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Introduction

Bayes tests

Construction of Bayes tests

Definition (Test)

Given an hypothesis H0 : θ ∈ Θ0 on the parameter θ ∈ Θ0 of a
statistical model, a test is a statistical procedure that takes its
values in {0, 1}.

Theorem (Bayes test)

The Bayes estimator associated with π and with the 0− 1 loss is

δπ(x) =

{
1 if π(θ ∈ Θ0|x) > π(θ 6∈ Θ0|x),
0 otherwise,
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Bayes factor

Bayes factor

Definition (Bayes factors)

For testing hypotheses H0 : θ ∈ Θ0 vs. Ha : θ 6∈ Θ0, under prior

π(Θ0)π0(θ) + π(Θc
0)π1(θ) ,

central quantity

B01 =
π(Θ0|x)
π(Θc

0|x)

/
π(Θ0)
π(Θc

0)
=

∫
Θ0

f(x|θ)π0(θ)dθ∫
Θc0

f(x|θ)π1(θ)dθ

[Jeffreys, 1939]
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Introduction

Bayes factor

Self-contained concept

Outside decision-theoretic environment:

eliminates impact of π(Θ0) but depends on the choice of
(π0, π1)
Bayesian/marginal equivalent to the likelihood ratio

Jeffreys’ scale of evidence:

if log10(Bπ10) between 0 and 0.5, evidence against H0 weak,
if log10(Bπ10) 0.5 and 1, evidence substantial,
if log10(Bπ10) 1 and 2, evidence strong and
if log10(Bπ10) above 2, evidence decisive

Requires the computation of the marginal/evidence under
both hypotheses/models
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Introduction

Model choice

Model choice and model comparison

Choice between models

Several models available for the same observation

Mi : x ∼ fi(x|θi), i ∈ I

where I can be finite or infinite

Replace hypotheses with models but keep marginal likelihoods and
Bayes factors
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Introduction

Model choice

Bayesian model choice
Probabilise the entire model/parameter space

allocate probabilities pi to all models Mi

define priors πi(θi) for each parameter space Θi

compute

π(Mi|x) =
pi

∫
Θi

fi(x|θi)πi(θi)dθi∑
j

pj

∫
Θj

fj(x|θj)πj(θj)dθj

take largest π(Mi|x) to determine “best” model,
or use averaged predictive∑

j

π(Mj |x)
∫

Θj

fj(x′|θj)πj(θj |x)dθj
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Introduction

Evidence

Evidence

All these problems end up with a similar quantity, the evidence

Zk =
∫

Θk

πk(θk)Lk(θk) dθk,

aka the marginal likelihood.
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Importance sampling solutions

Regular importance

Bayes factor approximation

When approximating the Bayes factor

B01 =

∫
Θ0

f0(x|θ0)π0(θ0)dθ0∫
Θ1

f1(x|θ1)π1(θ1)dθ1

use of importance functions $0 and $1 and

B̂01 =
n−1

0

∑n0
i=1 f0(x|θi0)π0(θi0)/$0(θi0)

n−1
1

∑n1
i=1 f1(x|θi1)π1(θi1)/$1(θi1)
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Importance sampling solutions

Regular importance

Bridge sampling

Special case:
If

π1(θ1|x) ∝ π̃1(θ1|x)
π2(θ2|x) ∝ π̃2(θ2|x)

live on the same space (Θ1 = Θ2), then

B12 ≈
1
n

n∑
i=1

π̃1(θi|x)
π̃2(θi|x)

θi ∼ π2(θ|x)

[Gelman & Meng, 1998; Chen, Shao & Ibrahim, 2000]
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Importance sampling solutions

Regular importance

Bridge sampling variance

The bridge sampling estimator does poorly if

var(B̂12)
B2

12

≈ 1
n

E

[(
π1(θ)− π2(θ)

π2(θ)

)2
]

is large, i.e. if π1 and π2 have little overlap...
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Importance sampling solutions

Regular importance

(Further) bridge sampling

In addition

B12 =

∫
π̃2(θ|x)α(θ)π1(θ|x)dθ∫
π̃1(θ|x)α(θ)π2(θ|x)dθ

∀ α(·)

≈

1
n1

n1∑
i=1

π̃2(θ1i|x)α(θ1i)

1
n2

n2∑
i=1

π̃1(θ2i|x)α(θ2i)
θji ∼ πj(θ|x)
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Importance sampling solutions

Regular importance

An infamous example

When

α(θ) =
1

π̃1(θ)π̃2(θ)

harmonic mean approximation to B12

B̂21 =

1
n1

n1∑
i=1

1/π̃1(θ1i|x)

1
n2

n2∑
i=1

1/π̃2(θ2i|x)

θji ∼ πj(θ|x)

[Newton & Raftery, 1994]
Infamous: Most often leads to an infinite variance!!!

[Radford Neal’s blog, 2008]
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Importance sampling solutions

Regular importance

“The Worst Monte Carlo Method Ever”

“The good news is that the Law of Large Numbers guarantees that
this estimator is consistent ie, it will very likely be very close to the
correct answer if you use a sufficiently large number of points from
the posterior distribution.
The bad news is that the number of points required for this
estimator to get close to the right answer will often be greater
than the number of atoms in the observable universe. The even
worse news is that itws easy for people to not realize this, and to
naively accept estimates that are nowhere close to the correct
value of the marginal likelihood.”

[Radford Neal’s blog, Aug. 23, 2008]
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Importance sampling solutions

Regular importance

Optimal bridge sampling

The optimal choice of auxiliary function is

α? =
n1 + n2

n1π1(θ|x) + n2π2(θ|x)

leading to

B̂12 ≈

1
n1

n1∑
i=1

π̃2(θ1i|x)
n1π1(θ1i|x) + n2π2(θ1i|x)

1
n2

n2∑
i=1

π̃1(θ2i|x)
n1π1(θ2i|x) + n2π2(θ2i|x)

Back later!
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Importance sampling solutions

Regular importance

Optimal bridge sampling (2)

Reason:

Var(B̂12)
B2

12

≈ 1
n1n2

{∫
π1(θ)π2(θ)[n1π1(θ) + n2π2(θ)]α(θ)2 dθ(∫

π1(θ)π2(θ)α(θ) dθ
)2 − 1

}

(by the δ method)
Drag: Dependence on the unknown normalising constants solved
iteratively
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Importance sampling solutions

Regular importance

Ratio importance sampling

Another identity:

B12 =
Eϕ [π̃1(θ)/ϕ(θ)]
Eϕ [π̃2(θ)/ϕ(θ)]

for any density ϕ with sufficiently large support
[Torrie & Valleau, 1977]

Use of a single sample θ1, . . . , θn from ϕ

B̂12 =
∑

i=1 π̃1(θi)/ϕ(θi)∑
i=1 π̃2(θi)/ϕ(θi)
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Importance sampling solutions

Regular importance

Ratio importance sampling (2)

Approximate variance:

var(B̂12)
B2

12

≈ 1
n

Eϕ

[(
(π1(θ)− π2(θ))2

ϕ(θ)2

)2
]

Optimal choice:

ϕ∗(θ) =
| π1(θ)− π2(θ) |∫
| π1(η)− π2(η) | dη

[Chen, Shao & Ibrahim, 2000]
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Importance sampling solutions

Regular importance

Improving upon bridge sampler

Theorem 5.5.3: The asymptotic variance of the optimal ratio
importance sampling estimator is smaller than the asymptotic
variance of the optimal bridge sampling estimator

[Chen, Shao, & Ibrahim, 2000]
Does not require the normalising constant∫

| π1(η)− π2(η) | dη

but a simulation from

ϕ∗(θ) ∝| π1(θ)− π2(θ) | .
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Importance sampling solutions

Varying dimensions

Generalisation to point null situations

When

B12 =

∫
Θ1

π̃1(θ1)dθ1∫
Θ2

π̃2(θ2)dθ2

and Θ2 = Θ1 ×Ψ, we get θ2 = (θ1, ψ) and

B12 = Eπ2

[
π̃1(θ1)ω(ψ|θ1)
π̃2(θ1, ψ)

]
holds for any conditional density ω(ψ|θ1).
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Importance sampling solutions

Varying dimensions

X-dimen’al bridge sampling

Generalisation of the previous identity:
For any α,

B12 =
Eπ2 [π̃1(θ1)ω(ψ|θ1)α(θ1, ψ)]
Eπ1×ω [π̃2(θ1, ψ)α(θ1, ψ)]

and, for any density ϕ,

B12 =
Eϕ [π̃1(θ1)ω(ψ|θ1)/ϕ(θ1, ψ)]

Eϕ [π̃2(θ1, ψ)/ϕ(θ1, ψ)]

[Chen, Shao, & Ibrahim, 2000]
Optimal choice: ω(ψ|θ1) = π2(ψ|θ1)

[Theorem 5.8.2]
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Importance sampling solutions

Harmonic means

Approximating Zk from a posterior sample

Use of the [harmonic mean] identity

Eπk
[

ϕ(θk)
πk(θk)Lk(θk)

∣∣∣∣x] =
∫

ϕ(θk)
πk(θk)Lk(θk)

πk(θk)Lk(θk)
Zk

dθk =
1
Zk

no matter what the proposal ϕ(·) is.
[Gelfand & Dey, 1994; Bartolucci et al., 2006]

Direct exploitation of the MCMC output
RB-RJ
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Importance sampling solutions

Harmonic means

Comparison with regular importance sampling

Harmonic mean: Constraint opposed to usual importance sampling
constraints: ϕ(θ) must have lighter (rather than fatter) tails than
πk(θk)Lk(θk) for the approximation

Ẑ1k = 1

/
1
T

T∑
t=1

ϕ(θ(t)
k )

πk(θ
(t)
k )Lk(θ

(t)
k )

to have a finite variance.
E.g., use finite support kernels (like Epanechnikov’s kernel) for ϕ
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Importance sampling solutions

Harmonic means

Comparison with regular importance sampling (cont’d)

Compare Ẑ1k with a standard importance sampling approximation

Ẑ2k =
1
T

T∑
t=1

πk(θ
(t)
k )Lk(θ

(t)
k )

ϕ(θ(t)
k )

where the θ
(t)
k ’s are generated from the density ϕ(·) (with fatter

tails like t’s)
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Importance sampling solutions

Harmonic means

Approximating Zk using a mixture representation

Bridge sampling redux

Design a specific mixture for simulation [importance sampling]
purposes, with density

ϕ̃k(θk) ∝ ω1πk(θk)Lk(θk) + ϕ(θk) ,

where ϕ(·) is arbitrary (but normalised)
Note: ω1 is not a probability weight
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Importance sampling solutions

Harmonic means

Approximating Z using a mixture representation (cont’d)

Corresponding MCMC (=Gibbs) sampler

At iteration t

1 Take δ(t) = 1 with probability

ω1πk(θ
(t−1)
k )Lk(θ

(t−1)
k )

/(
ω1πk(θ

(t−1)
k )Lk(θ

(t−1)
k ) + ϕ(θ(t−1)

k )
)

and δ(t) = 2 otherwise;

2 If δ(t) = 1, generate θ
(t)
k ∼ MCMC(θ(t−1)

k , θk) where
MCMC(θk, θ′k) denotes an arbitrary MCMC kernel associated
with the posterior πk(θk|x) ∝ πk(θk)Lk(θk);

3 If δ(t) = 2, generate θ
(t)
k ∼ ϕ(θk) independently
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Importance sampling solutions

Harmonic means

Evidence approximation by mixtures

Rao-Blackwellised estimate

ξ̂ =
1
T

T∑
t=1

ω1πk(θ
(t)
k )Lk(θ

(t)
k )
/
ω1πk(θ

(t)
k )Lk(θ

(t)
k ) + ϕ(θ(t)

k ) ,

converges to ω1Zk/{ω1Zk + 1}
Deduce Ẑ3k from ω1Ẑ3k/{ω1Ẑ3k + 1} = ξ̂ ie

Ẑ3k =

∑T
t=1 ω1πk(θ

(t)
k )Lk(θ

(t)
k )
/
ω1π(θ(t)

k )Lk(θ
(t)
k ) + ϕ(θ(t)

k )

∑T
t=1 ϕ(θ(t)

k )
/
ω1πk(θ

(t)
k )Lk(θ

(t)
k ) + ϕ(θ(t)

k )

[Bridge sampler]
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Importance sampling solutions

Chib’s solution

Chib’s representation

Direct application of Bayes’ theorem: given x ∼ fk(x|θk) and
θk ∼ πk(θk),

Zk = mk(x) =
fk(x|θk)πk(θk)

πk(θk|x)

Use of an approximation to the posterior

Ẑk = m̂k(x) =
fk(x|θ∗k)πk(θ∗k)

π̂k(θ∗k|x)
.
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Importance sampling solutions

Chib’s solution

Case of latent variables

For missing variable z as in mixture models, natural Rao-Blackwell
estimate

π̂k(θ∗k|x) =
1
T

T∑
t=1

πk(θ∗k|x, z
(t)
k ) ,

where the z(t)
k ’s are Gibbs sampled latent variables
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Label switching

A mixture model [special case of missing variable model] is
invariant under permutations of the indices of the components.
E.g., mixtures

0.3N (0, 1) + 0.7N (2.3, 1)

and
0.7N (2.3, 1) + 0.3N (0, 1)

are exactly the same!
c© The component parameters θi are not identifiable
marginally since they are exchangeable
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Connected difficulties

1 Number of modes of the likelihood of order O(k!):
c© Maximization and even [MCMC] exploration of the

posterior surface harder

2 Under exchangeable priors on (θ,p) [prior invariant under
permutation of the indices], all posterior marginals are
identical:
c© Posterior expectation of θ1 equal to posterior expectation

of θ2
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License

Since Gibbs output does not produce exchangeability, the Gibbs
sampler has not explored the whole parameter space: it lacks
energy to switch simultaneously enough component allocations at
once
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Importance sampling solutions
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Label switching paradox

We should observe the exchangeability of the components [label
switching] to conclude about convergence of the Gibbs sampler.
If we observe it, then we do not know how to estimate the
parameters.
If we do not, then we are uncertain about the convergence!!!
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Compensation for label switching

For mixture models, z(t)
k usually fails to visit all configurations in a

balanced way, despite the symmetry predicted by the theory

πk(θk|x) = πk(σ(θk)|x) =
1
k!

∑
σ∈S

πk(σ(θk)|x)

for all σ’s in Sk, set of all permutations of {1, . . . , k}.
Consequences on numerical approximation, biased by an order k!
Recover the theoretical symmetry by using

π̃k(θ∗k|x) =
1
T k!

∑
σ∈Sk

T∑
t=1

πk(σ(θ∗k)|x, z
(t)
k ) .

[Berkhof, Mechelen, & Gelman, 2003]
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Galaxy dataset

n = 82 galaxies as a mixture of k normal distributions with both
mean and variance unknown.

[Roeder, 1992]
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Galaxy dataset (k)
Using only the original estimate, with θ∗k as the MAP estimator,

log(m̂k(x)) = −105.1396

for k = 3 (based on 103 simulations), while introducing the
permutations leads to

log(m̂k(x)) = −103.3479

Note that
−105.1396 + log(3!) = −103.3479

k 2 3 4 5 6 7 8

mk(x) -115.68 -103.35 -102.66 -101.93 -102.88 -105.48 -108.44

Estimations of the marginal likelihoods by the symmetrised Chib’s
approximation (based on 105 Gibbs iterations and, for k > 5, 100
permutations selected at random in Sk).

[Lee, Marin, Mengersen & Robert, 2008]
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On some computational methods for Bayesian model choice

Cross-model solutions

Variable selection

Bayesian variable selection

Example of a regression setting: one dependent random variable y
and a set {x1, . . . , xk} of k explanatory variables.

Question: Are all xi’s involved in the regression?

Assumption: every subset {i1, . . . , iq} of q (0 ≤ q ≤ k)
explanatory variables, {1n, xi1 , . . . , xiq}, is a proper set of
explanatory variables for the regression of y [intercept included in
every corresponding model]

Computational issue

2k models in competition...

[Marin & Robert, Bayesian Core, 2007]
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Cross-model solutions

Reversible jump

Reversible jump

Idea: Set up a proper measure–theoretic framework for designing
moves between models Mk

[Green, 1995]
Create a reversible kernel K on H =

⋃
k{k} ×Θk such that∫

A

∫
B

K(x, dy)π(x)dx =
∫
B

∫
A

K(y, dx)π(y)dy

for the invariant density π [x is of the form (k, θ(k))]



On some computational methods for Bayesian model choice

Cross-model solutions

Reversible jump

Reversible jump

Idea: Set up a proper measure–theoretic framework for designing
moves between models Mk

[Green, 1995]
Create a reversible kernel K on H =

⋃
k{k} ×Θk such that∫

A

∫
B

K(x, dy)π(x)dx =
∫
B

∫
A

K(y, dx)π(y)dy

for the invariant density π [x is of the form (k, θ(k))]



On some computational methods for Bayesian model choice

Cross-model solutions

Reversible jump

Local moves
For a move between two models, M1 and M2, the Markov chain
being in state θ1 ∈M1, denote by K1→2(θ1, dθ) and K2→1(θ2, dθ)
the corresponding kernels, under the detailed balance condition

π(dθ1) K1→2(θ1, dθ) = π(dθ2) K2→1(θ2, dθ) ,

and take, wlog, dim(M2) > dim(M1).
Proposal expressed as

θ2 = Ψ1→2(θ1, v1→2)

where v1→2 is a random variable of dimension
dim(M2)− dim(M1), generated as

v1→2 ∼ ϕ1→2(v1→2) .
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Reversible jump

Local moves (2)
In this case, q1→2(θ1, dθ2) has density

ϕ1→2(v1→2)
∣∣∣∣∂Ψ1→2(θ1, v1→2)

∂(θ1, v1→2)

∣∣∣∣−1

,

by the Jacobian rule.
Reverse importance link

If probability $1→2 of choosing move to M2 while in M1,
acceptance probability reduces to

α(θ1, v1→2) = 1∧ π(M2, θ2)$2→1

π(M1, θ1)$1→2 ϕ1→2(v1→2)

∣∣∣∣∂Ψ1→2(θ1, v1→2)
∂(θ1, v1→2)

∣∣∣∣ .
If several models are considered simultaneously, with probability
$1→2 of choosing move to M2 while in M1, as in

K(x,B) =
∞X
m=1

Z
ρm(x, y)qm(x, dy) + ω(x)IB(x)
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Generic reversible jump acceptance probability

Acceptance probability of θ2 = Ψ1→2(θ1, v1→2) is

α(θ1, v1→2) = 1 ∧ π(M2, θ2)$2→1

π(M1, θ1)$1→2 ϕ1→2(v1→2)

∣∣∣∣∂Ψ1→2(θ1, v1→2)
∂(θ1, v1→2)

∣∣∣∣
while acceptance probability of θ1 with (θ1, v1→2) = Ψ−1

1→2(θ2) is

α(θ1, v1→2) = 1 ∧ π(M1, θ1)$1→2 ϕ1→2(v1→2)
π(M2, θ2)$2→1

∣∣∣∣∂Ψ1→2(θ1, v1→2)
∂(θ1, v1→2)

∣∣∣∣−1

c©Difficult calibration
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Green’s sampler

Algorithm

Iteration t (t ≥ 1): if x(t) = (m, θ(m)),

1 Select model Mn with probability πmn
2 Generate umn ∼ ϕmn(u) and set

(θ(n), vnm) = Ψm→n(θ(m), umn)
3 Take x(t+1) = (n, θ(n)) with probability

min
(
π(n, θ(n))
π(m, θ(m))

πnmϕnm(vnm)
πmnϕmn(umn)

∣∣∣∣∂Ψm→n(θ(m), umn)
∂(θ(m), umn)

∣∣∣∣ , 1)
and take x(t+1) = x(t) otherwise.
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Reversible jump

Interpretation

The representation puts us back in a fixed dimension setting:

M1 ×V1→2 and M2 in one-to-one relation.

reversibility imposes that θ1 is derived as

(θ1, v1→2) = Ψ−1
1→2(θ2)

appears like a regular Metropolis–Hastings move from the
couple (θ1, v1→2) to θ2 when stationary distributions are
π(M1, θ1)× ϕ1→2(v1→2) and π(M2, θ2), and when proposal
distribution is deterministic
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Saturation schemes

Alternative
Saturation of the parameter space H =

⋃
k{k} ×Θk by creating

θ = (θ1, . . . , θD)
a model index M
pseudo-priors πj(θj |M = k) for j 6= k

[Carlin & Chib, 1995]
Validation by

P(M = k|x) =
∫
P (M = k|x, θ)π(θ|x)dθ = Zk

where the (marginal) posterior is [not πk!]

π(θ|x) =
D∑
k=1

P(θ,M = k|x)

=
D∑
k=1

pk Zk πk(θk|x)
∏
j 6=k

πj(θj |M = k) .
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Saturation schemes

MCMC implementation

Run a Markov chain (M (t), θ
(t)
1 , . . . , θ

(t)
D ) with stationary

distribution π(θ,M |x) by

1 Pick M (t) = k with probability π(θ(t−1), k|x)

2 Generate θ
(t−1)
k from the posterior πk(θk|x) [or MCMC step]

3 Generate θ
(t−1)
j (j 6= k) from the pseudo-prior πj(θj |M = k)

Approximate P(M = k|x) = Zk by

p̌k(x) ∝ pk
T∑
t=1

fk(x|θ
(t)
k )πk(θ

(t)
k )
∏
j 6=k

πj(θ
(t)
j |M = k)

/ D∑
`=1

p` f`(x|θ
(t)
` )π`(θ

(t)
` )
∏
j 6=`

πj(θ
(t)
j |M = `)
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Cross-model solutions

Implementation error

Scott’s (2002) proposal

Suggest estimating P(M = k|x) by

Z̃k ∝ pk
T∑
t=1

fk(x|θ(t)
k )
/ D∑

j=1

pj fj(x|θ(t)
j )

 ,

based on D simultaneous and independent MCMC chains

(θ(t)
k )t , 1 ≤ k ≤ D ,

with stationary distributions πk(θk|x) [instead of above joint!!]
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with stationary distributions πk(θk|x) [instead of above joint!!]
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Cross-model solutions

Implementation error

Congdon’s (2006) extension

Selecting flat [prohibited!] pseudo-priors, uses instead

Ẑk ∝ pk
T∑
t=1

fk(x|θ(t)
k )πk(θ

(t)
k )
/ D∑

j=1

pj fj(x|θ(t)
j )πj(θ

(t)
j )

 ,

where again the θ
(t)
k ’s are MCMC chains with stationary

distributions πk(θk|x)
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Cross-model solutions

Implementation error

Examples

Example (Model choice)

Model M1 : x|θ ∼ U(0, θ) with prior θ ∼ Exp(1) is versus model
M2 : x|θ ∼ Exp(θ) with prior θ ∼ Exp(1). Equal prior weights on
both models: %1 = %2 = 0.5.

Approximations of P(M = 1|x):

Scott’s (2002) (blue), and

Congdon’s (2006) (red)

[N = 106 simulations].
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Cross-model solutions

Implementation error

Examples (2)

Example (Model choice (2))

Normal model M1 : x ∼ N (θ, 1) with θ ∼ N (0, 1) vs. normal
model M2 : x ∼ N (θ, 1) with θ ∼ N (5, 1)

Comparison of both

approximations with

P(M = 1|x): Scott’s (2002)

(green and mixed dashes) and

Congdon’s (2006) (brown and

long dashes) [N = 104

simulations].
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Cross-model solutions

Implementation error

Examples (3)

Example (Model choice (3))

Model M1 : x ∼ N (0, 1/ω) with ω ∼ Exp(a) vs.
M2 : exp(x) ∼ Exp(λ) with λ ∼ Exp(b).

Comparison of Congdon’s (2006)

(brown and dashed lines) with

P(M = 1|x) when (a, b) is equal

to (.24, 8.9), (.56, .7), (4.1, .46)
and (.98, .081), resp. [N = 104

simulations].
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On some computational methods for Bayesian model choice

Nested sampling

Purpose

Nested sampling: Goal

Skilling’s (2007) technique using the one-dimensional
representation:

Z = Eπ[L(θ)] =
∫ 1

0
ϕ(x) dx

with
ϕ−1(l) = P π(L(θ) > l).

Note; ϕ(·) is intractable in most cases.



On some computational methods for Bayesian model choice

Nested sampling

Implementation

Nested sampling: First approximation

Approximate Z by a Riemann sum:

Ẑ =
j∑
i=1

(xi−1 − xi)ϕ(xi)

where the xi’s are either:

deterministic: xi = e−i/N

or random:

x0 = 0, xi+1 = tixi, ti ∼ Be(N, 1)

so that E[log xi] = −i/N .



On some computational methods for Bayesian model choice

Nested sampling

Implementation

Extraneous white noise

Take

Z =
∫
e−θ dθ =

∫
1
δ
e−(1−δ)θ e−δθ = Eδ

[
1
δ
e−(1−δ)θ

]
Ẑ =

1
N

N∑
i=1

δ−1 e−(1−δ)θi(xi−1 − xi) , θi ∼ E(δ) I(θi ≤ θi−1)

N deterministic random
50 4.64 10.5

4.65 10.5
100 2.47 4.9

2.48 5.02
500 .549 1.01

.550 1.14

Comparison of variances and MSEs
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Nested sampling

Implementation

Nested sampling: Second approximation

Replace (intractable) ϕ(xi) by ϕi, obtained by

Nested sampling

Start with N values θ1, . . . , θN sampled from π
At iteration i,

1 Take ϕi = L(θk), where θk is the point with smallest
likelihood in the pool of θi’s

2 Replace θk with a sample from the prior constrained to
L(θ) > ϕi: the current N points are sampled from prior
constrained to L(θ) > ϕi.
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Nested sampling

Implementation

Nested sampling: Third approximation

Iterate the above steps until a given stopping iteration j is
reached: e.g.,

observe very small changes in the approximation Ẑ;

reach the maximal value of L(θ) when the likelihood is
bounded and its maximum is known;

truncate the integral Z at level ε, i.e. replace∫ 1

0
ϕ(x) dx with

∫ 1

ε
ϕ(x) dx



On some computational methods for Bayesian model choice

Nested sampling

Error rates

Approximation error

Error = Ẑ− Z

=
j∑
i=1

(xi−1 − xi)ϕi −
∫ 1

0
ϕ(x) dx = −

∫ ε

0
ϕ(x) dx (Truncation Error)

+

[
j∑
i=1

(xi−1 − xi)ϕ(xi)−
∫ 1

ε
ϕ(x) dx

]
(Quadrature Error)

+

[
j∑
i=1

(xi−1 − xi) {ϕi − ϕ(xi)}

]
(Stochastic Error)

[Dominated by Monte Carlo!]
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Nested sampling

Error rates

A CLT for the Stochastic Error

The (dominating) stochastic error is OP (N−1/2):

N1/2 {Stochastic Error} D→ N (0, V )

with

V = −
∫
s,t∈[ε,1]

sϕ′(s)tϕ′(t) log(s ∨ t) ds dt.

[Proof based on Donsker’s theorem]

The number of simulated points equals the number of iterations j,
and is a multiple of N : if one stops at first iteration j such that
e−j/N < ε, then: j = Nd− log εe.
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On some computational methods for Bayesian model choice

Nested sampling

Impact of dimension

Curse of dimension

For a simple Gaussian-Gaussian model of dimension dim(θ) = d,
the following 3 quantities are O(d):

1 asymptotic variance of the NS estimator;

2 number of iterations (necessary to reach a given truncation
error);

3 cost of one simulated sample.

Therefore, CPU time necessary for achieving error level e is

O(d3/e2)
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On some computational methods for Bayesian model choice

Nested sampling

Constraints

Sampling from constr’d priors

Exact simulation from the constrained prior is intractable in most
cases!

Skilling (2007) proposes to use MCMC, but:

this introduces a bias (stopping rule).

if MCMC stationary distribution is unconst’d prior, more and
more difficult to sample points such that L(θ) > l as l
increases.

If implementable, then slice sampler can be devised at the same
cost!

[Thanks, Gareth!]
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Nested sampling

Constraints

Illustration of MCMC bias
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Nested sampling

Importance variant

A IS variant of nested sampling

Consider instrumental prior π̃ and likelihood L̃, weight function

w(θ) =
π(θ)L(θ)

π̃(θ)L̃(θ)

and weighted NS estimator

Ẑ =
j∑
i=1

(xi−1 − xi)ϕiw(θi).

Then choose (π̃, L̃) so that sampling from π̃ constrained to
L̃(θ) > l is easy; e.g. N (c, Id) constrained to ‖c− θ‖ < r.
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On some computational methods for Bayesian model choice

Nested sampling

A mixture comparison

Benchmark: Target distribution

Posterior distribution on (µ, σ) associated with the mixture

pN (0, 1) + (1− p)N (µ, σ) ,

when p is known



On some computational methods for Bayesian model choice

Nested sampling

A mixture comparison

Experiment

n observations with
µ = 2 and σ = 3/2,

Use of a uniform prior
both on (−2, 6) for µ
and on (.001, 16) for
log σ2.

occurrences of posterior
bursts for µ = xi

computation of the
various estimates of Z
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Nested sampling

A mixture comparison

Experiment (cont’d)

MCMC sample for n = 16
observations from the mixture.

Nested sampling sequence
with M = 1000 starting points.
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Nested sampling

A mixture comparison

Experiment (cont’d)

MCMC sample for n = 50
observations from the mixture.

Nested sampling sequence
with M = 1000 starting points.
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Nested sampling

A mixture comparison

Comparison

Monte Carlo and MCMC (=Gibbs) outputs based on T = 104

simulations and numerical integration based on a 850× 950 grid in
the (µ, σ) parameter space.
Nested sampling approximation based on a starting sample of
M = 1000 points followed by at least 103 further simulations from
the constr’d prior and a stopping rule at 95% of the observed
maximum likelihood.
Constr’d prior simulation based on 50 values simulated by random
walk accepting only steps leading to a lik’hood higher than the
bound
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Nested sampling

A mixture comparison

Comparison (cont’d)
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Nested sampling

A mixture comparison

Comparison (cont’d)
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Nested sampling

A mixture comparison

Comparison (cont’d)
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Nested sampling

A mixture comparison

Comparison (cont’d)

Nested sampling gets less reliable as sample size increases
Most reliable approach is mixture Ẑ3 although harmonic solution
Ẑ1 close to Chib’s solution [taken as golden standard]
Monte Carlo method Ẑ2 also producing poor approximations to Z

(Kernel φ used in Ẑ2 is a t non-parametric kernel estimate with
standard bandwidth estimation.)



On some computational methods for Bayesian model choice

ABC model choice

ABC method

Approximate Bayesian Computation

Bayesian setting: target is π(θ)f(x|θ)
When likelihood f(x|θ) not in closed form, likelihood-free rejection
technique:

ABC algorithm

For an observation y ∼ f(y|θ), under the prior π(θ), keep jointly
simulating

θ′ ∼ π(θ) , x ∼ f(x|θ′) ,

until the auxiliary variable x is equal to the observed value, x = y.

[Pritchard et al., 1999]
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ABC model choice

ABC method

Population genetics example

Tree of ancestors in a sample of genes
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ABC model choice

ABC method

A as approximative

When y is a continuous random variable, equality x = y is replaced
with a tolerance condition,

%(x, y) ≤ ε

where % is a distance between summary statistics
Output distributed from

π(θ)Pθ{%(x, y) < ε} ∝ π(θ|%(x, y) < ε)
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ABC model choice

ABC method

ABC improvements

Simulating from the prior is often poor in efficiency
Either modify the proposal distribution on θ to increase the density
of x’s within the vicinity of y...

[Marjoram et al, 2003; Bortot et al., 2007, Sisson et al., 2007]

...or by viewing the problem as a conditional density estimation
and by developing techniques to allow for larger ε

[Beaumont et al., 2002]
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ABC model choice

ABC method

ABC-MCMC

Markov chain (θ(t)) created via the transition function

θ(t+1) =


θ′ ∼ K(θ′|θ(t)) if x ∼ f(x|θ′) is such that x = y

and u ∼ U(0, 1) ≤ π(θ′)K(θ(t)|θ′)
π(θ(t))K(θ′|θ(t)) ,

θ(t) otherwise,

has the posterior π(θ|y) as stationary distribution
[Marjoram et al, 2003]
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ABC model choice

ABC method

ABC-PRC

Another sequential version producing a sequence of Markov

transition kernels Kt and of samples (θ(t)
1 , . . . , θ

(t)
N ) (1 ≤ t ≤ T )

ABC-PRC Algorithm

1 Pick a θ? is selected at random among the previous θ
(t−1)
i ’s

with probabilities ω
(t−1)
i (1 ≤ i ≤ N).

2 Generate
θ

(t)
i ∼ Kt(θ|θ?) , x ∼ f(x|θ(t)

i ) ,

3 Check that %(x, y) < ε, otherwise start again.

[Sisson et al., 2007]
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ABC model choice

ABC method

ABC-PRC weight

Probability ω
(t)
i computed as

ω
(t)
i ∝ π(θ(t)

i )Lt−1(θ?|θ(t)
i ){π(θ?)Kt(θ

(t)
i |θ

?)}−1 ,

where Lt−1 is an arbitrary transition kernel.
In case

Lt−1(θ′|θ) = Kt(θ|θ′) ,

all weights are equal under a uniform prior.
Inspired from Del Moral et al. (2006), who use backward kernels
Lt−1 in SMC to achieve unbiasedness
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Inspired from Del Moral et al. (2006), who use backward kernels
Lt−1 in SMC to achieve unbiasedness
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ABC-PRC bias

Lack of unbiasedness of the method
Joint density of the accepted pair (θ(t−1), θ(t)) proportional to

π(θ(t−1)|y)Kt(θ(t)|θ(t−1))f(y|θ(t)) ,

For an arbitrary function h(θ), E[ωth(θ(t))] proportional to

ZZ
h(θ

(t)
)
π(θ(t))Lt−1(θ(t−1)|θ(t))

π(θ(t−1))Kt(θ(t)|θ(t−1))
π(θ

(t−1)|y)Kt(θ
(t)|θ(t−1)

)f(y|θ(t)
)dθ(t−1)dθ(t)

∝
ZZ

h(θ
(t)

)
π(θ(t))Lt−1(θ(t−1)|θ(t))

π(θ(t−1))Kt(θ(t)|θ(t−1))
π(θ

(t−1)
)f(y|θ(t−1)

)

×Kt(θ
(t)|θ(t−1)

)f(y|θ(t)
)dθ(t−1)dθ(t)

∝
Z
h(θ

(t)
)π(θ

(t)|y)
Z

Lt−1(θ
(t−1)|θ(t)

)f(y|θ(t−1)
)dθ(t−1)

ff
dθ(t)

.
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A mixture example
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A PMC version

Use of the same kernel idea as ABC-PRC but with IS correction
Generate a sample at iteration t by

π̂t(θ(t)) ∝
N∑
j=1

ω
(t−1)
j Kt(θ(t)|θ(t−1)

j )

modulo acceptance of the associated xt, and use an importance

weight associated with an accepted simulation θ
(t)
i

ω
(t)
i ∝ π(θ(t)

i )
/
π̂t(θ

(t)
i ) .

c© Still likelihood free
[Beaumont et al., 2008, arXiv:0805.2256]
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The ABC-PMC algorithm
Given a decreasing sequence of approximation levels ε1 ≥ . . . ≥ εT ,

1. At iteration t = 1,

For i = 1, ..., N
Simulate θ

(1)
i ∼ π(θ) and x ∼ f(x|θ(1)i ) until %(x, y) < ε1

Set ω
(1)
i = 1/N

Take τ2 as twice the empirical variance of the θ
(1)
i ’s

2. At iteration 2 ≤ t ≤ T ,

For i = 1, ..., N , repeat

Pick θ?i from the θ
(t−1)
j ’s with probabilities ω

(t−1)
j

generate θ
(t)
i |θ

?
i ∼ N (θ?i , σ

2
t ) and x ∼ f(x|θ(t)i )

until %(x, y) < εt

Set ω
(t)
i ∝ π(θ(t)i )/

∑N
j=1 ω

(t−1)
j ϕ

(
σ−1
t

{
θ
(t)
i − θ

(t−1)
j )

})
Take τ2

t+1 as twice the weighted empirical variance of the θ
(t)
i ’s
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A mixture example (0)

Toy model of Sisson et al. (2007): if

θ ∼ U(−10, 10) , x|θ ∼ 0.5N (θ, 1) + 0.5N (θ, 1/100) ,

then the posterior distribution associated with y = 0 is the normal
mixture

θ|y = 0 ∼ 0.5N (0, 1) + 0.5N (0, 1/100)

restricted to [−10, 10].
Furthermore, true target available as

π(θ||x| < ε) ∝ Φ(ε−θ)−Φ(−ε−θ)+Φ(10(ε−θ))−Φ(−10(ε+θ)) .
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A mixture example (2)

Recovery of the target, whether using a fixed standard deviation of
τ = 0.15 or τ = 1/0.15, or a sequence of adaptive τt’s.
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Gibbs random fields

Gibbs distribution

The rv y = (y1, . . . , yn) is a Gibbs random field associated with
the graph G if

f(y) =
1
Z

exp

{
−
∑
c∈C

Vc(yc)

}
,

where Z is the normalising constant, C is the set of cliques of G

and Vc is any function also called potential
U(y) =

∑
c∈C Vc(yc) is the energy function

c© Z is usually unavailable in closed form
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Potts model

Potts model

Vc(y) is of the form

Vc(y) = θS(y) = θ
∑
l∼i

δyl=yi

where l∼i denotes a neighbourhood structure

In most realistic settings, summation

Zθ =
∑
x∈X

exp{θTS(x)}

involves too many terms to be manageable and numerical
approximations cannot always be trusted

[Cucala, Marin, CPR & Titterington, 2009]
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Bayesian Model Choice

Comparing a model with potential S0 taking values in Rp0 versus a
model with potential S1 taking values in Rp1 can be done through
the Bayes factor corresponding to the priors π0 and π1 on each
parameter space

Bm0/m1
(x) =

∫
exp{θT

0 S0(x)}/Zθ0,0π0(dθ0)∫
exp{θT

1 S1(x)}/Zθ1,1π1(dθ1)

Use of Jeffreys’ scale to select most appropriate model



On some computational methods for Bayesian model choice

ABC model choice

ABC for model choice in GRFs

Bayesian Model Choice

Comparing a model with potential S0 taking values in Rp0 versus a
model with potential S1 taking values in Rp1 can be done through
the Bayes factor corresponding to the priors π0 and π1 on each
parameter space

Bm0/m1
(x) =

∫
exp{θT

0 S0(x)}/Zθ0,0π0(dθ0)∫
exp{θT

1 S1(x)}/Zθ1,1π1(dθ1)

Use of Jeffreys’ scale to select most appropriate model



On some computational methods for Bayesian model choice

ABC model choice

ABC for model choice in GRFs

Neighbourhood relations

Choice to be made between M neighbourhood relations

i
m∼ i′ (0 ≤ m ≤M − 1)

with
Sm(x) =

∑
i
m∼i′

I{xi=xi′}

driven by the posterior probabilities of the models.
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Model index

Formalisation via a model index M that appears as a new
parameter with prior distribution π(M = m) and
π(θ|M = m) = πm(θm)
Computational target:

P(M = m|x) ∝
∫

Θm

fm(x|θm)πm(θm) dθm π(M = m) ,



On some computational methods for Bayesian model choice

ABC model choice

ABC for model choice in GRFs

Model index

Formalisation via a model index M that appears as a new
parameter with prior distribution π(M = m) and
π(θ|M = m) = πm(θm)
Computational target:

P(M = m|x) ∝
∫

Θm

fm(x|θm)πm(θm) dθm π(M = m) ,



On some computational methods for Bayesian model choice

ABC model choice

ABC for model choice in GRFs

Sufficient statistics
By definition, if S(x) sufficient statistic for the joint parameters
(M, θ0, . . . , θM−1),

P(M = m|x) = P(M = m|S(x)) .

For each model m, own sufficient statistic Sm(·) and
S(·) = (S0(·), . . . , SM−1(·)) also sufficient.
For Gibbs random fields,

x|M = m ∼ fm(x|θm) = f1
m(x|S(x))f2

m(S(x)|θm)

=
1

n(S(x))
f2
m(S(x)|θm)

where
n(S(x)) = ] {x̃ ∈ X : S(x̃) = S(x)}

c© S(x) is therefore also sufficient for the joint parameters
[Specific to Gibbs random fields!]
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ABC model choice Algorithm

ABC-MC

Generate m∗ from the prior π(M = m).

Generate θ∗m∗ from the prior πm∗(·).

Generate x∗ from the model fm∗(·|θ∗m∗).

Compute the distance ρ(S(x0), S(x∗)).

Accept (θ∗m∗ ,m
∗) if ρ(S(x0), S(x∗)) < ε.

[Cornuet, Grelaud, Marin & Robert, 2008]

Note When ε = 0 the algorithm is exact



On some computational methods for Bayesian model choice

ABC model choice

ABC for model choice in GRFs

ABC approximation to the Bayes factor

Frequency ratio:

BFm0/m1
(x0) =

P̂(M = m0|x0)
P̂(M = m1|x0)

× π(M = m1)
π(M = m0)

=
]{mi∗ = m0}
]{mi∗ = m1}

× π(M = m1)
π(M = m0)

,

replaced with

B̂Fm0/m1
(x0) =

1 + ]{mi∗ = m0}
1 + ]{mi∗ = m1}

× π(M = m1)
π(M = m0)

to avoid indeterminacy (also Bayes estimate).
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Illustrations

Toy example

iid Bernoulli model versus two-state first-order Markov chain, i.e.

f0(x|θ0) = exp

(
θ0

n∑
i=1

I{xi=1}

)/
{1 + exp(θ0)}n ,

versus

f1(x|θ1) =
1
2

exp

(
θ1

n∑
i=2

I{xi=xi−1}

)/
{1 + exp(θ1)}n−1 ,

with priors θ0 ∼ U(−5, 5) and θ1 ∼ U(0, 6) (inspired by “phase
transition” boundaries).
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Toy example (2)
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(left) Comparison of the true BFm0/m1
(x0) with B̂Fm0/m1

(x0)
(in logs) over 2, 000 simulations and 4.106 proposals from the
prior. (right) Same when using tolerance ε corresponding to the
1% quantile on the distances.
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Illustrations

Protein folding

Superposition of the native structure (grey) with the ST1
structure (red.), the ST2 structure (orange), the ST3 structure
(green), and the DT structure (blue).
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Illustrations

Protein folding (2)

% seq . Id. TM-score FROST score

1i5nA (ST1) 32 0.86 75.3
1ls1A1 (ST2) 5 0.42 8.9
1jr8A (ST3) 4 0.24 8.9
1s7oA (DT) 10 0.08 7.8

Characteristics of dataset. % seq. Id.: percentage of identity with
the query sequence. TM-score.: similarity between predicted and
native structure (uncertainty between 0.17 and 0.4) FROST score:
quality of alignment of the query onto the candidate structure
(uncertainty between 7 and 9).
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Illustrations

Protein folding (3)

NS/ST1 NS/ST2 NS/ST3 NS/DT

B̂F 1.34 1.22 2.42 2.76
P̂(M = NS|x0) 0.573 0.551 0.708 0.734

Estimates of the Bayes factors between model NS and models
ST1, ST2, ST3, and DT, and corresponding posterior
probabilities of model NS based on an ABC-MC algorithm using
1.2 106 simulations and a tolerance ε equal to the 1% quantile of
the distances.
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