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Introduction

Introduction

Markov Chain Monte Carlo (MCMC) is a popular tool for Monte Carlo
simulations.

9 (X,B,)) a meas. space. Want to sample from 7(x)A(dx).

@ MCMC: a recipe to construct ergodic Markov chains {X,, n > 0}
with state space (X, B) and with invariant distribution .

Yves Atchadé W Central limit theorems for adaptive MCMC: some old and new



Introduction

Introduction

@ Central limit theorems play an important role in MCMC.

© Quantify uncertainty in MCMC estimates.
@ Comparing algorithms.
© Serving as a stopping rule.

@ There are many CLT for Markov chains (See e.g. G. Jones' review).
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@ Adaptive MCMC: you update the transition kernel (TK) of the
sampler as it runs.

@ Can be used to improve performances in a variety of situations. Can
be useful for MCMC softwares.

@ What do we know about central limit theorems for adaptive MCMC?
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Qutline

@ CLT for fixed-target AMCMC
@ CLT for the Equi-Energy sampler
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Fixed-target AMCMC

A large class of adaptive MCMC algorithms can be described as follows.

@ Given mon (X, B,)), let {Py, 6 € ©} a family of TK. Py is inv.
wrt 7 for all § € ©.

@ Define some optimality criterion.
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Fixed-target AMCMC

Fixed-target AMCMC

A large class of adaptive MCMC algorithms can be described as follows.

@ Given mon (X, B,)), let {Py, 6 € ©} a family of TK. Py is inv.
wrt 7 for all § € ©.

@ Define some optimality criterion.

Definition

An adaptive Markov chain is a random process {(Xx, 0,), Fn, n > 0}
such that
Xn+1|]:n ~ PO,,(Xny '), and 0n+1 & ]:'H-l'
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Fixed-target AMCMC

Fixed-target AMCMC

Many possibilities for the optimality criterion.

@ Maximize the square-jump distance as in the example (Prasarica &
Gelman (2005), Andrieu & Robert (2001)).
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Fixed-target AMCMC

Fixed-target AMCMC

Many possibilities for the optimality criterion.

@ Maximize the square-jump distance as in the example (Prasarica &
Gelman (2005), Andrieu & Robert (2001)).

@ Target a given acceptance rate Andrieu & Robert (2001)), (Atchade
& Rosenthal (2005)).
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Fixed-target AMCMC

Fixed-target AMCMC

Many possibilities for the optimality criterion.

@ Maximize the square-jump distance as in the example (Prasarica &
Gelman (2005), Andrieu & Robert (2001)).

@ Target a given acceptance rate Andrieu & Robert (2001)), (Atchade
& Rosenthal (2005)).

® Moment matching (Haario et al. (2001)).
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Fixed-target AMCMC

Fixed-target AMCMC

Many possibilities for the optimality criterion.

@ Maximize the square-jump distance as in the example (Prasarica &
Gelman (2005), Andrieu & Robert (2001)).

@ Target a given acceptance rate Andrieu & Robert (2001)), (Atchade
& Rosenthal (2005)).

® Moment matching (Haario et al. (2001)).

@ Minimize the Kulback-Leibler between the proposal and the target
(Andrieu & Moulines (2005), Holden et al. (2009), Giordani &
Kohn (2008)).
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Fixed-target AMCMC

Let {(Xn,60n), Fn, n> 0} the adaptive chain.
Xnt1|Fn ~ Py, (Xn,*), and Opi1 = 0p + ynH(0n, Xnt1).

Objectives: We want conditions under which n=/2%"/ | f(Xi) = Z,
F=f—n(f).
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Fixed-target AMCMC

Fixed-target AMCMC

Let {(Xn,60n), Fn, n> 0} the adaptive chain.
Xnt1|Fn ~ Py, (Xn,*), and Opi1 = 0p + ynH(0n, Xnt1).

Objectives: We want conditions under which n=/2%"/ | f(Xi) = Z,
F=f—n(f).

Definition

Pof(x) — Po/f(x)]
D3(0,0') := sup sup | ;
o ) XEX |f|,5<1 VA (x)
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Fixed-target AMCMC

Theorem (Andrieu-Moulines (2005))
Assume
(A1) Py is invariant wrt m, ¢-irreducible, aperiodic and there

exist a 1-small set C, V : X — [1,40), A € (0,1) and
constants b such that for any 0 € ©, PV < AV + blc.
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Fixed-target AMCMC

Fixed-target AMCMC

Theorem (Andrieu-Moulines (2005))
Assume

(A1) Py is invariant wrt m, ¢-irreducible, aperiodic and there
exist a 1-small set C, V : X — [1,40), A € (0,1) and
constants b such that for any 0 € ©, PV < AV + blc.

A2) Ds(60,0') < Clo—6'|, 6,0 €.
B
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Fixed-target AMCMC

Theorem (Andrieu-Moulines (2005))
Assume

(A1) Py is invariant wrt m, ¢-irreducible, aperiodic and there
exist a 1-small set C, V : X — [1,40), A € (0,1) and
constants b such that for any 0 € ©, PV < AV + blc.

(A2) Ds(6,6') < Clo—8'|, 6,0’ € O,
(A3) v = O(n™1) and supyce |H(O, -)|ve < .
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Fixed-target AMCMC

Theorem (Andrieu-Moulines (2005))

Assume

(A1) Py is invariant wrt m, ¢-irreducible, aperiodic and there
exist a 1-small set C, V : X — [1,40), A € (0,1) and
constants b such that for any 0 € ©, PV < AV + blc.

(A2) Ds(6,6') < Clo—8'|, 6,0’ € O,
(A3) v = O(n™1) and supyce |H(O, -)|ve < .

(A4) (6, — 6, |Prob
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Fixed-target AMCMC

Theorem (Andrieu-Moulines (2005))

Assume

(A1) Py is invariant wrt m, ¢-irreducible, aperiodic and there
exist a 1-small set C, V : X — [1,40), A € (0,1) and
constants b such that for any 0 € ©, PV < AV + blc.

(A2) Ds(6,6') < Clo—8'|, 6,0’ € O,
(A3) v = O(n™1) and supyce |H(O, -)|ve < .

(A4) (6, — 6, |Prob

Then for |f|ys < 00 2B+ a < 1), n7¥23°7_ F(Xk) = N(0,0%(f))

where
o2(f) = n(IF2) + 23 = (FPF).

jz1
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Fixed-target AMCMC

There are many MCMC algorithms that are not geometrically ergodic.

Q If
/eslx‘w(dx) =00, foralls>0

the Random Walk Metropolis algorithm cannot be geometrically
ergodic. (Jarner & Tweedie (2001)).
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Fixed-target AMCMC

Fixed-target AMCMC

There are many MCMC algorithms that are not geometrically ergodic.

QIf
/eslx‘w(dx) =00, foralls>0

the Random Walk Metropolis algorithm cannot be geometrically
ergodic. (Jarner & Tweedie (2001)).

Q If liminf), w = o0 or liminf|,| o |Vlogm(x)| = 0, then
the Metropolis Adjusted Langevin algorithm cannot be
geometrically ergodic. (Roberts & Tweedie (1996)).
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Fixed-target AMCMC

Theorem (Atchade-Fort (2009))

Assume

(B1) Py is invariant wrt m, ¢-irreducible, aperiodic and there
exist a 1-small set C, V : X — [1,+0), o € (0,1/2) and
constants b, ¢ such that for any 6 € ©
PV <V — C\/l_a(X) + blc.
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Fixed-target AMCMC

Theorem (Atchade-Fort (2009))

Assume

(B1) Py is invariant wrt m, ¢-irreducible, aperiodic and there
exist a 1-small set C, V : X — [1,+0), o € (0,1/2) and
constants b, ¢ such that for any 6 € ©
PV <V — C\/l_a(X) + blc.

(B2) Ds(6,6') < Clo—6'|, 6,0 €©.
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Fixed-target AMCMC

Theorem (Atchade-Fort (2009))

Assume

(B1) Py is invariant wrt m, ¢-irreducible, aperiodic and there
exist a 1-small set C, V : X — [1,+0), o € (0,1/2) and
constants b, ¢ such that for any 6 € ©
PV <V — C\/l_a(X) + blc.

(B2) Ds(0,0") < Clo—¢'|, 0,0 €©.

(B3) 7o =0(n"") and SUP(xg)ex xo |H(8, x)| < 0.
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Fixed-target AMCMC

Theorem (Atchade-Fort (2009))

Assume

(B1) Py is invariant wrt m, ¢-irreducible, aperiodic and there
exist a 1-small set C, V : X — [1,+0), o € (0,1/2) and
constants b, ¢ such that for any 6 € ©
PV <V — C\/l_a(X) + blc.

(B2) Dg(6,0') < Clo —¢'|, 6,0’ €©.
(B3) 7o =0(n"") and SUP(xg)ex xo |H(8, x)| < 0.

Prob
—

(B4) 6, — 6, "3°0.
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Fixed-target AMCMC

Theorem (Atchade-Fort (2009))

Assume

(B1) Py is invariant wrt m, ¢-irreducible, aperiodic and there
exist a 1-small set C, V : X — [1,+0), o € (0,1/2) and
constants b, ¢ such that for any 6 € ©
PV <V — C\/l_a(X) + blc.

(B2) Dg(6,0') < Clo —¢'|, 6,0’ €©.
(B3) 7o =0(n"") and SUP(xg)ex xo |H(8, x)| < 0.

Prob
(B4) |0, — 04—

Then for |f| < C, n=Y/23"7_| £(Xk) = N(0,0?(f)) where

o(f) = m(FP) +2 ) = (FP) ).

j>1
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Fixed-target AMCMC

Practical consequence:
In a MCMC simulation problem where uniform drift condition of the form

PoV(x) < V(x) — ¢ o V(x) + blc(x)

is available, we recommend adaptive MCMC.
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Fixed-target AMCMC

Fixed-target AMCMC

Practical consequence:
In a MCMC simulation problem where uniform drift condition of the form

PyV/(x) < V(x) — ¢ o V(x) + blc(x)
is available, we recommend adaptive MCMC.

@ In such cases, AMCMC algorithms are very stable.

@ When good ideas are available on how to adapt, AMCMC perform
better than plain MCMC.
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Fixed-target AMCMC

A quick comment on the proof:

@ Similar to the proof of Andrieu & Moulines (2005).

Yves Atchadé W Central limit theorems for adaptive MCMC: some old and new



Fixed-target AMCMC

Fixed-target AMCMC

A quick comment on the proof:
@ Similar to the proof of Andrieu & Moulines (2005).

@ Based on Poisson equation.
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Fixed-target AMCMC

@ Let {Z,} be a Markov chain with t.k. P and inv. dist. 7. Let f s.t.
m(f) = 0. Notation: Pf(x) := [ P(x,dy)f(y).

@ Suppose that
5= PH,
k=0

exists. Then
g(x) — Pg(x) = f(x).

@ We can use g to approximate partial sum of Markov chains by
martingales.
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Fixed-target AMCMC

In the non-geometric case, solutions to the Poisson equation are hard to
work with.

O If PV <V —x+blc = f < x implies |g| < V.
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Fixed-target AMCMC

Fixed-target AMCMC

In the non-geometric case, solutions to the Poisson equation are hard to
work with.

O If PV <V —x+blc = f < x implies |g| < V.
@ If PV <V — V=@ 4 plc = for |[f| < VP, |g| < VPte
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Fixed-target AMCMC

Fixed-target AMCMC

In the non-geometric case, solutions to the Poisson equation are hard to
work with.

@ If PV <V —x+blc = f <yximplies |g| < V.
o If P,V <V — VI=a 4 blc = for |f| < VB, |g| < VB+e,
g — g =) _Pyo(Po—Py)o) Ppf(x).

j=>0 Jj=>0

So that
lgo — gor| < VAT,
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Fixed-target AMCMC

The solution is to work with H(x,y) = g(y) — Pg(x).

Theorem (Maxwell-Woodroofe (2000))

Define Vy(f) = sz;g 1
Zn*3/2 Vi(f) < o0,
k>0

Then H,(x,y) = Zf;ol Pif(y) — > i PIf(x) converges to a limit H
(H=g(y) — Pg(x)) in L2(m x P).

Kipnis-Varadhan (1986) has a similar result for reversible chains.
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Fixed-target AMCMC

Proposition

Assume PgV <V — V=@ 4 plc. Forf € Lys, B € 0,1 — 2a), define
Ho(x,y) = go(y) — Pogo(x).

|H9(X?y) i HG’(Xay)|
sup B+ak B+ak
xy VOTaR(x) 4 VPtar(y)

<cClo—9).

for any k > 1.
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Equi-Energy sampler

@ Let us now consider another class of adaptive MCMC where the
transition kernels do not all have the same invariant dist.
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Equi-Energy sampler

@ Let us now consider another class of adaptive MCMC where the
transition kernels do not all have the same invariant dist.

© There are actually many such algorithms (Equi-Energy sampler,
Wang-Landau, SAMC...).

© We focus on the Equi-Energy sampler (EE).
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Equi-Energy sampler

Equi-Energy sampler

(X, B) a meas. space. 7 a prob. meas. and P a TK inv. wrt to 7. ©
now denotes the space of all prob. meas. on (X, BB)

@ the Equi-Energy sampler is a very clever MCMC algorithm by Kou
& Zhou & Wong (2005).
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Equi-Energy sampler

Equi-Energy sampler

(X, B) a meas. space. 7 a prob. meas. and P a TK inv. wrt to 7. ©
now denotes the space of all prob. meas. on (X, BB)

@ the Equi-Energy sampler is a very clever MCMC algorithm by Kou
& Zhou & Wong (2005).

@ Can be looked at as an adaptive MCMC with infinite dimensional
parameter space.
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Equi-Energy sampler

Equi-Energy sampler

Let 7 a prob. meas. that is equivalent to 7 and w(x) = m(dx)/7(dx).
Let P with inv. dist. . Define

axey) =min (1.520).
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Equi-Energy sampler

Equi-Energy sampler

Let 7 a prob. meas. that is equivalent to 7 and w(x) = m(dx)/7(dx).
Let P with inv. dist. . Define

axey) =min (1.520).

Fore € (0,1) and 6 € © a prob. meas. define

Py(x,A) = (1—e)P(x, A)—l—s/@(dz) [a(x,2)1a(2) + (1 — a(x, 2)) 1a(x)].

Yves Atchadé W Central limit theorems for adaptive MCMC: some old and new



Equi-Energy sampler

Equi-Energy sampler

Let 7 a prob. meas. that is equivalent to 7 and w(x) = m(dx)/7(dx).
Let P with inv. dist. . Define

axey) =min (1.520).

Fore € (0,1) and 6 € © a prob. meas. define
Py(x,A) = (1—e)P(x, A)—l—s/@(dz) [a(x,2)1a(2) + (1 — a(x, 2)) 1a(x)].

Key insight of Equi-Energy:

(i) Pz(x,A) is invariant with respect to .
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Equi-Energy sampler

Equi-Energy sampler

Let 7 a prob. meas. that is equivalent to 7 and w(x) = m(dx)/7(dx).
Let P with inv. dist. . Define

axey) =min (1.520).

Fore € (0,1) and 6 € © a prob. meas. define
Py(x,A) = (1—e)P(x, A)—l—s/@(dz) [a(x,2)1a(2) + (1 — a(x, 2)) 1a(x)].

Key insight of Equi-Energy:
(i) Pz(x,A) is invariant with respect to .

(i) Pz will have a very good convergence rate if 7 is close
to m.
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Equi-Energy sampler

Equi-Energy sampler

Implementation: take # =77, v € (0,1). Let P with inv. dist. 7. Run
the joint process {(Xp, Xy, 0,), n > 0} as follows.
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Equi-Energy sampler

Equi-Energy sampler

Implementation: take # =77, v € (0,1). Let P with inv. dist. 7. Run
the joint process {(Xp, Xy, 0,), n > 0} as follows.

Algorithm

Given o{(Xk, Xk, 0k), k < n}

o
)_<n+1 ~ I_D()_(n, '), Xn+1 ~ PG,,(Xna ')7

n+1
Oni1=(n+1)7" Z5Xk
k=1
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Equi-Energy sampler

Equi-Energy sampler

Implementation: take # =77, v € (0,1). Let P with inv. dist. 7. Run
the joint process {(Xp, Xy, 0,), n > 0} as follows.

Algorithm

Given o{(Xk, Xk, 0k), k < n}

o
)_<n+1 ~ I_D()_(n, '), Xn+1 ~ PG,,(Xna ')7

n+1
Oni1=(n+1)7" Z5Xk
k=1

As n — o0, Py, should converge to Px.
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Equi-Energy sampler

@ The EE has been studied in Andrieu & Jasra & Del Moral & Doucet
(2007) (convergence of the marginal and law of large numbers) and
Atchade (2009) (law of large numbers and CLT).
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Equi-Energy sampler

Equi-Energy sampler

@ The EE has been studied in Andrieu & Jasra & Del Moral & Doucet
(2007) (convergence of the marginal and law of large numbers) and
Atchade (2009) (law of large numbers and CLT).

@ | would to discuss the CLT. That is condition under which
Y25 (X)) = Z.
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Equi-Energy sampler

Equi-Energy sampler

Fix £ with w(f) = 0. Let U that satisfies the Poisson equation
U— PzU=f. Define S, = >"/_, f(Xk)
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Equi-Energy sampler

Equi-Energy sampler

Fix £ with w(f) = 0. Let U that satisfies the Poisson equation
U— PzU=f. Define S, = >"/_, f(Xk)
Sn = U(Xk) — P=U(Xx)
k=1
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Equi-Energy sampler

Equi-Energy sampler

Fix £ with w(f) = 0. Let U that satisfies the Poisson equation
U— PzU=f. Define S, = >"/_, f(Xk)
Sn = U(Xk) — P=U(Xx)
k=1

n

= U(Xk) = PeklU(Xk1)> + (Po, U(X0) — P, U(X5))

+ Py, U(Xk) — Pz U(Xk)
k=1
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Equi-Energy sampler

Equi-Energy sampler

Fix £ with w(f) = 0. Let U that satisfies the Poisson equation
U— PzU=f. Define S, = >"/_, f(Xk)

k=1
S U(Xk) = Pe“U(Xkl)> + (Po, U(X0) — P, U(X5))
k=1

+ Py, U(Xk) — Pz U(Xk)
k=1

= M, +Ez”: ZHX,( (X)) )+ op (v/n),
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Equi-Energy sampler

Equi-Energy sampler

Fix £ with w(f) = 0. Let U that satisfies the Poisson equation
U— PzU=f. Define S, = >"/_, f(Xk)

k=1
- (> U(Xk) = Pe“U(Xkl)> + (Po, U(X0) — P, U(X5))
k=1

+ Py, U(Xk) — Pz U(Xk)
k=1

= M, +Ez”: ZHX,( (X)) )+ op (v/n),

n

= M, +2E—ZLZHX‘((X/)+OP (\/E),




Equi-Energy sampler

Equi-Energy sampler

Suppose that X is finite. Then
! zn: Ho(X)| =G
\/ﬁ a x\ N ) )

where G is a Gaussian r.v with zero mean and covariance

Mx,y) = / [U(2)Uy (2) — (PUx(2)) (PU,(2))] (d2),

Then

S, =

1
7 ﬁ/vl + 2= ZG (Xx) + op (1).
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Equi-Energy sampler

Equi-Energy sampler

Theorem

Suppose that X is finite and P and P are ergodic. Let f: X — R
bounded.

%Zf(xk):szZEZW(X)G(X) as n — oo, (1)

where Z and ) _, m(x)G(x) are independent random variables and
Z ~ N(0,0%(f)), with o2(f) := m(f?) + 2350, [ m(dx)f(x)PLf(x)
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Equi-Energy sampler

If X is not finite, we need empirical process theory for Markov chains
(uniform CLT for Markov chains).
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Equi-Energy sampler

Equi-Energy sampler

If X is not finite, we need empirical process theory for Markov chains
(uniform CLT for Markov chains). Suppose that:

© X is compact P and P are uniformly geometrically ergodic.
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Equi-Energy sampler

Equi-Energy sampler

If X is not finite, we need empirical process theory for Markov chains
(uniform CLT for Markov chains). Suppose that:

© X is compact P and P are uniformly geometrically ergodic.

@ Suppose that a uniform CLT over the class {Hx, x € X'} hold for
the Markov chain {X,, n> 0}.
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Equi-Energy sampler

Equi-Energy sampler

Theorem

Assume the above. Let f : X — R a bounded meas. function.
1 n
E kz:; F(X) = Z + 25/7T(dx)G(x) 5 = e 2)

where Z is as above and G is a zero-mean Gaussian process on X with
covariance function

Mx,y) = / [U(2)Uy (2) — (PUL(2)) (PU,(2))] (d2),
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Equi-Energy sampler

Practical implications:

@ In the EE sampler (and more generally for adaptive MCMC with
varying invariant distributions) you pay the price of the adaptation.

Yves Atchadé W Central limit theorems for adaptive MCMC: some old and new
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Equi-Energy sampler

Practical implications:

@ In the EE sampler (and more generally for adaptive MCMC with
varying invariant distributions) you pay the price of the adaptation.

© For small problems, the cost of the adaptation (the term
2e [ m(dx)G(x)) can make the algorithm inefficient compared with
simpler MCMC sampler.
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Equi-Energy sampler

Equi-Energy sampler

Practical implications:

@ In the EE sampler (and more generally for adaptive MCMC with
varying invariant distributions) you pay the price of the adaptation.

© For small problems, the cost of the adaptation (the term
2e [ m(dx)G(x)) can make the algorithm inefficient compared with
simpler MCMC sampler.

© To minimize the cost of the adaptation, ¢ should be kept small.
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