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Diffusions

• Diffusions are used to model continuous time processes and are
therefore commonly used in financial models

• A diffusion process is described as a solution to the stochastic
differential equation (SDE)

dYt = µ(Yt, θ) dt + σ(Yt, θ) dWt 0 ≤ t ≤ T

where

• Yt takes values in ℜd

• µ is the drift function of dimension d
• σ is the volatility function of dimension d × d
• ν = σσT is a covariance function
• Wt is a k−dimensional Brownian motion, k ≥ d.



Diffusions cont.

• We assume the process Y is observed (possibly with noise) only at
discrete time points ti = i∆ (i = 0, . . . , n) yielding observations
x = (x0, . . . , xn).

• By the Markov property, if all components of Y at time ti
(i = 0, . . . , n) are observed without noise, the likelihood function is

L(x|x0, θ) =

n
∏

i=1

pY (∆, xi|xi−1, θ),

where the transition density pY (∆, x|x0, θ) is the conditional density
of Yt+∆ = x given Yt = x0.

• In all except a few typical cases, the transition densities are not
analytically available



Closed Form Approximation-univariate diffusions

• The analytical, closed-form (CF) approximation of the unknown
transition density was introduced by Äıt-Sahalia (2002) for one
dimensional diffusions.

• Avoids a computationally intensive data augmentation scheme
• For univariate diffusions, the closed form approximation is a

non-Gaussian approximation to the transition density by means of a
truncated Hermite series expansion

• Under certain regularity conditions, the sequence converges to the
true transition density as more correction terms are added for any
fixed transition interval ∆ which is smaller than a threshold ∆.

• This threshold ∆ depends on both the drift µ and covariance ν.
• The effectiveness of the CF approximation is well documented by

Jensen and Poulsen (2002), Hurn, Jeisman and Lindsay (2007), and
Stramer and Yan (2007).

• The CF approximation should be used with caution for very volatile
models or sparse data-sets (see Stramer and Yan (2007))



Bayesian Approach Using Data Augmentation

• The main approach in the literature for Bayesian estimation in
discretely observed diffusion models are classical missing-data
techniques

• Introduce latent auxiliary data to complete the missing diffusion
between each adjacent pair of data points

• These algorithms can break down due to high dependence between
the volatility coefficient and the missing data

• Re-parametrization methods can help break down the high
dependence: see Roberts and Stramer (2001), Kalogeropoulos et al.
(2007), Chib et al. (2006), Golightly and Wilkinson (2008)



Bayesian Approach Using the CF Approximation

• DiPietro (2001) used the CF approximation for the Bayesian analysis
of one-dimensional diffusions observed without noise

• The CF approximation is a local approximation around the MLE

• It cannot always be used for values of θ that are far from the MLE.

• As observed in DiPietro (2001) and by our simulation study, while
the second order of the univariate CF approximation is always
positive, it can explode to infinity for values of θ that are far from
the MLE.

• The MCMC sampler may get stuck in the tails of the posterior,
typically when θ is far from the MLE.

• In fact, the approximated likelihood does not integrate to 1, its
normalizer is an intractable function of the parameters θ and the
state variables.



Cox-Ingersoll-Ross Model

• A simple model is the CIR model

d Yt = β(α − Yt) dt + σ
√

Yt dWt

where

• α is the mean reverting level
• β is the speed of the process
• σ is the volatility parameter

• The true transition density

pY (∆, x|x0, θ)

(the conditional density of Yt+∆ = x given Yt = x0) is a non-central
chi-squared distribution



CIR Model - Likelihood and its approximation

• We produce a dataset for ∆ = 1/52 (weekly) with n = 1,000,
∆ = 1/12 (monthly) with n = 500, and ∆ = 1/4 (quartely) with
n = 500. Datasets were generated from the true CIR transition
density with α = 0.07, β = 0.15, σ = 0.07, and a Gaussian noise
N(0, τ2), τ = 0.005.

• The commonly analyzed FedFunds dataset yields parameter
estimates close to α = 0.07, β = 0.15, and σ = 0.07, so the
simulated dataset mimics real-world data.

• In Figure 1 we compare the true likelihood with the estimated
normalized and un-normalized likelihood, as a function of α. The
likelihood functions are evaluated at (β, σ, τ) = (0.15, 0.07, 0.005)



CIR Model - Likelihood and its approximation
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Figure: Comparison of the true likelihood with estimated normalized and
un-normalized likelihood, as a function of α. The likelihood functions are
evaluated at (β, σ, τ ) = (0.15, 0.07, 0.005)



Dealing with the Normalizer-univariate diffusions

• DiPietro (2001) approximated the unknown normalizer explicitly for
the Vasicek model and numerically for the CIR model. The
normalized CF likelihood is a density and can be used to derive the
posterior.

• Simulation study in DiPietro finds that, for his examples, the
normalized CF is better behaved than the un-normalized CF and
outperforms the high frequency augmentation technique introduced
in Elerian et al. (2001).



Closed Form Approximation-multivariate diffusions

• Äıt-Sahalia (2008) provides an extension of the CF approximation
for multidimensional diffusions. This includes a broad class of
models used in the literature such as stochastic volatility models.

• The CF approximation for the log–transition density,
log pX(∆, x|x0, θ), is a Taylor expansion around ∆ = 0 and x = x0.
Away from x0, the error is a polynomial in (x− x0). We therefore
assume that the CF approximation for pX(∆, x|x0, θ) is zero outside
some compact set around x0.



Closed Form Approximation-multivariate diffusions cont.

• Clearly, the normalization constant cannot be easily approximated,
and even if it could, it would require tremendous computational
effort.

• It is therefore not feasible to extend the results in DiPietro (2001) to
the CF approximation for most multivariate diffusions.



Other Work

• There are numerous instances in which the likelihood of interest
contains an intractable normalizer that is a function of the
parameters (Gibbs processes, for example)

• Numerous approximate inferential approaches have been proposed in
the literature

• See, for example, Berthelsen and Møller (2003), Heikkinen and
Penttinen (1999), and Bognar (2008)

• The first method that avoids such approximations was first proposed
by Møller et al. (2006)

• Introduce a cleverly chosen auxiliary variable into the
Metropolis-Hastings (M-H) algorithm so that the normalizing
constants cancel in the M-H ratio

• A simpler and more efficient version, which inspired our work, is
proposed in Murray et al. (2006)



Closed Form Likelihood & Posterior

• The CF (approximated) likelihood is

LN
CF (x|x0, θ) =

n
∏

i=1

pN
CF (∆, xi|xi−1, θ)

=

n
∏

i=1

gCF (∆, xi|xi−1, θ)

Z(xi−1, θ)

• gCF (∆, x|x0, θ) is the CF approximation of pX(∆, x|x0, θ)

• pN
CF (∆, x|x0, θ) = gCF (∆, x|x0, θ)/Z(x0, θ) is the normalized CF

transition density where Z(x0, θ) =
∫

gCF (∆, x|x0, θ) dx is
analytically intractable

• Goal: use MCMC techniques to sample from the posterior
distribution

πN
CF (θ|x) ∝ LN

CF (x|x0, θ)π(θ)

where π(θ) is the prior distribution on θ



Standard Metropolis-Hastings Update

• Can not use a standard M-H algorithm for updating θ since the
acceptance ratio which involves the intractable normalizing constants

• If θ is the current value and θ∗ is the proposed value (generated
from some proposal density q(θ∗|θ)), the M-H algorithm has
acceptance probability min[1,RMH ] where

RMH =

∏n

i=1 gCF (∆, xi|xi−1, θ
∗)/Z(xi−1, θ

∗)
∏n

i=1 gCF (∆, xi|xi−1, θ)/Z(xi−1, θ)

×
π(θ∗)

π(θ)

q(θ|θ∗)

q(θ∗|θ)

• The intractable normalizers Z(·, ·) do not cancel



The Exchange Algorithm: Murray Update

• Murray et al. (2006) suggested a clever auxiliary variable algorithm
to simulate from the posterior density

• Assumes the likelihood takes the form L(x|θ) =
∏n

i=1 g(xi|θ)/Z(θ)
where Z(θ) is an intractable normalizer

• Update procedure

• Generate θ∗ from some proposal density q(θ∗|θ)
• Generate a sample w from L(w|θ∗) =

Q

n

i=1
g(wi|θ

∗)/Z(θ∗)
• Accept θ∗ with probability min[1,RMur] where

RMur =

Q

n

i=1
g(xi|θ

∗)/Z(θ∗)
Q

n

i=1
g(xi|θ)/Z(θ)

×
π(θ∗)

π(θ)

q(θ|θ∗)

q(θ∗|θ)

Q

n

i=1
g(wi|θ)/Z(θ)

Q

n

i=1
g(wi|θ∗)/Z(θ∗)

• The intractable Z’s cancel



Murray Update Continued

• The Murray algorithm is not applicable in our situation

• Murray procedure:

1. Generate θ∗ from some proposal density q(θ∗|θ)
2. Generate a sample from

LN

CF (w|w0, θ
∗) =

n
Y

i=1

gCF (∆, wi|wi−1, θ
∗)

Z(wi−1, θ∗)

3. Accept θ∗ with probability min[1,RMur] where

RMur =

Q

n

i=1
gCF (∆, xi|xi−1, θ

∗)/Z(xi−1, θ
∗)

Q

n

i=1
gCF (∆, xi|xi−1, θ)/Z(xi−1, θ)

×
π(θ∗)

π(θ)

q(θ|θ∗)

q(θ∗|θ)

×

Q

n

i=1
gCF (∆, wi|wi−1, θ)/Z(wi−1, θ)

Q

n

i=1
gCF (∆, wi|wi−1, θ∗)/Z(wi−1, θ∗)

• The intractable normalizers Z(·, ·) do not cancel



Our Modified Exchange Algorithm
0. Choose a starting value θ(t) where t = 0.
1. Propose a new value θ∗ from some proposal density q(θ∗|θ(t)); the

proposal density may update one randomly chosen component of
θ(t) at a time, or may attempt to update multiple components of
θ(t) simultaneously

2. Generate w = (w1, . . . , wn) from

p(w|w0,x, θ∗) =
n

∏

i=1

gCF (∆, wi|xi−1, θ
∗)

Z(xi−1, θ∗)
,

3. Accept θ∗ (i.e. set θ(t+1) = θ∗) with probability min[1,Rθ] where

Rθ =

∏n

i=1 gCF (∆, xi|xi−1, θ
∗)/Z(xi−1, θ

∗)
∏n

i=1 gCF (∆, xi|xi−1, θ(t))/Z(xi−1, θ(t))

π(θ∗)

π(θ(t))

q(θ(t)|θ∗)

q(θ∗|θ(t))

×

∏n

i=1 gCF (∆, wi|xi−1, θ
∗)/Z(xi−1, θ

(t))
∏n

i=1 gCF (∆, wi|xi−1, θ(t))/Z(xi−1, θ∗)

=

∏n

i=1 gCF (∆, xi|xi−1, θ
∗)

∏n

i=1 gCF (∆, xi|xi−1, θ(t))

π(θ∗)

π(θ(t))

q(θ(t)|θ∗)

q(θ∗|θ(t))

×

∏n

i=1 gCF (∆, wi|xi−1, θ
∗)

∏n
g (∆, w |x , θ(t))



CIR Model - Data Observed With Error

•

dYt = β(α− Yt)dt + σ
√

Yt dWt

• Datasets were generated from the true CIR transition density with
α = 0.07, β = 0.15, σ = 0.07, ∆ = 1/52 (weekly), ∆ = 1/12
(monthly), ∆ = 1/4 (quarterly), and a Gaussian noise N(0, τ2),
τ = 0.005.

• The prior was specified similar to DiPietro (2001):

π(θ) = π(α, β, σ, τ) = I(0,1)(α) · I(0,∞)(β) · σ−1I(0,∞)(σ) · I(0,1)(τ)



CIR-Mixing of Different Algorithms

• To determine the likelihood of a chain getting stuck, we produce 10
datasets each for
∆ = 1/52(n=2,000), ∆ = 1/12(n = 500), ∆ = 1/4(n = 500),
respectively.

• Each dataset was analyzed by 10 different chains of length 10,000
(not including a 1,000 iteration burn-in for each chain). Each chain
started near the MLE using a MV t(r), r = 2, 4, 40, proposal
density for a α/β−move.

• The analysis was run using the
• exact transition densities
• normalized CF
• un-normalized CF



CIR-The Likelihood of a Chain Getting Stuck

• The proportion of chains that became stuck (out of 100 chains total)
for the un-normalized CF are summarized in the following table.

• The exact and normalized CF analyses did not become stuck for any
combination of proposal density and ∆.

∆ = 1/52 ∆ = 1/12 ∆ = 1/4

MV t(2) 0.53 0.96 0.99

MV t(4) 0 0.04 0.04

MV t(40) 0 0.01 0

Table: Proportion of chains that became stuck (un-normalized CF)



CIR: Monthly Data Recorded with Error

• A dataset was generated from true CIR transition density with
∆ = 1/12, n = 500, α = 0.07, β = 0.15, σ = 0.07, τ = 0.005

• The commonly analyzed FedFunds dataset yields parameter
estimates close to α = 0.07, β = 0.15, and σ = 0.07, so the
simulated dataset mimics real-world data.

• The joint α/β−move used an independence proposal
(α∗, β∗)←MV t(4) where the mean vector and covariance matrix
were chosen via a simple regression.

• The random-walk σ−move generated candidate values according to
σ∗ ← Unif(σ(t) − 0.01, σ(t) + 0.01),

• A τ−move used τ∗ ← Unif(τ (t) − 0.001, τ (t) + 0.001).



Monthly Data, With Error: Comparison of Algorithms

• The aforementioned dataset was analyzed via the three algorithms
understudy:

• the exact (non-central chi-square) CIR transition density (and
likelihood) in a standard M-H sampler,

• the un-normalized CF likelihood in a standard M-H sampler, and
• the normalized CF likelihood.

• For each algorithm, the successful (i.e. non-stuck) chains were
combined,

• posterior mean and quantiles were computed
• acceptance rate was determined for each move-type (α/β, σ, τ )
• A Kolmogorov-Smirnov test was run to determine if a significant

difference existed between the output from the exact CIR chain and
the CF chains.

• the effective sample size (ESS) was also computed; i.e. the number
of independent samples that would carry the same amount of
information as the available correlated samples.



CIR: Monthly Data, With Error

α|x

Exact Norm CF UnNorm CF

Mean 0.09960 0.10597 0.10070
0.99 0.73601 0.82556 0.80446
0.95 0.34242 0.39288 0.33734
0.75 0.08560 0.08578 0.08373
0.50 0.06049 0.06053 0.06021
0.25 0.04930 0.04946 0.04915
0.05 0.03719 0.03751 0.03698
0.01 0.02963 0.02923 0.02935
AR 0.53664 0.30654 0.54208
K-S 0.39273 0.92282
ESS 1514.6 778.2 881.7

Table: CIR: Marginal posterior summary statistics for the mean reverting level
parameter α. Dataset generated with α = 0.07



CIR: Monthly Data, With Error

β|x

Exact Norm CF UnNorm CF

Mean 0.15951 0.16128 0.16229
0.99 0.41951 0.43084 0.42153
0.95 0.33983 0.34742 0.34189
0.75 0.22742 0.22985 0.23043
0.50 0.15113 0.15172 0.15378
0.25 0.07908 0.08197 0.08212
0.05 0.01375 0.01157 0.01389
0.01 0.00662 0.00487 0.00550
AR 0.53664 0.30654 0.54208
K-S 0.22021 0.96395
ESS 4750.5 2427.8 3985.4

Table: CIR: Marginal posterior summary statistics for the speed parameter β.
Dataset generated with β = 0.15



CIR: Monthly Data, With Error

σ|x

Exact Norm CF UnNorm CF

Mean 0.07599 0.07618 0.07605
0.99 0.08905 0.09129 0.08877
0.95 0.08494 0.08584 0.08474
0.75 0.07949 0.07981 0.07945
0.50 0.07585 0.07596 0.07593
0.25 0.07241 0.07225 0.07242
0.05 0.06737 0.06716 0.06796
0.01 0.06457 0.06395 0.06481
AR 0.37528 0.27328 0.37500
K-S 0.71124 0.46532
ESS 840.5 383.3 890.3

Table: CIR: Marginal posterior summary statistics for the mean reverting level
parameter σ. Dataset generated with σ = 0.07



CIR: Monthly Data, With Error

τ |x

Mean 0.00493 0.00491 0.00491
0.99 0.00558 0.00560 0.00557
0.95 0.00537 0.00538 0.00539
0.75 0.00511 0.00510 0.00510
0.50 0.00493 0.00490 0.00491
0.25 0.00474 0.00471 0.00471
0.05 0.00447 0.00445 0.00446
0.01 0.00428 0.00424 0.00430
AR 0.25080 0.24780 0.24876
K-S 0.71124 0.54414
ESS 1021.8 862.2 1053.1

Table: CIR: Marginal posterior summary statistics for the variance of the noise
parameter τ . Dataset generated with τ = 0.005



Timing

• All of the computer code was written in R and C + +, with C + +
handling many of the computational routines (C + + was called
from within the main R program).

• The time to execute 11,000 iterations (including a 1,000 iteration
burn-in) on an Intel Core 2 Duo 2.0 GHz processor was

• 114 seconds for the exact analysis (using the C-based non-central χ2

function in R),
• 141 seconds for the normalized CF analysis,
• 69 seconds for the un-normalized CF analysis.



Summary of Results-CIR Models

• The un-normalized CF analysis yields correct posterior inferences
when the MCMC chain mixes properly (i.e. when the chain does not
become stuck).

• However, normalizing dramatically decreases the tendency of the
MCMC chain becoming stuck

• Therefore, normalizing increases the applicability of the CF
approximation in MCMC samplers.



The Heston’s Model

• Yt is the log-price for the stock St and Vt is the volatility process.

dYt = (µ−
1

2
Vt)dt + ρ

√

VtdWt +
√

1− ρ2
√

VtdBt (1)

dVt = β(α− Vt)dt + σ
√

VtdWt, (2)

where B and W are independent standard B.M’s, and the
correlation between dYt and dVt is ρ.

• To keep the simulation study simple we make the assumption of zero
risk premia such that Wt = W Q

t and Bt = BQ
t and no adjustments

in the drift are necessary.

• Instantaneous stochastic variance is latent, even though we use the
VIX implied volatility index published by the CBOE.

• To account for the stochastic nature and mean reversion of index
variance, we use the fact that for short-maturity at-the-money
options the Black-Scholes formula is approximately linear in
volatility. (Äıt-Sahalia and Kimmel (2007))



The Heston’s Model- Simulation Study

• To exploit available market information we will consider the joint
time series of log stock price and implied variance with and without
observation error:

[Yt, IVt] no observation error (3)

[Yt, IVt + εt] observation error, (4)

where εt ∼ N(0, σε), t = t0, . . . , tN .

• We produce ten datasets each for ∆ = 1/52, 1/12, 1/4, using the
parametrization β = 3, α = 0.1, µ = 0.05, ρ = −0.8, σ = 0.25 and
σε = 0.001. (Äıt-Sahalia and Kimmel (2007))

• We collect 11,000 draws from the posterior density of the
parameters for all datasets, where we discard the first 1,000 to
account for the burn-in period.



Summary- Without Error

• An investigation of the chains for the 10 datasets observed without
error reveals excellent performance of both normalized and
un-normalized CF for the weekly data.

• For the monthly data, the sampler using un-normalized CF explodes
once.

• All chains using un-normalized CF diverge for quarterly data, while
the chains using normalized CF all converge. CF estimates for
quarterly data exhibit a tendency to underestimate the volatility
function σ and the speed-of-mean-reversion coefficient β.



Summary- With Error

• Estimations of the systems observed with error show that all chains
using un-normalized CF converge for weekly data

• The sampler explodes for all monthly and quarterly spaced datasets.

• All chains using the true density and the CF together with our
normalization algorithm converge.



The Heston’s model- Noisy Monthly Data

• We investigate posterior distributions of parameters for noisy
monthly data using 101,000 draws, where the first 1,000 are
discarded accounting for the burn in.

• The tables show only results for the normalized CF chain and the
chain using exact density.

• The quantiles in Tables reveal that there is strong agreement
between the posterior distributions of the parameters.

• There is higher autocorrelation in the MCMC chains than in the
univariate experiment however. As K-S statistics are very sensitive
to autocorrelation they are not reported.



α|x

Exact Norm CF

Mean 0.1007254 0.1033851
0.99 0.10797464 0.11065052
0.95 0.10559627 0.10845317
0.75 0.10304525 0.10568659
0.50 0.10096617 0.10340112
0.25 0.09856890 0.10120600
0.05 0.09523693 0.09812024
0.01 0.09323680 0.09589357
AR 0.700717 0.4924349

β|x

Mean 3.182851 3.059048
0.99 3.785301 3.590590
0.95 3.641120 3.424803
0.75 3.372505 3.202920
0.50 3.171415 3.063390
0.25 3.007350 2.929160
0.05 2.730879 2.713008
0.01 2.562318 2.506056
AR 0.700717 0.4924349

Table: Heston Model: Marginal posterior summary statistics for the mean
reverting level α and speed β.



µ|x

Exact Norm CF

Mean -0.002620006 -0.03691722
0.99 0.10613650 0.07109900
0.95 0.07533960 0.03918260
0.75 0.02863925 -0.00655050
0.50 -0.00410637 -0.03728695
0.25 -0.03435290 -0.06749430
0.05 -0.07718900 -0.11102300
0.01 -0.10896900 -0.14246310
AR 0.6098661 0.4857749

σ|x

Mean 0.2489901 0.2459580
0.99 0.269207 0.2657930
0.95 0.263040 0.2599930
0.75 0.254661 0.2521470
0.50 0.248883 0.2468180
0.25 0.243105 0.2410190
0.05 0.235256 0.2328630
0.01 0.230043 0.2244595
AR 0.1414214 0.1012010

Table: Heston Model: Marginal posterior summary statistics for the constant in
the stock drift µ and volatility of variance parameter σ.



ρ|x

Exact Norm CF

Mean -0.8057692 -0.8095715
0.99 -0.769370 -0.770569
0.95 -0.780608 -0.782672
0.75 -0.795758 -0.799165
0.50 -0.805969 -0.809946
0.25 -0.815921 -0.820241
0.05 -0.830071 -0.834857
0.01 -0.841406 -0.845533
AR 0.5697357 0.4523645

τ |x

Mean 0.001358199 0.00235106
0.99 0.0037247201 0.0045968411
0.95 0.0030240200 0.0038040055
0.75 0.0019355600 0.0030373525
0.50 0.0012030400 0.0024140650
0.25 0.0006016370 0.0016619775
0.05 0.0002210365 0.0003748274
0.01 0.0001769038 0.0001773979
AR 1 1

Table: Heston Model: Marginal posterior summary statistics for the correlation
parameter ρ and noise parameter τ .



Timing

Computation times are very similar to the CIR model, except for
estimations using the true density, where 11,000 draws take well over 24
hours due to heavy use of adaptive numeric integration and the use of
complex-valued special functions from the density representation of
Lamoureux et. al. (2005).



Conclusions

• The CF transition density is a powerful tool for the analysis of a
broad class of jump-diffusion models.

• The intractable normalizer in the CF likelihood is close to 1 when
near the MLE, but can markedly differ when far in the tails of the
posterior, hindering Bayesian analysis.

• We have provided a Bayesian approach for inference using the CF
transition density. Our algorithms are based on the exchange
algorithm, proposed in Murray (2006) and thus avoid computation
of the normalizing constant.

• Our simulation study shows that our algorithms using the
normalizing approach greatly increase the stability and mixing
behavior of the MCMC sampler. Furthermore, they are quite
efficient, mix well, and are relatively easy to implement.


