Central limit theorems for adaptive MCMC: some old and new results

Yves Atchadé (Based partly on joint work with Gersende Fort)

Department of Statistics University of Michigan

March 17, 2009

Yves Atchade (Based partly on joint work w Central limit theorems for adaptive MCMC: some old and new

(D) (A) (A) (A) (A)

Introduction

Markov Chain Monte Carlo (MCMC) is a popular tool for Monte Carlo simulations.

- $(\mathcal{X}, \mathcal{B}, \lambda)$ a meas. space. Want to sample from $\pi(x)\lambda(dx)$.
- MCMC: a recipe to construct ergodic Markov chains {X_n, n ≥ 0} with state space (X, B) and with invariant distribution π.

Introduction

- Central limit theorems play an important role in MCMC.
 - Quantify uncertainty in MCMC estimates.
 - Omparing algorithms.
 - Serving as a stopping rule.
- There are many CLT for Markov chains (See e.g. G. Jones' review).

Introduction

- Adaptive MCMC: you update the transition kernel (TK) of the sampler as it runs.
- Can be used to improve performances in a variety of situations. Can be useful for MCMC softwares.
- What do we know about central limit theorems for adaptive MCMC?

Introduction

<u>Outline</u>

- CLT for fixed-target AMCMC
- CLT for the Equi-Energy sampler

Yves Atchadé (Based partly on joint work w Central limit theorems for adaptive MCMC: some old and new

э

A large class of adaptive MCMC algorithms can be described as follows.

- Given π on (X, B, λ), let {P_θ, θ ∈ Θ} a family of TK. P_θ is inv. wrt π for all θ ∈ Θ.
- Define some optimality criterion.

Definition

An adaptive Markov chain is a random process $\{(X_n, heta_n), \mathcal{F}_n, \ n\geq 0\}$ such that

$$X_{n+1}|\mathcal{F}_n \sim P_{\theta_n}(X_n, \cdot), \quad \text{ and } \theta_{n+1} \in \mathcal{F}_{n+1}.$$

Yves Atchadé (Based partly on joint work w Central limit theorems for adaptive MCMC: some old and new

(ロ) (同) (E) (E) (E)

A large class of adaptive MCMC algorithms can be described as follows.

- Given π on (X, B, λ), let {P_θ, θ ∈ Θ} a family of TK. P_θ is inv. wrt π for all θ ∈ Θ.
- Define some optimality criterion.

Definition

An adaptive Markov chain is a random process $\{(X_n, \theta_n), \mathcal{F}_n, n \ge 0\}$ such that

$$X_{n+1}|\mathcal{F}_n \sim \mathcal{P}_{ heta_n}(X_n, \cdot), \quad ext{ and } heta_{n+1} \in \mathcal{F}_{n+1}.$$

Yves Atchade (Based partly on joint work w Central limit theorems for adaptive MCMC: some old and new

Many possibilities for the optimality criterion.

- Maximize the square-jump distance as in the example (Prasarica & Gelman (2005), Andrieu & Robert (2001)).
- Target a given acceptance rate Andrieu & Robert (2001)), (Atchade & Rosenthal (2005)).
- Moment matching (Haario et al. (2001)).
- Minimize the Kulback-Leibler between the proposal and the target (Andrieu & Moulines (2005), Holden et al. (2009), Giordani & Kohn (2008)).

Many possibilities for the optimality criterion.

- Maximize the square-jump distance as in the example (Prasarica & Gelman (2005), Andrieu & Robert (2001)).
- Target a given acceptance rate Andrieu & Robert (2001)), (Atchade & Rosenthal (2005)).
- Moment matching (Haario et al. (2001)).
- Minimize the Kulback-Leibler between the proposal and the target (Andrieu & Moulines (2005), Holden et al. (2009), Giordani & Kohn (2008)).

Many possibilities for the optimality criterion.

- Maximize the square-jump distance as in the example (Prasarica & Gelman (2005), Andrieu & Robert (2001)).
- Target a given acceptance rate Andrieu & Robert (2001)), (Atchade & Rosenthal (2005)).
- Moment matching (Haario et al. (2001)).
- Minimize the Kulback-Leibler between the proposal and the target (Andrieu & Moulines (2005), Holden et al. (2009), Giordani & Kohn (2008)).

Many possibilities for the optimality criterion.

- Maximize the square-jump distance as in the example (Prasarica & Gelman (2005), Andrieu & Robert (2001)).
- Target a given acceptance rate Andrieu & Robert (2001)), (Atchade & Rosenthal (2005)).
- Moment matching (Haario et al. (2001)).
- Minimize the Kulback-Leibler between the proposal and the target (Andrieu & Moulines (2005), Holden et al. (2009), Giordani & Kohn (2008)).

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Let $\{(X_n, \theta_n), \mathcal{F}_n, n \ge 0\}$ the adaptive chain.

 $X_{n+1}|\mathcal{F}_n \sim P_{\theta_n}(X_n, \cdot), \text{ and } \theta_{n+1} = \theta_n + \gamma_n H(\theta_n, X_{n+1}).$

Objectives: We want conditions under which $n^{-1/2} \sum_{k=1}^{n} \overline{f}(X_k) \Rightarrow Z$, $\overline{f} = f - \pi(f)$.

Definition

$$D_{\beta}(\theta, \theta') := \sup_{x \in \mathcal{X}} \sup_{|f|_{V^{\beta}} \le 1} \frac{|P_{\theta}f(x) - P_{\theta'}f(x)|}{V^{\beta}(x)}$$

Yves Atchadé (Based partly on joint work w Central limit theorems for adaptive MCMC: some old and new

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Let $\{(X_n, \theta_n), \mathcal{F}_n, n \ge 0\}$ the adaptive chain.

 $X_{n+1}|\mathcal{F}_n \sim P_{\theta_n}(X_n, \cdot), \text{ and } \theta_{n+1} = \theta_n + \gamma_n H(\theta_n, X_{n+1}).$

Objectives: We want conditions under which $n^{-1/2} \sum_{k=1}^{n} \overline{f}(X_k) \Rightarrow Z$, $\overline{f} = f - \pi(f)$.

Definition

$$D_eta(heta, heta'):=\sup_{x\in\mathcal{X}}\sup_{|f|_{ec yeta}\leq 1}rac{|P_ heta f(x)-P_{ heta'}f(x)|}{V^eta(x)}.$$

Yves Atchadé (Based partly on joint work w Central limit theorems for adaptive MCMC: some old and new

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Theorem (Andrieu-Moulines (2005))

Assume

(A1) P_{θ} is invariant wrt π , ϕ -irreducible, aperiodic and there exist a 1-small set C, $V : \mathcal{X} \to [1, +\infty)$, $\lambda \in (0, 1)$ and constants b such that for any $\theta \in \Theta$, $P_{\theta}V \leq \lambda V + b\mathbf{1}_{C}$.

(A2) $D_{\beta}(\theta, \theta') \leq C|\theta - \theta'|, \quad \theta, \theta' \in \Theta.$

(A3) $\gamma_n = O(n^{-1})$ and $\sup_{\theta \in \Theta} |H(\theta, \cdot)|_{V^{\alpha}} < \infty$.

 $(A4) |\theta_n - \theta_\star| \stackrel{Prob}{\to} 0.$

Then for $|f|_{V^{\beta}} < \infty$ $(2\beta + \alpha < 1)$, $n^{-1/2} \sum_{k=1}^{n} \overline{f}(X_k) \Rightarrow N(0, \sigma^2(f))$ where

Yves Atchade (Based partly on joint work w Central limit theorems for adaptive MCMC: some old and new

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Theorem (Andrieu-Moulines (2005))

Assume

(A1) P_{θ} is invariant wrt π , ϕ -irreducible, aperiodic and there exist a 1-small set C, $V : \mathcal{X} \to [1, +\infty)$, $\lambda \in (0, 1)$ and constants b such that for any $\theta \in \Theta$, $P_{\theta}V < \lambda V + b\mathbf{1}_{C}$.

(A2) $D_{\beta}(\theta, \theta') \leq C|\theta - \theta'|, \quad \theta, \theta' \in \Theta.$

(A3) $\gamma_n = O(n^{-1})$ and $\sup_{\theta \in \Theta} |H(\theta, \cdot)|_{V^{\alpha}} < \infty$.

(A4) $|\theta_n - \theta_\star| \xrightarrow{\text{Prob}} 0.$

Then for $|f|_{V^{\beta}} < \infty$ $(2\beta + \alpha < 1)$, $n^{-1/2} \sum_{k=1}^{n} \overline{f}(X_k) \Rightarrow N(0, \sigma^2(f))$ where

Yves Atchadé (Based partly on joint work w Central limit theorems for adaptive MCMC: some old and new

・ロン ・回と ・ヨン・

Theorem (Andrieu-Moulines (2005))

Assume

(A1) P_{θ} is invariant wrt π , ϕ -irreducible, aperiodic and there exist a 1-small set C, $V : \mathcal{X} \to [1, +\infty)$, $\lambda \in (0, 1)$ and constants b such that for any $\theta \in \Theta$, $P_{\theta}V \leq \lambda V + b\mathbf{1}_{C}$.

(A2)
$$D_{\beta}(\theta, \theta') \leq C|\theta - \theta'|, \quad \theta, \theta' \in \Theta.$$

(A3)
$$\gamma_n = O(n^{-1})$$
 and $\sup_{\theta \in \Theta} |H(\theta, \cdot)|_{V^{\alpha}} < \infty$.

(A4)
$$|\theta_n - \theta_\star| \stackrel{Prob}{\to} 0.$$

Then for $|f|_{V^{\beta}} < \infty$ (2 $\beta + \alpha < 1$), $n^{-1/2} \sum_{k=1}^{n} \overline{f}(X_k) \Rightarrow N(0, \sigma^2(f))$ where

$$\sigma^{2}(f) = \pi(|\bar{f}|^{2}) + 2\sum_{i>1} \pi\left(\bar{f}P_{\theta_{\star}}^{j}\bar{f}\right).$$

Yves Atchadé (Based partly on joint work w Central limit theorems for adaptive MCMC: some old and new

・ロン ・回と ・ヨン・

Theorem (Andrieu-Moulines (2005))

Assume

(A1) P_{θ} is invariant wrt π , ϕ -irreducible, aperiodic and there exist a 1-small set C, $V : \mathcal{X} \to [1, +\infty)$, $\lambda \in (0, 1)$ and constants b such that for any $\theta \in \Theta$, $P_{\theta}V \leq \lambda V + b\mathbf{1}_{C}$.

(A2)
$$D_{\beta}(\theta, \theta') \leq C|\theta - \theta'|, \quad \theta, \theta' \in \Theta.$$

(A3)
$$\gamma_n = O(n^{-1})$$
 and $\sup_{\theta \in \Theta} |H(\theta, \cdot)|_{V^{\alpha}} < \infty$.

(A4)
$$|\theta_n - \theta_\star| \stackrel{\text{Prob}}{\to} 0.$$

Then for $|f|_{V^{\beta}} < \infty$ (2 $\beta + \alpha < 1$), $n^{-1/2} \sum_{k=1}^{n} \overline{f}(X_k) \Rightarrow N(0, \sigma^2(f))$ where

$$\sigma^{2}(f) = \pi(|\bar{f}|^{2}) + 2\sum_{j>1} \pi\left(\bar{f}P_{\theta_{\star}}^{j}\bar{f}\right).$$

Yves Atchadé (Based partly on joint work w Central limit theorems for adaptive MCMC: some old and new

Theorem (Andrieu-Moulines (2005))

Assume

(A1) P_{θ} is invariant wrt π , ϕ -irreducible, aperiodic and there exist a 1-small set C, $V : \mathcal{X} \to [1, +\infty)$, $\lambda \in (0, 1)$ and constants b such that for any $\theta \in \Theta$, $P_{\theta}V \leq \lambda V + b\mathbf{1}_{C}$.

(A2)
$$D_{\beta}(\theta, \theta') \leq C|\theta - \theta'|, \quad \theta, \theta' \in \Theta.$$

(A3)
$$\gamma_n = O(n^{-1})$$
 and $\sup_{\theta \in \Theta} |H(\theta, \cdot)|_{V^{\alpha}} < \infty$.

(A4)
$$|\theta_n - \theta_\star| \stackrel{\text{Prob}}{\to} 0.$$

Then for $|f|_{V^{\beta}} < \infty$ (2 $\beta + \alpha < 1$), $n^{-1/2} \sum_{k=1}^{n} \overline{f}(X_k) \Rightarrow N(0, \sigma^2(f))$ where

$$\sigma^2(f) = \pi(|\bar{f}|^2) + 2\sum_{j\geq 1} \pi\left(\bar{f}P^j_{\theta_\star}\bar{f}\right).$$

Yves Atchade (Based partly on joint work w Central limit theorems for adaptive MCMC: some old and new

There are many MCMC algorithms that are not geometrically ergodic.

If

$$\int e^{s|x|}\pi(dx)=\infty, \quad \text{ for all } s>0$$

the Random Walk Metropolis algorithm cannot be geometrically ergodic. (Jarner & Tweedie (2001)).

If lim inf_{|x|→∞} ^{|∇ log π(x)|}/_{|x|} = ∞ or lim inf_{|x|→∞} |∇ log π(x)| = 0, then the Metropolis Adjusted Langevin algorithm cannot be geometrically ergodic. (Roberts & Tweedie (1996)).

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

There are many MCMC algorithms that are not geometrically ergodic.

If

$$\int e^{s|x|}\pi(dx)=\infty, \quad \text{ for all } s>0$$

the Random Walk Metropolis algorithm cannot be geometrically ergodic. (Jarner & Tweedie (2001)).

If lim inf_{|x|→∞} ^{|∇ log π(x)|}/_{|x|} = ∞ or lim inf_{|x|→∞} |∇ log π(x)| = 0, then the Metropolis Adjusted Langevin algorithm cannot be geometrically ergodic. (Roberts & Tweedie (1996)).

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Theorem (Atchade-Fort (2009))

Assume

(B1) P_{θ} is invariant wrt π , ϕ -irreducible, aperiodic and there exist a 1-small set C, $V : \mathcal{X} \to [1, +\infty)$, $\alpha \in (0, 1/2)$ and constants b, c such that for any $\theta \in \Theta$ $P_{\theta}V \leq V - cV^{1-\alpha}(x) + b\mathbf{1}_{C}$.

(B2) $D_{\beta}(\theta, \theta') \leq C|\theta - \theta'|, \quad \theta, \theta' \in \Theta.$

(B3) $\gamma_n = O(n^{-1})$ and $\sup_{(x, heta)\in\mathcal{X} imes\Theta}|H(heta,x)| < \infty.$

 $|\mathsf{B4})||\theta_n - \theta_\star| \stackrel{\mathsf{Prob}}{\to} 0.$

Then for $|f| \leq C$, $n^{-1/2} \sum_{k=1}^{n} \overline{f}(X_k) \Rightarrow N(0, \sigma^2(f))$ where

 $\sigma^2(f) = \pi(|\bar{f}|^2) + 2\sum \pi\left(\bar{f}P^j_{\bar{H}}|\bar{f}\right).$

Theorem (Atchade-Fort (2009))

Assume

(B1) P_{θ} is invariant wrt π , ϕ -irreducible, aperiodic and there exist a 1-small set C, $V : \mathcal{X} \to [1, +\infty)$, $\alpha \in (0, 1/2)$ and constants b, c such that for any $\theta \in \Theta$ $P_{\theta}V \leq V - cV^{1-\alpha}(x) + b\mathbf{1}_{C}$.

(B2) $D_{\beta}(\theta, \theta') \leq C|\theta - \theta'|, \quad \theta, \theta' \in \Theta.$

(B3) $\gamma_n = O(n^{-1})$ and $\sup_{(x,\theta)\in\mathcal{X}\times\Theta} |H(\theta,x)| < \infty$.

(B4) $|\theta_n - \theta_\star| \stackrel{Prob}{\to} 0.$

Then for $|f| \leq C$, $n^{-1/2} \sum_{k=1}^{n} \overline{f}(X_k) \Rightarrow N(0, \sigma^2(f))$ where

 $\sigma^2(f) = \pi(|\bar{f}|^2) + 2\sum \pi\left(\bar{f}P^j_{\theta_\star}\bar{f}\right).$

Theorem (Atchade-Fort (2009))

Assume

(B1) P_{θ} is invariant wrt π , ϕ -irreducible, aperiodic and there exist a 1-small set C, $V : \mathcal{X} \to [1, +\infty)$, $\alpha \in (0, 1/2)$ and constants b, c such that for any $\theta \in \Theta$ $P_{\theta}V \leq V - cV^{1-\alpha}(x) + b\mathbf{1}_{C}$.

(B2) $D_{\beta}(\theta, \theta') \leq C|\theta - \theta'|, \quad \theta, \theta' \in \Theta.$

(B3) $\gamma_n = O(n^{-1})$ and $\sup_{(x,\theta) \in \mathcal{X} \times \Theta} |H(\theta, x)| < \infty$.

(B4) $|\theta_n - \theta_\star| \xrightarrow{\text{Prob}} 0.$

Then for $|f| \leq C$, $n^{-1/2} \sum_{k=1}^{n} \overline{f}(X_k) \Rightarrow N(0, \sigma^2(f))$ where

$$\sigma^2(f) = \pi(|\bar{f}|^2) + 2\sum_{\tau = \tau} \pi\left(\bar{f}P^j_{\theta_\star}\bar{f}\right).$$

Theorem (Atchade-Fort (2009))

Assume

(B1) P_{θ} is invariant wrt π , ϕ -irreducible, aperiodic and there exist a 1-small set C, $V : \mathcal{X} \to [1, +\infty)$, $\alpha \in (0, 1/2)$ and constants b, c such that for any $\theta \in \Theta$ $P_{\theta}V \leq V - cV^{1-\alpha}(x) + b\mathbf{1}_{C}$.

(B2)
$$D_{\beta}(\theta, \theta') \leq C|\theta - \theta'|, \quad \theta, \theta' \in \Theta.$$

(B3)
$$\gamma_n = O(n^{-1})$$
 and $\sup_{(x,\theta) \in \mathcal{X} \times \Theta} |H(\theta,x)| < \infty$.

(B4)
$$|\theta_n - \theta_\star| \xrightarrow{\text{Prob}} 0.$$

Then for
$$|f| \leq C$$
, $n^{-1/2} \sum_{k=1}^{n} \overline{f}(X_k) \Rightarrow N(0, \sigma^2(f))$ where

$$\sigma^{2}(f) = \pi(|\bar{f}|^{2}) + 2\sum_{i>1} \pi\left(\bar{f}P_{\theta_{\star}}^{j}\bar{f}\right).$$

Theorem (Atchade-Fort (2009))

Assume

(B1) P_{θ} is invariant wrt π , ϕ -irreducible, aperiodic and there exist a 1-small set C, $V : \mathcal{X} \to [1, +\infty)$, $\alpha \in (0, 1/2)$ and constants b, c such that for any $\theta \in \Theta$ $P_{\theta}V \leq V - cV^{1-\alpha}(x) + b\mathbf{1}_{C}$.

(B2)
$$D_{\beta}(\theta, \theta') \leq C|\theta - \theta'|, \quad \theta, \theta' \in \Theta.$$

(B3)
$$\gamma_n = O(n^{-1})$$
 and $\sup_{(x,\theta) \in \mathcal{X} \times \Theta} |H(\theta,x)| < \infty$.

(B4)
$$|\theta_n - \theta_\star| \xrightarrow{\text{Prob}} 0.$$

Then for $|f| \leq C$, $n^{-1/2} \sum_{k=1}^{n} \overline{f}(X_k) \Rightarrow N(0, \sigma^2(f))$ where

$$\sigma^2(f) = \pi(|\bar{f}|^2) + 2\sum_{j\geq 1} \pi\left(\bar{f}P^j_{\theta_\star}\bar{f}\right).$$

Fixed-target AMCMC

Practical consequence:

In a MCMC simulation problem where uniform drift condition of the form

$$P_{\theta}V(x) \leq V(x) - \phi \circ V(x) + b\mathbf{1}_{C}(x)$$

is available, we recommend adaptive MCMC.

- In such cases, AMCMC algorithms are very stable.
- When good ideas are available on how to adapt, AMCMC perform better than plain MCMC.

Yves Atchade (Based partly on joint work w Central limit theorems for adaptive MCMC: some old and new

Fixed-target AMCMC

Practical consequence:

In a MCMC simulation problem where uniform drift condition of the form

$$P_{\theta}V(x) \leq V(x) - \phi \circ V(x) + b\mathbf{1}_{C}(x)$$

is available, we recommend adaptive MCMC.

- In such cases, AMCMC algorithms are very stable.
- When good ideas are available on how to adapt, AMCMC perform better than plain MCMC.

(1日) (日) (日)

Fixed-target AMCMC

A quick comment on the proof:

- Similar to the proof of Andrieu & Moulines (2005).
- Based on Poisson equation.

Yves Atchadé (Based partly on joint work w Central limit theorems for adaptive MCMC: some old and new

Fixed-target AMCMC

A quick comment on the proof:

- Similar to the proof of Andrieu & Moulines (2005).
- Based on Poisson equation.

Yves Atchade (Based partly on joint work w Central limit theorems for adaptive MCMC: some old and new

(ロ) (同) (E) (E) (E)

- Let $\{Z_n\}$ be a Markov chain with t.k. P and inv. dist. π . Let f s.t. $\pi(f) = 0$. Notation: $Pf(x) := \int P(x, dy)f(y)$.
- Suppose that

$$g=\sum_{k=0}^{\infty}P^kf,$$

exists. Then

$$g(x) - Pg(x) = f(x).$$

• We can use g to approximate partial sum of Markov chains by martingales.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

In the non-geometric case, solutions to the Poisson equation are hard to work with.

• If $PV \leq V - \chi + b\mathbf{1}_C \Rightarrow f \leq \chi$ implies $|g| \leq V$.

• If $P_{\theta}V \leq V - V^{1-\alpha} + b\mathbf{1}_{\mathcal{C}} \Rightarrow$ for $|f| \leq V^{\beta}$, $|g| \leq V^{\beta+\alpha}$.

$$g_ heta - g_{ heta'} = \sum_{j \geq 0} P^j_ heta \circ (P_ heta - P_{ heta'}) \circ \sum_{j \geq 0} P^j_{ heta'} f(x).$$

So that

$$|\mathbf{g}_{ heta} - \mathbf{g}_{ heta'}| \leq V^{eta+2lpha}.$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

In the non-geometric case, solutions to the Poisson equation are hard to work with.

- If $PV \leq V \chi + b\mathbf{1}_C \Rightarrow f \leq \chi$ implies $|g| \leq V$.
- If $P_{\theta}V \leq V V^{1-\alpha} + b\mathbf{1}_{\mathcal{C}} \Rightarrow$ for $|f| \leq V^{\beta}$, $|g| \leq V^{\beta+\alpha}$.

$$g_ heta - g_{ heta'} = \sum_{j \geq 0} P^j_ heta \circ (P_ heta - P_{ heta'}) \circ \sum_{j \geq 0} P^j_{ heta'} f(x).$$

So that

$$|g_{ heta} - g_{ heta'}| \leq V^{eta+2lpha}.$$

In the non-geometric case, solutions to the Poisson equation are hard to work with.

- If $PV \leq V \chi + b\mathbf{1}_C \Rightarrow f \leq \chi$ implies $|g| \leq V$.
- If $P_{\theta}V \leq V V^{1-\alpha} + b\mathbf{1}_{\mathcal{C}} \Rightarrow$ for $|f| \leq V^{\beta}$, $|g| \leq V^{\beta+\alpha}$.

$$g_ heta - g_{ heta'} = \sum_{j \geq 0} P^j_ heta \circ (P_ heta - P_{ heta'}) \circ \sum_{j \geq 0} P^j_{ heta'} f(x).$$

So that

$$|g_ heta-g_{ heta'}|\leq V^{eta+2lpha}.$$

The solution is to work with H(x, y) = g(y) - Pg(x).

Theorem (Maxwell-Woodroofe (2000))

Define
$$V_n(f) = \left\| \sum_{k=0}^{n-1} P^k f \right\|_{L^2(\pi)}$$
. If

$$\sum_{k\geq 0} n^{-3/2} V_n(f) < \infty,$$

Then $H_n(x, y) = \sum_{j=0}^{n-1} P^j f(y) - \sum_{j=0}^n P^j f(x)$ converges to a limit H(H = g(y) - Pg(x)) in $L^2(\pi \times P)$.

Kipnis-Varadhan (1986) has a similar result for reversible chains.

Yves Atchadé (Based partly on joint work w Central limit theorems for adaptive MCMC: some old and new

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Fixed-target AMCMC

Proposition

Assume $P_{\theta}V \leq V - V^{1-\alpha} + b\mathbf{1}_{C}$. For $f \in L_{V^{\beta}}$, $\beta \in [0, 1-2\alpha)$, define $H_{\theta}(x, y) = g_{\theta}(y) - P_{\theta}g_{\theta}(x)$.

$$\sup_{x,y} \frac{|H_{\theta}(x,y) - H_{\theta'}(x,y)|}{V^{\beta + \alpha \kappa}(x) + V^{\beta + \alpha \kappa}(y)} \leq C |\theta - \theta'|.$$

for any $\kappa > 1$.

Yves Atchade (Based partly on joint work w Central limit theorems for adaptive MCMC: some old and new

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Equi-Energy sampler

- Let us now consider another class of adaptive MCMC where the transition kernels do not all have the same invariant dist.
- There are actually many such algorithms (Equi-Energy sampler, Wang-Landau, SAMC...).
- We focus on the Equi-Energy sampler (EE).

Yves Atchadé (Based partly on joint work w Central limit theorems for adaptive MCMC: some old and new

Equi-Energy sampler

- Let us now consider another class of adaptive MCMC where the transition kernels do not all have the same invariant dist.
- There are actually many such algorithms (Equi-Energy sampler, Wang-Landau, SAMC...).
- We focus on the Equi-Energy sampler (EE).

(ロ) (同) (E) (E) (E)

 $(\mathcal{X}, \mathcal{B})$ a meas. space. π a prob. meas. and P a TK inv. wrt to π . Θ now denotes the space of all prob. meas. on $(\mathcal{X}, \mathcal{B})$

• the Equi-Energy sampler is a very clever MCMC algorithm by Kou & Zhou & Wong (2005).

• Can be looked at as an adaptive MCMC with infinite dimensional parameter space.

Yves Atchade (Based partly on joint work w Central limit theorems for adaptive MCMC: some old and new

 $(\mathcal{X}, \mathcal{B})$ a meas. space. π a prob. meas. and P a TK inv. wrt to π . Θ now denotes the space of all prob. meas. on $(\mathcal{X}, \mathcal{B})$

- the Equi-Energy sampler is a very clever MCMC algorithm by Kou & Zhou & Wong (2005).
- Can be looked at as an adaptive MCMC with infinite dimensional parameter space.

Equi-Energy sampler

Let $\bar{\pi}$ a prob. meas. that is equivalent to π and $\omega(x) = \pi(dx)/\bar{\pi}(dx)$. Let P with inv. dist. π . Define

$$\alpha(x,y) = \min\left(1, \frac{\omega(y)}{\omega(x)}\right).$$

For $\varepsilon \in (0,1)$ and $heta \in \Theta$ a prob. meas. define

 $P_{\theta}(x,A) = (1-\varepsilon)P(x,A) + \varepsilon \int \theta(dz) \left[\alpha(x,z)\mathbf{1}_{A}(z) + (1-\alpha(x,z))\mathbf{1}_{A}(x)\right].$

Key insight of Equi-Energy:

(i) P_π(x, A) is invariant with respect to π.
(ii) P_π will have a very good convergence rate if π is o to π.

Equi-Energy sampler

Let $\bar{\pi}$ a prob. meas. that is equivalent to π and $\omega(x) = \pi(dx)/\bar{\pi}(dx)$. Let P with inv. dist. π . Define

$$\alpha(x,y) = \min\left(1, \frac{\omega(y)}{\omega(x)}\right).$$

For $\varepsilon \in (0,1)$ and $\theta \in \Theta$ a prob. meas. define

$$P_{\theta}(x,A) = (1-\varepsilon)P(x,A) + \varepsilon \int \theta(dz) \left[\alpha(x,z)\mathbf{1}_{A}(z) + (1-\alpha(x,z))\mathbf{1}_{A}(x)\right].$$

Key insight of Equi-Energy:

(i) $P_{\bar{\pi}}(x, A)$ is invariant with respect to π .

(ii) $P_{\bar{\pi}}$ will have a very good convergence rate if $\bar{\pi}$ is close to π .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Equi-Energy sampler

Let $\bar{\pi}$ a prob. meas. that is equivalent to π and $\omega(x) = \pi(dx)/\bar{\pi}(dx)$. Let P with inv. dist. π . Define

$$\alpha(x,y) = \min\left(1, \frac{\omega(y)}{\omega(x)}\right).$$

For $\varepsilon \in (0,1)$ and $\theta \in \Theta$ a prob. meas. define

$$P_{\theta}(x,A) = (1-\varepsilon)P(x,A) + \varepsilon \int \theta(dz) \left[\alpha(x,z)\mathbf{1}_{A}(z) + (1-\alpha(x,z))\mathbf{1}_{A}(x)\right].$$

Key insight of Equi-Energy:

(i) $P_{\pi}(x, A)$ is invariant with respect to π .

(ii) $P_{\bar{\pi}}$ will have a very good convergence rate if $\bar{\pi}$ is close to π .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Equi-Energy sampler

Let $\bar{\pi}$ a prob. meas. that is equivalent to π and $\omega(x) = \pi(dx)/\bar{\pi}(dx)$. Let P with inv. dist. π . Define

$$\alpha(x,y) = \min\left(1, \frac{\omega(y)}{\omega(x)}\right).$$

For $\varepsilon \in (0,1)$ and $\theta \in \Theta$ a prob. meas. define

$$P_{\theta}(x,A) = (1-\varepsilon)P(x,A) + \varepsilon \int \theta(dz) \left[\alpha(x,z)\mathbf{1}_{A}(z) + (1-\alpha(x,z))\mathbf{1}_{A}(x)\right].$$

Key insight of Equi-Energy:

(i) $P_{\bar{\pi}}(x, A)$ is invariant with respect to π .

(ii) $P_{\bar{\pi}}$ will have a very good convergence rate if $\bar{\pi}$ is close to π .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Implementation: take $\bar{\pi} = \pi^{\gamma}$, $\gamma \in (0, 1)$. Let \bar{P} with inv. dist. $\bar{\pi}$. Run the joint process $\{(\bar{X}_n, X_n, \theta_n), n \ge 0\}$ as follows.

Algorithm Given $\sigma\{(\bar{X}_k, X_k, \theta_k), k \leq n\}$ $\bar{X}_{n+1} \sim \bar{P}(\bar{X}_n, \cdot), \qquad X_{n+1} \sim P_{\theta_n}(X_n, \cdot),$ $\theta_{n+1} = (n+1)^{-1} \sum_{k=1}^{n+1} \delta_{\bar{X}_k}$

As $n
ightarrow\infty$, $P_{ heta_n}$ should converge to $P_{ar{\pi}}$.

Yves Atchadé (Based partly on joint work w Central limit theorems for adaptive MCMC: some old and new

・ロン ・御 とくほど ・ほど 一時 二

Implementation: take $\bar{\pi} = \pi^{\gamma}$, $\gamma \in (0, 1)$. Let \bar{P} with inv. dist. $\bar{\pi}$. Run the joint process $\{(\bar{X}_n, X_n, \theta_n), n \ge 0\}$ as follows.

Algorithm

Given $\sigma\{(\bar{X}_k, X_k, \theta_k), k \leq n\}$ • $\bar{X}_{n+1} \sim \bar{P}(\bar{X}_n, \cdot), \qquad X_{n+1} \sim P_{\theta_n}(X_n, \cdot),$ • $\theta_{n+1} = (n+1)^{-1} \sum_{k=1}^{n+1} \delta_{\bar{X}_k}$

As $n
ightarrow\infty$, $P_{ heta_n}$ should converge to $P_{ar{\pi}}.$

Yves Atchadé (Based partly on joint work w Central limit theorems for adaptive MCMC: some old and new

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Implementation: take $\bar{\pi} = \pi^{\gamma}$, $\gamma \in (0, 1)$. Let \bar{P} with inv. dist. $\bar{\pi}$. Run the joint process $\{(\bar{X}_n, X_n, \theta_n), n \ge 0\}$ as follows.

Algorithm

Given $\sigma\{(\bar{X}_k, X_k, \theta_k), k \leq n\}$ • $\bar{X}_{n+1} \sim \bar{P}(\bar{X}_n, \cdot), \qquad X_{n+1} \sim P_{\theta_n}(X_n, \cdot),$ • $\theta_{n+1} = (n+1)^{-1} \sum_{k=1}^{n+1} \delta_{\bar{X}_k}$

As $n \to \infty$, P_{θ_n} should converge to $P_{\bar{\pi}}$.

Yves Atchadé (Based partly on joint work w Central limit theorems for adaptive MCMC: some old and new

Equi-Energy sampler

- The EE has been studied in Andrieu & Jasra & Del Moral & Doucet (2007) (convergence of the marginal and law of large numbers) and Atchade (2009) (law of large numbers and CLT).
- I would to discuss the CLT. That is condition under which $n^{-1/2} \sum_{k=1}^{n} \overline{f}(X_k) \Rightarrow Z$.

Yves Atchade (Based partly on joint work w Central limit theorems for adaptive MCMC: some old and new

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Equi-Energy sampler

- The EE has been studied in Andrieu & Jasra & Del Moral & Doucet (2007) (convergence of the marginal and law of large numbers) and Atchade (2009) (law of large numbers and CLT).
- I would to discuss the CLT. That is condition under which $n^{-1/2} \sum_{k=1}^{n} \overline{f}(X_k) \Rightarrow Z.$

Yves Atchadé (Based partly on joint work w Central limit theorems for adaptive MCMC: some old and new

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Equi-Energy sampler

Fix f with $\pi(f) = 0$. Let U that satisfies the Poisson equation $U - P_{\overline{\pi}}U = f$. Define $S_n = \sum_{k=1}^n f(X_k)$

$$S_{n} = \sum_{k=1}^{n} U(X_{k}) - P_{\bar{\pi}} U(X_{k})$$

$$= \left(\sum_{k=1}^{n} U(X_{k}) - P_{\theta_{k-1}} U(X_{k-1})\right) + (P_{\theta_{0}} U(X_{0}) - P_{\theta_{n}} U(X_{n}))$$

$$+ \sum_{k=1}^{n} P_{\theta_{k}} U(X_{k}) - P_{\bar{\pi}} U(X_{k})$$

$$= M_{n} + \varepsilon \sum_{k=1}^{n} \frac{1}{k} \sum_{l=0}^{k-1} H_{X_{k}}(\bar{X}_{l}) + o_{P}(\sqrt{n}),$$

$$= M_{n} + 2\varepsilon \frac{1}{2} \sum_{l=0}^{n} \frac{1}{2} \sum_{l=0}^{k-1} H_{X_{k}}(\bar{X}_{l}) + o_{P}(\sqrt{n}).$$

Yves Atchadé (Based partly on joint work w Central limit theorems for adaptive MCMC: some old and new

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○

Equi-Energy sampler

Fix f with $\pi(f) = 0$. Let U that satisfies the Poisson equation $U - P_{\bar{\pi}}U = f$. Define $S_n = \sum_{k=1}^n f(X_k)$

$$S_{n} = \sum_{k=1}^{n} U(X_{k}) - P_{\bar{\pi}} U(X_{k})$$

$$= \left(\sum_{k=1}^{n} U(X_{k}) - P_{\theta_{k-1}} U(X_{k-1}) \right) + (P_{\theta_{0}} U(X_{0}) - P_{\theta_{n}} U(X_{n}))$$

$$+ \sum_{k=1}^{n} P_{\theta_{k}} U(X_{k}) - P_{\bar{\pi}} U(X_{k})$$

$$= M_{n} + \varepsilon \sum_{k=1}^{n} \frac{1}{k} \sum_{l=0}^{k-1} H_{X_{k}}(\bar{X}_{l}) + o_{P}(\sqrt{n}),$$

$$= M_{n} + 2\varepsilon \frac{1}{\sqrt{n}} \sum_{k=1}^{n} \frac{1}{\sqrt{k}} \sum_{l=0}^{k-1} H_{X_{k}}(\bar{X}_{l}) + o_{P}(\sqrt{n}),$$

Yves Atchade (Based partly on joint work w Central limit theorems for adaptive MCMC: some old and new

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Equi-Energy sampler

Fix f with $\pi(f) = 0$. Let U that satisfies the Poisson equation $U - P_{\bar{\pi}}U = f$. Define $S_n = \sum_{k=1}^n f(X_k)$

$$S_{n} = \sum_{k=1}^{n} U(X_{k}) - P_{\bar{\pi}} U(X_{k})$$

$$= \left(\sum_{k=1}^{n} U(X_{k}) - P_{\theta_{k-1}} U(X_{k-1})\right) + (P_{\theta_{0}} U(X_{0}) - P_{\theta_{n}} U(X_{n}))$$

$$+ \sum_{k=1}^{n} P_{\theta_{k}} U(X_{k}) - P_{\bar{\pi}} U(X_{k})$$

$$= M_{n} + \varepsilon \sum_{k=1}^{n} \frac{1}{k} \sum_{l=0}^{k-1} H_{X_{k}}(\bar{X}_{l}) + o_{P}(\sqrt{n}),$$

$$= M_{n} + 2\varepsilon \frac{1}{\sqrt{n}} \sum_{k=1}^{n} \frac{1}{\sqrt{k}} \sum_{l=0}^{k-1} H_{X_{k}}(\bar{X}_{l}) + o_{P}(\sqrt{n}),$$

Yves Atchade (Based partly on joint work w Central limit theorems for adaptive MCMC: some old and new

Equi-Energy sampler

Fix f with $\pi(f) = 0$. Let U that satisfies the Poisson equation $U - P_{\overline{\pi}}U = f$. Define $S_n = \sum_{k=1}^n f(X_k)$

$$S_{n} = \sum_{k=1}^{n} U(X_{k}) - P_{\bar{\pi}}U(X_{k})$$

$$= \left(\sum_{k=1}^{n} U(X_{k}) - P_{\theta_{k-1}}U(X_{k-1})\right) + (P_{\theta_{0}}U(X_{0}) - P_{\theta_{n}}U(X_{n}))$$

$$+ \sum_{k=1}^{n} P_{\theta_{k}}U(X_{k}) - P_{\bar{\pi}}U(X_{k})$$

$$= M_{n} + \varepsilon \sum_{k=1}^{n} \frac{1}{k} \sum_{l=0}^{k-1} H_{X_{k}}(\bar{X}_{l}) + o_{P}(\sqrt{n}),$$

$$= M_{n} + 2\varepsilon \frac{1}{\sqrt{n}} \sum_{k=1}^{n} \frac{1}{\sqrt{k}} \sum_{l=0}^{k-1} H_{X_{k}}(\bar{X}_{l}) + o_{P}(\sqrt{n}),$$

Yves Atchadé (Based partly on joint work w

Central limit theorems for adaptive MCMC: some old and new

Equi-Energy sampler

Fix f with $\pi(f) = 0$. Let U that satisfies the Poisson equation $U - P_{\pi}U = f$. Define $S_n = \sum_{k=1}^n f(X_k)$

$$S_{n} = \sum_{k=1}^{n} U(X_{k}) - P_{\bar{\pi}}U(X_{k})$$

$$= \left(\sum_{k=1}^{n} U(X_{k}) - P_{\theta_{k-1}}U(X_{k-1})\right) + (P_{\theta_{0}}U(X_{0}) - P_{\theta_{n}}U(X_{n}))$$

$$+ \sum_{k=1}^{n} P_{\theta_{k}}U(X_{k}) - P_{\bar{\pi}}U(X_{k})$$

$$= M_{n} + \varepsilon \sum_{k=1}^{n} \frac{1}{k} \sum_{l=0}^{k-1} H_{X_{k}}(\bar{X}_{l}) + o_{P}(\sqrt{n}),$$

$$= M_{n} + 2\varepsilon \frac{1}{\sqrt{n}} \sum_{k=1}^{n} \frac{1}{\sqrt{k}} \sum_{l=0}^{k-1} H_{X_{k}}(\bar{X}_{l}) + o_{P}(\sqrt{n}),$$

for some function H_{x} : $\mathcal{X} \to \mathbb{R}$. Yves Atchadé (Based partly on joint work w Central limit t

< □ ▷ < ⑦ ▷ < ≧ ▷ < ≧ ▷ < ≧ ▷ ○ ○ ○
 Central limit theorems for adaptive MCMC: some old and new

Suppose that \mathcal{X} is finite. Then

$$\left(\frac{1}{\sqrt{n}}\sum_{l=1}^{n}H_{x}(\bar{X}_{l})\right)_{x}\Rightarrow G,$$

where G is a Gaussian r.v with zero mean and covariance

$$\Gamma(x,y) = \int \left[U_x(z)U_y(z) - \left(\bar{P}U_x(z)\right)\left(\bar{P}U_y(z)\right)\right] \bar{\pi}(dz),$$

Then

$$\frac{1}{\sqrt{n}}S_n = \frac{1}{\sqrt{n}}M_n + 2\varepsilon \frac{1}{n}\sum_{k=1}^n G(X_k) + o_P(1).$$

Yves Atchadé (Based partly on joint work w Central limit theorems for adaptive MCMC: some old and new

Equi-Energy sampler

Theorem

Suppose that \mathcal{X} is finite and \overline{P} and P are ergodic. Let $f : \mathcal{X} \to \mathbb{R}$ bounded.

$$\frac{1}{\sqrt{n}}\sum_{k=1}^{n}f(X_{k})\Rightarrow Z+2\varepsilon\sum_{x\in\mathcal{X}}\pi(x)G(x) \quad \text{as } n\to\infty, \tag{1}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

where Z and $\sum_{x \in \mathcal{X}} \pi(x)G(x)$ are independent random variables and $Z \sim N(0, \sigma_*^2(f))$, with $\sigma_*^2(f) := \pi(f^2) + 2\sum_{k=1}^{\infty} \int_{\mathcal{X}} \pi(dx)f(x)P_{\pi}^k f(x)$

Equi-Energy sampler

If \mathcal{X} is not finite, we need empirical process theory for Markov chains (uniform CLT for Markov chains). Suppose that:

- 1 \mathcal{X} is compact \overline{P} and P are uniformly geometrically ergodic.

Yves Atchade (Based partly on joint work w Central limit theorems for adaptive MCMC: some old and new

(ロ) (同) (E) (E) (E)

Equi-Energy sampler

If \mathcal{X} is not finite, we need empirical process theory for Markov chains (uniform CLT for Markov chains). Suppose that:

- **Q** \mathcal{X} is compact \overline{P} and P are uniformly geometrically ergodic.

Yves Atchadé (Based partly on joint work w Central limit theorems for adaptive MCMC: some old and new

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Equi-Energy sampler

If \mathcal{X} is not finite, we need empirical process theory for Markov chains (uniform CLT for Markov chains). Suppose that:

- **Q** \mathcal{X} is compact \overline{P} and P are uniformly geometrically ergodic.

Yves Atchadé (Based partly on joint work w Central limit theorems for adaptive MCMC: some old and new

Equi-Energy sampler

Theorem

Assume the above. Let $f : \mathcal{X} \to \mathbb{R}$ a bounded meas. function.

$$\frac{1}{\sqrt{n}}\sum_{k=1}^{n}f(X_{k})\Rightarrow Z+2\varepsilon\int\pi(dx)G(x) \quad \text{as} \quad n\to\infty,$$
(2)

where Z is as above and G is a zero-mean Gaussian process on \mathcal{X} with covariance function

$$\Gamma(x,y) = \int \left[U_x(z)U_y(z) - \left(\bar{P}U_x(z) \right) \left(\bar{P}U_y(z) \right)
ight] \bar{\pi}(dz),$$

Yves Atchade (Based partly on joint work w Central limit theorems for adaptive MCMC: some old and new

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Equi-Energy sampler

Practical implications:

- In the EE sampler (and more generally for adaptive MCMC with varying invariant distributions) you pay the price of the adaptation.
- Provide a state of the adaptation (the term 2ε ∫ π(dx)G(x)) can make the algorithm inefficient compared with simpler MCMC sampler.
- **(3)** To minimize the cost of the adaptation, ε should be kept small.

Practical implications:

- In the EE sampler (and more generally for adaptive MCMC with varying invariant distributions) you pay the price of the adaptation.
- Provide Provide the adaptation of the term 2ε ∫ π(dx)G(x)) can make the algorithm inefficient compared with simpler MCMC sampler.
- \bigcirc To minimize the cost of the adaptation, ε should be kept small.

(ロ) (同) (E) (E) (E)

Practical implications:

- In the EE sampler (and more generally for adaptive MCMC with varying invariant distributions) you pay the price of the adaptation.
- Provide Provide the adaptation of the term 2ε ∫ π(dx)G(x)) can make the algorithm inefficient compared with simpler MCMC sampler.
- **③** To minimize the cost of the adaptation, ε should be kept small.