∑

k≥0

n−3/2Vn(f ) < ∞,

Then Hn(x , y) =
∑n−1

j=0 P j f (y) −∑n

j=0 P j f (x) converges to a limit H

(H = g(y) − Pg(x)) in L2(π × P).

Kipnis-Varadhan (1986) has a similar result for reversible chains.
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Fixed-target AMCMC

Proposition

Assume PθV ≤ V − V 1−α + b1C . For f ∈ LV β , β ∈ [0, 1 − 2α), define
Hθ(x , y) = gθ(y) − Pθgθ(x).

sup
x,y

|Hθ(x , y) − Hθ′(x , y)|
V β+ακ(x) + V β+ακ(y)

≤ C |θ − θ′|.

for any κ > 1.
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Equi-Energy sampler

1 Let us now consider another class of adaptive MCMC where the
transition kernels do not all have the same invariant dist.

2 There are actually many such algorithms (Equi-Energy sampler,
Wang-Landau, SAMC...).

3 We focus on the Equi-Energy sampler (EE).
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Equi-Energy sampler

(X ,B) a meas. space. π a prob. meas. and P a TK inv. wrt to π. Θ
now denotes the space of all prob. meas. on (X ,B)

the Equi-Energy sampler is a very clever MCMC algorithm by Kou
& Zhou & Wong (2005).

Can be looked at as an adaptive MCMC with infinite dimensional
parameter space.
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Equi-Energy sampler

Let π̄ a prob. meas. that is equivalent to π and ω(x) = π(dx)/π̄(dx).
Let P with inv. dist. π. Define

α(x , y) = min

(

1,
ω(y)

ω(x)

)

.

For ε ∈ (0, 1) and θ ∈ Θ a prob. meas. define

Pθ(x , A) = (1−ε)P(x , A)+ε

∫

θ(dz) [α(x , z)1A(z) + (1 − α(x , z)) 1A(x)] .

Key insight of Equi-Energy:

(i) Pπ̄(x , A) is invariant with respect to π.

(ii) Pπ̄ will have a very good convergence rate if π̄ is close
to π.
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Equi-Energy sampler

Implementation: take π̄ = πγ , γ ∈ (0, 1). Let P̄ with inv. dist. π̄. Run
the joint process {(X̄n, Xn, θn), n ≥ 0} as follows.

Algorithm

Given σ{(X̄k , Xk , θk), k ≤ n}

X̄n+1 ∼ P̄(X̄n, ·), Xn+1 ∼ Pθn
(Xn, ·),

θn+1 = (n + 1)−1
n+1
∑

k=1

δX̄k

As n → ∞, Pθn
should converge to Pπ̄.

Yves Atchadé (Based partly on joint work with Gersende Fort)Central limit theorems for adaptive MCMC: some old and new



Introduction
Fixed-target AMCMC
Equi-Energy sampler

Equi-Energy sampler

Implementation: take π̄ = πγ , γ ∈ (0, 1). Let P̄ with inv. dist. π̄. Run
the joint process {(X̄n, Xn, θn), n ≥ 0} as follows.

Algorithm

Given σ{(X̄k , Xk , θk), k ≤ n}

X̄n+1 ∼ P̄(X̄n, ·), Xn+1 ∼ Pθn
(Xn, ·),

θn+1 = (n + 1)−1
n+1
∑

k=1

δX̄k

As n → ∞, Pθn
should converge to Pπ̄.
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Equi-Energy sampler

The EE has been studied in Andrieu & Jasra & Del Moral & Doucet
(2007) (convergence of the marginal and law of large numbers) and
Atchade (2009) (law of large numbers and CLT).

I would to discuss the CLT. That is condition under which
n−1/2

∑n

k=1 f̄ (Xk ) ⇒ Z .
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Equi-Energy sampler

Fix f with π(f ) = 0. Let U that satisfies the Poisson equation
U − Pπ̄U = f . Define Sn =

∑n

k=1 f (Xk )

Sn =

n
∑

k=1

U(Xk ) − Pπ̄U(Xk)

=

(

n
∑

k=1

U(Xk ) − Pθk−1
U(Xk−1)

)

+ (Pθ0U(X0) − Pθn
U(Xn))

+

n
∑

k=1

Pθk
U(Xk) − Pπ̄U(Xk )

= Mn + ε
n
∑

k=1

1

k

k−1
∑

l=0

HXk
(X̄l ) + oP

(√
n
)

,

= Mn + 2ε
1√
n

n
∑

k=1

1√
k

k−1
∑

l=0

HXk
(X̄l ) + oP

(√
n
)

,

for some function Hx : X → R.
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Equi-Energy sampler

Suppose that X is finite. Then

(

1√
n

n
∑

l=1

Hx(X̄l )

)

x

⇒ G ,

where G is a Gaussian r.v with zero mean and covariance

Γ(x , y) =

∫

[

Ux(z)Uy (z) −
(

P̄Ux(z)
) (

P̄Uy (z)
)]

π̄(dz),

Then
1√
n
Sn =

1√
n
Mn + 2ε

1

n

n
∑

k=1

G(Xk ) + oP (1) .
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Equi-Energy sampler

Theorem

Suppose that X is finite and P̄ and P are ergodic. Let f : X → R

bounded.

1√
n

n
∑

k=1

f (Xk ) ⇒ Z + 2ε
∑

x∈X

π(x)G(x) as n → ∞, (1)

where Z and
∑

x∈X π(x)G(x) are independent random variables and

Z ∼ N(0, σ2
⋆(f )), with σ2

⋆(f ) := π(f 2) + 2
∑∞

k=1

∫

X
π(dx)f (x)Pk

π̄f (x)
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Equi-Energy sampler

If X is not finite, we need empirical process theory for Markov chains
(uniform CLT for Markov chains). Suppose that:

1 X is compact P̄ and P are uniformly geometrically ergodic.

2 Suppose that a uniform CLT over the class {Hx , x ∈ X} hold for
the Markov chain {X̄n, n ≥ 0}.
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Equi-Energy sampler

Theorem

Assume the above. Let f : X → R a bounded meas. function.

1√
n

n
∑

k=1

f (Xk ) ⇒ Z + 2ε

∫

π(dx)G(x) as n → ∞, (2)

where Z is as above and G is a zero-mean Gaussian process on X with
covariance function

Γ(x , y) =

∫

[

Ux(z)Uy (z) −
(

P̄Ux(z)
) (

P̄Uy (z)
)]

π̄(dz),
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Equi-Energy sampler

Practical implications:

1 In the EE sampler (and more generally for adaptive MCMC with
varying invariant distributions) you pay the price of the adaptation.

2 For small problems, the cost of the adaptation (the term
2ε
∫

π(dx)G(x)) can make the algorithm inefficient compared with
simpler MCMC sampler.

3 To minimize the cost of the adaptation, ε should be kept small.
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