Likelihood inference and computational problems
for a random set model

Jesper Mgller, Aalborg University, Denmark

March 20, 2009

/26



Heather dataset (Diggle, 1981)

Heather plants in a 10 x 20m window W (Jadrads, Sweden).

Grow from seedlings into (roughly) hemispherical bushes =
U heather plants “seen from above” = union of discs, Ux,
where X is a disc process.

Observe only Ux N W.

)



Ux = germ-grain model:

General germ-grain model.

Ux = |J (ui + Ki)

i

where
> the germs {u;} C R? form a (locally finite) point process,

» the primary grains K; C RY are random compact sets.
Heather dataset: K; = b(0, r;) and

L{X = U b(u;, r,-).

]
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Remarks

» Theorem: Any random closed set

(i.e., a locally finite union of compact convex random sets)

~ germ-grain model with convex and compact grains.

» However,

> in practice, need a much smaller class of models;

» often a Poisson disc process (Boolean model).
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Poisson disc process

» {u;} ~ Poisson point process

> {r;} 1D and independent of {u;}

» Advantages: well-studied (moment results).

» Disadvantages/complications:

» lack of interaction;
» grains unobservable = density/likelihood for Ux?7?

» MCMC missing data approach, simulating X|Ux N W:
not an option: grains only & discs & digital image
= difficult to indentify circular structures.
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Fitting a Poisson disc model (Diggle, 1981)

» Stationary; mark distribution = truncated Weibull.

» Fitted by a minimum contrast method *.

» Simulations: visual impression not good.

» “A model incorporating interaction may be appropriate”.

* Further (non-likelihood-based) approaches:
Dupat (1980), Serra (1980), Hall (1985, 1988), Ripley (1988),
Cressie (1993), Stoyan et al. (1995), Molchanov (1997), ...
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Our (non-Poisson) model (Mgller & Helisova, 2008a,b)

e Pragmatic approach:
a) Specify and fit a Poisson disc process.

b) Extend it to a certain interacting disc process model...
e ... which makes it possible to handle

(1) edge effects;

(2) individual grains are unobservable;

e ... and which provides (the first work on)
simulation-based likelihood inference for a germ-grain model.
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Some notation
Identify a finite collection of discs with a marked point pattern
x={(u1,r),...,(un,rm)} C S x[0,00)

where S O W is the (unknown!) bounded region for heather plant
centers.
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The density

with respect to reference/fitted Poisson disc process,
1

fo(x) = —exp (01AUx) + O2L(Uy) + 03Nee(Uy) + Oa Ny (Uy) + .. .)
9

where
A = area, L = perimeter,

N = # connected components, N, = # holes.
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A connected component Markov process
(Baddeley & Mgiller, 1989)

fo(x) = — IIT W)

yCx con. comp.
where

Po(y) = exp (1A(Uy) + O2L(Uy ) + 03 + 02 NL (U ))
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Special cases

» Area-interaction process (with varying radii) if
02:93:94:0and9:91:

1
fo(x) = . exp (0A(Ux))
(Widom & Rowlinson, 1970; Baddeley & Van Lieshout, 1995).

» Quermass-interaction process if 3 + 64 = 0 and
0 = (01,02, 03):

1
) = = exp (LAQ) + L) +03x(U)) . x = Nec— P

(Kendall, Van Lieshout & Baddeley, 1999).

» Continuum random-cluster model (with varying radii) if
01:92:94:Oand9:93:

fo(x) = 19p (ONee())

(Klein. 1982). 11/26



1) Reference Poisson disc process: S = [0, 30] x [0, 30], intensity

= 0.2, lID radii ~ Uniform[0, 2].

2) (61,02, 05,64) = (0.1,0,0,0).

3) (61,02, 03,04) = (—0.1,0,0,0).
4) (61,02, 05,04) = (0.6,—1,1,0).
5) (61,02, 03,04) = (0.6, —1,2,0).
6) (61,02, 03,04) = (0.6,—1,5,0).
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Parameter space

Under mild conditions

fo(x) = Cle exp (BLA(Uy) + 0L (Uy) + O3 Neo (L) -+ Ba N (1))

is a regular exponential family model with parameter space

© = R* if the radii are bounded,
or in general
O = {(61,6,03,0,) € R*: /exp (7r01r2 + 276,r) Q(dr) < c0)}

where @ is the mark distribution under the reference Poisson disc
process.
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A fundamental characteristic

(Papangelou) conditional intensity:
Ao(x; (u,r)) = fo(x U{(u, r)})/fo(x)
for x = {(u1,n),...,(un,rn)} €S x[0,00), (u,r) €S x [0,00).

> Mo(x,(u,r)) = "local characteristic”;
—log Mg(x, (u, r)) = “local energy".

» Important because
> \g < fy but Ay does not involve cy;

» specifies local Markov properties;

> appears in the Hastings ratio of Metropolis-Hastings
birth-death algorithm (Geyer & Mgller, 1994; Green, 1995).

» In many cases, local stability and hence geometric ergodicity.
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Key tool (for many things incl. A\g): Power tessellation

o




Book keeping in Metropolis-Hastings birth-death algorithm
(www.math.aau.dk/~jm/Codes.union.of.discs)
Keep track on (A, L, Nec, Ny,) by also keeping track on

Ne = # cells, Nie = # interior edges, N;, = # interior vertices,
and using

A= E areas of cells

L= Z lengths of arcs
Nh = Ncc - Nc + Nie - Niv
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Local Markov property
No(x; (u,r)) =
exp [01 (AUug(u,r)y) — AlUs)) + 02 (LU uny) — LU)) +
03 (Neo(Unsi(u,r)y) — Nec(Ux)) + 08 (MaUsi((u,r)y) — Ma(Ux)) ]

depends on x only through those Uy-cc which intersect b(u, r).

If 63 = 04: depends only on those b(u;, r;) which intersect b(u, r).
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Handle edge effects by exploting a spatial Markov property
Split X into

X(@ (full circles), X() (dashed circles), X(€) (dotted circles)
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Spatial Markov property

e X and X(9) are conditionally independent given X(0) = x(b).
o X(@|x(B) ~ X(@)|V, where V := W NU,v);

o for feasible x(3) (i.e. U ) C W and U NV =),

fo(x{|V) =

1
(V) exp (91A(Ux(a)) + 92L(Ux(a)) + 93NCC(UX(3)) + 94Nh(ux(a))) .
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Heather data: conditional log likelihood

Le(0) = log fo(x?)| V)
= 91A(Ux(a)) + 92L(Ux(a)) + (93NCC(UX(3)) + 94Nh(ux(a)) —log cy(V)

with cyp(V') approximated by MCMC methods.



Unconditional log likelihood
Pretend S = W. Let Y = U;b(uj, r;) N W.

Approximate the log (unconditional) likelihood by ignoring edge
effects,

LU(H) = 91A(Y) + 92L( Y) + Hchc(Y) -+ 94Nh(Y) — log ¢y

with ¢y approximated by MCMC methods.



Some remarks

» Rather different “conditional” and “unconditional” MLE's.

> Preferable(?) to use L.(0) (accounts for edge effects);
the effect of using L,(0) is less well-understood.

» Loss of information in using L.(0):
A(Y)=100.28, L(Y)=382.82, Nu(Y)=56, Ny(Y)=6,
are about twice as large as

Al =456, LU

X

(a)) = 190, Ncc(ux(a)) = 32, Nh(ux(a)) = 2.
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Specification of reference Poisson disc process is important.
(We compared results using 3 different reference processes.)

But the same overall conclusion (Wald tests; summaries):
01 <0, 6,>0, 03<0, 04=0,

SO

f(x) = C19 exp (AU ) + OoL(Uy) + 05 Nec (1))

The quermass-interaction process, i.e. 3 + 6, = 0 and

1
f9(X) = ?9 exp (glA(uX) + 92L(Z/{X) + 03X(ux)) y X = Nee— Ny

was rejected.
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Some simulations of 3 reference Poisson disc processes

First two: fitted by a method from Hall (1985)
(using a truncated normal and uniform mark dist.).
Third: (partly) taken from Laslett et al. (1985)

‘-..". '“ "'.'.

fu ?"ﬁf..

Misfit in all 3 cases: too many small components.

Third case: too low area fraction.
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Some simulations of 3 fitted (A, L, N..)-interaction models

*Fe
e

Model control based on various contact distribution functions and
covariance function: no misfit for the two first models.

Shape characteristics: some misfit, possibly since the heather data
are rather smooth while a disc process is naturally more rugged.
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Software: www.math.aau.dk/~jm/Codes.union.of.discs
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