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Heather dataset (Diggle, 1981)

Heather plants in a 10× 20m window W (Jädråas, Sweden).

Grow from seedlings into (roughly) hemispherical bushes ⇒
∪ heather plants “seen from above” = union of discs, UX ,
where X is a disc process.

Observe only UX ∩W .
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UX = germ-grain model:

General germ-grain model:

UX =
⋃
i

(ui + Ki )

where

I the germs {ui} ⊂ Rd form a (locally finite) point process,

I the primary grains Ki ⊂ Rd are random compact sets.

Heather dataset: Ki = b(0, ri ) and

UX =
⋃
i

b(ui , ri ).
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Remarks

I Theorem: Any random closed set

(i.e., a locally finite union of compact convex random sets)

∼ germ-grain model with convex and compact grains.

I However,

I in practice, need a much smaller class of models;

I often a Poisson disc process (Boolean model).
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Poisson disc process

I {ui} ∼ Poisson point process

I {ri} IID and independent of {ui}

I Advantages: well-studied (moment results).

I Disadvantages/complications:

I lack of interaction;

I grains unobservable ⇒ density/likelihood for UX ???

I MCMC missing data approach, simulating X |UX ∩W :
not an option: grains only ≈ discs & digital image
⇒ difficult to indentify circular structures.
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Fitting a Poisson disc model (Diggle, 1981)

I Stationary; mark distribution = truncated Weibull.

I Fitted by a minimum contrast method ?.

I Simulations: visual impression not good.

I “A model incorporating interaction may be appropriate”.

? Further (non-likelihood-based) approaches:
Dupač (1980), Serra (1980), Hall (1985, 1988), Ripley (1988),
Cressie (1993), Stoyan et al. (1995), Molchanov (1997), ...
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Our (non-Poisson) model (Møller & Helisova, 2008a,b)

• Pragmatic approach:

a) Specify and fit a Poisson disc process.

b) Extend it to a certain interacting disc process model...

• ... which makes it possible to handle

(1) edge effects;

(2) individual grains are unobservable;

• ... and which provides (the first work on)
simulation-based likelihood inference for a germ-grain model.
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Some notation
Identify a finite collection of discs with a marked point pattern

x = {(u1, r1), . . . , (un, rn)} ⊂ S × [0,∞)

where S ⊃W is the (unknown!) bounded region for heather plant
centers.

W
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The density
with respect to reference/fitted Poisson disc process,

fθ(x) =
1

cθ
exp (θ1A(Ux) + θ2L(Ux) + θ3Ncc(Ux) + θ4Nh(Ux) + . . .)

where
A = area, L = perimeter,

Ncc = # connected components, Nh = # holes.
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A connected component Markov process
(Baddeley & Møller, 1989)

fθ(x) =
1

cθ

∏
y⊆x con. comp.

φθ(y)

where

φθ(y) = exp (θ1A(Uy ) + θ2L(Uy ) + θ3 + θ4Nh(Uy ))
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Special cases
I Area-interaction process (with varying radii) if
θ2 = θ3 = θ4 = 0 and θ = θ1:

fθ(x) =
1

cθ
exp (θA(Ux))

(Widom & Rowlinson, 1970; Baddeley & Van Lieshout, 1995).

I Quermass-interaction process if θ3 + θ4 = 0 and
θ = (θ1, θ2, θ3):

fθ(x) =
1

cθ
exp (θ1A(Ux) + θ2L(Ux) + θ3χ(Ux)) , χ = Ncc−Nh

(Kendall, Van Lieshout & Baddeley, 1999).

I Continuum random-cluster model (with varying radii) if
θ1 = θ2 = θ4 = 0 and θ = θ3:

fθ(x) =
1

cθ
exp (θNcc(Ux))

(Klein, 1982). 11 / 26



1) Reference Poisson disc process: S = [0, 30]× [0, 30], intensity
= 0.2, IID radii ∼ Uniform[0, 2].
2) (θ1, θ2, θ3, θ4) = (0.1, 0, 0, 0).
3) (θ1, θ2, θ3, θ4) = (−0.1, 0, 0, 0).
4) (θ1, θ2, θ3, θ4) = (0.6,−1, 1, 0).
5) (θ1, θ2, θ3, θ4) = (0.6,−1, 2, 0).
6) (θ1, θ2, θ3, θ4) = (0.6,−1, 5, 0). 12 / 26



Parameter space

Under mild conditions

fθ(x) =
1

cθ
exp (θ1A(Ux) + θ2L(Ux) + θ3Ncc(Ux) + θ4Nh(Ux))

is a regular exponential family model with parameter space

Θ = R4 if the radii are bounded,

or in general

Θ = {(θ1, θ2, θ3, θ4) ∈ R4 :

∫
exp

(
πθ1r2 + 2πθ2r) Q(dr) <∞

)
}

where Q is the mark distribution under the reference Poisson disc
process.

13 / 26



A fundamental characteristic
(Papangelou) conditional intensity:

λθ(x , (u, r)) = fθ(x ∪ {(u, r)})/fθ(x)

for x = {(u1, r1), . . . , (un, rn)} ⊂ S × [0,∞), (u, r) ∈ S × [0,∞).

I λθ(x , (u, r)) = “local characteristic”;
− log λθ(x , (u, r)) = “local energy”.

I Important because

I λθ ↔ fθ but λθ does not involve cθ;

I specifies local Markov properties;

I appears in the Hastings ratio of Metropolis-Hastings
birth-death algorithm (Geyer & Møller, 1994; Green, 1995).

I In many cases, local stability and hence geometric ergodicity.
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Key tool (for many things incl. λθ): Power tessellation
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Book keeping in Metropolis-Hastings birth-death algorithm
(www.math.aau.dk/∼jm/Codes.union.of.discs)

Keep track on (A, L,Ncc,Nh) by also keeping track on

Nc = # cells, Nie = # interior edges, Niv = # interior vertices,

and using

A =
∑

areas of cells

L =
∑

lengths of arcs

Nh = Ncc − Nc + Nie − Niv
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Local Markov property
λθ(x , (u, r)) =

exp
[
θ1
(
A(Ux∪{(u,r)})− A(Ux)

)
+ θ2

(
L(Ux∪{(u,r)})− L(Ux)

)
+

θ3
(
Ncc(Ux∪{(u,r)})− Ncc(Ux)

)
+ θ4

(
Nh(Ux∪{(u,r)})− Nh(Ux)

) ]
depends on x only through those Ux -cc which intersect b(u, r).

If θ3 = θ4: depends only on those b(ui , ri ) which intersect b(u, r).
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Handle edge effects by exploting a spatial Markov property
Split X into

X (a) (full circles), X (b) (dashed circles), X (c) (dotted circles)

W

S
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Spatial Markov property

W

S

• X (a) and X (c) are conditionally independent given X (b) = x (b);

• X (a)|x (b) ∼ X (a)|V , where V := W ∩ Ux(b) ;

• for feasible x (a) (i.e. Ux(a) ⊆W and Ux(a) ∩ V = ∅),

fθ(x (a)|V ) =

1

cθ(V )
exp (θ1A(Ux(a)) + θ2L(Ux(a)) + θ3Ncc(Ux(a)) + θ4Nh(Ux(a))) .
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Heather data: conditional log likelihood

Lc(θ) = log fθ(x (a)|V )

= θ1A(Ux(a)) + θ2L(Ux(a)) + θ3Ncc(Ux(a)) + θ4Nh(Ux(a))− log cθ(V )

with cθ(V ) approximated by MCMC methods.
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Unconditional log likelihood
Pretend S = W . Let Y = ∪ib(ui , ri ) ∩W .

Approximate the log (unconditional) likelihood by ignoring edge
effects,

Lu(θ) = θ1A(Y ) + θ2L(Y ) + θ3Ncc(Y ) + θ4Nh(Y )− log cθ

with cθ approximated by MCMC methods.
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Some remarks

I Rather different “conditional” and “unconditional” MLE’s.

I Preferable(?) to use Lc(θ) (accounts for edge effects);
the effect of using Lu(θ) is less well-understood.

I Loss of information in using Lc(θ):

A(Y ) = 100.28, L(Y ) = 382.82, Ncc(Y ) = 56, Nh(Y ) = 6,

are about twice as large as

A(Ux(a)) = 45.6, L(Ux(a)) = 190, Ncc(Ux(a)) = 32, Nh(Ux(a)) = 2.
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I Specification of reference Poisson disc process is important.
(We compared results using 3 different reference processes.)

I But the same overall conclusion (Wald tests; summaries):

θ1 < 0, θ2 > 0, θ3 < 0, θ4 = 0,

so

fθ(x) =
1

cθ
exp (θ1A(Ux) + θ2L(Ux) + θ3Ncc(Ux)) .

I The quermass-interaction process, i.e. θ3 + θ4 = 0 and

fθ(x) =
1

cθ
exp (θ1A(Ux) + θ2L(Ux) + θ3χ(Ux)) , χ = Ncc−Nh

was rejected.
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Some simulations of 3 reference Poisson disc processes

First two: fitted by a method from Hall (1985)
(using a truncated normal and uniform mark dist.).
Third: (partly) taken from Laslett et al. (1985)

Misfit in all 3 cases: too many small components.

Third case: too low area fraction.
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Some simulations of 3 fitted (A, L,Ncc)-interaction models

Model control based on various contact distribution functions and
covariance function: no misfit for the two first models.

Shape characteristics: some misfit, possibly since the heather data
are rather smooth while a disc process is naturally more rugged.
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