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Introduction

Searching for sparse structure in high dimensional data
sets is one of the key challenges for statisticians today

Variable selection in regression models is another
fundamental approach to finding sparse structure

It has become a research focus in view of the large
genetic/genomic data sets that have become available

In this context, different objectives can be sought:

Improving prediction, in particular by using model averaging

Better understanding of underlying process



Our statistical objective

Building parsimonious regression models for high
dimensional data sets to facilitate interpretation

Analyse jointly large number of covariates and multiple
outcomes

Capture adequately the uncertainty related to the role of
each feature⇒ Full Bayesian inference

Avoid arbitrary (influential) tuning parameters in priors

Provide efficient family of algorithms



Our biological motivation

Combined application of genome-wide expression profiling
with linkage enables the mapping of expression
quantitative trait loci (eQTLs), i.e. genetic control points for
gene expression

Cis-acting (marker and transcript on same chromosome,
typically with large effects) or trans-acting (different
chromosome, with low effects) master regulators of gene
expression are key control points in gene networks

Trans-regulated genes are of primarily interest since they
appears to be more complex, i.e. under polygenic control

Mining of eQTL data has led to new insights into gene
functions and regulatory pathways



Motivating example: RI rat strains (n = 29)
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Motivating example: generic set-up
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Modelling strategy

Two possible approaches

Use Multivariate Gaussian distributions for formulating a
multiple response model of Y (n × q) on X (n × p)

Imposes a strong assumption that all q outcomes are
associated to same j th covariate

Suitable for small q, e.g. transcripts in multiple tissues,
preselected small group of transcripts, . . .

Link q separate regressions for each outcome Y (n × 1)
through a flexible hierarchical structure on the selection
indicators



Outline

Bayesian variable selection set-up for hierarchically linked
regressions (1 ≤ k ≤ q)

Priors specifications
Posterior inference

MCMC Sampler

Evolutionary Monte Carlo: Local and Global moves (given
k )
Updating global parameters
Adaptive Exploration Relevant Outcomes

Illustration and demonstration of performance

Simulated example
Evidence for polygenic control and hot spot in the real data



Regression set-up and likelihood

For every response, k = 1, . . . ,q, Gaussian linear
regression:

yk = Xβk + εk , εk ∼ N
(

0, σ2
k

)
with Xn×p, centred

Let Bq×p = (β1, . . . , βk , . . . , βq)T matrix of regression
coefficients with βk =

(
βk1, . . . , βkj , . . . βkp

)
Let σ2 =

(
σ2

1, . . . , σ
2
k , . . . , σ

2
q
)T

Then likelihood:

Y
∣∣∣X ,B, σ2 ∼

∏q

k=1
N
(

Xβk , σ
2
k

)



Variable selection on X

Introduce prior structure on βs through latent binary matrix

Latent binary matrix: Γ = (γ1, . . . , γk , . . . , γq)T

with γk = (γk1, . . . , γkj , . . . , γkp)
the usual binary vector indicating which of the j th covariates
are included in the k th regression
and γkj = {0,1}

Likelihood: Y
∣∣X ,BΓ, σ

2, Γ ∼
∏q

k=1 N
(
Xγkβγk , σ

2
k
)



Prior specification for βγk

Traditionally, two classes of priors have been considered for the
variances of the regression coefficients

βγk

∣∣g, σ2
k , γk ∼ N

(
0,gσ2

k
(
X T
γk

Xγk

)−1
)

: g-prior structure

Alternatively, replace
(
X T
γk

Xγk

)−1 by identity matrix :
Independence prior



Prior specification

βγk

∣∣g, σ2
k , γk ∼ N

(
0,gσ2

k
(
X T
γk

X T
γk

)−1
)

: g-prior structure

g ∼ InvGam (1/2,n/2) leading to Zellner-Siow priors

p
(
βγk

∣∣∣γk , σ
2
k

)
∝
∫

N
(

0, σ2
k g
(

X T
γk

Xγk

)−1
)

p (g) dg

σ2
k ∼ InvGam (aσ,bσ)

p
(
γkj
∣∣ωkj

)
= ω

γkj
kj

(
1− ωkj

)1−γkj , so
γkj
∣∣ωkj ∼ Bern

(
ωkj
)
,1 ≤ k ≤ q,1 ≤ j ≤ p



Prior structure for selection probabilities

Several possible structures might be appropriate

Most natural biologically: borrow information along columns to
enhance the estimation of the hot spots

Let Ω =
(
ωkj
)

k=1,...,q;j=1,...,p, then

ωkj = ωj ,

where ωj is the a priori column effect (“hot spot”)

Alternatively, could add a row effect (with a constraint)

ωkj = ωj + ωk ;ωj + ωk ≤ 1

ωj , ωk ∼ Beta (0.5,0.5) or Beta (aω,bω)



Posterior inference

Integrate out BΓ and σ2 with marginal likelihood:

p (Y |X ,g, Γ)∝
∫

p
(

Y
∣∣∣X ,g,BΓ,g, σ2, Γ

)
p
(

BΓ

∣∣∣g, σ2, Γ
)

p
(
σ2
)

dBΓdσ2

=
∏q

k=1
(1 + g)−pγk /2 (2bσ + S (γk ))−(2aσ+n−1)/2

S (γk ) = (yk )T (yk )− g
1+g (yk )T Xγk

(
X T

γk
Xγk

)−1 X T
γk

(yk ) where
yk (n × 1) is centred.

Posterior estimates of g, Γ and Ω based on alternate sampling
from their full conditionals



MCMC strategy

After integrating out variances and coefficients, left with
sampling from full conditionals

1 p (Γ |· · · ) ∝ p (Y |X ,g, Γ) p (Γ |Ω)

This is particularly challenging as model space is huge:
dim(Γ) = q × 2p. We use Evolutionary Monte Carlo (EMC)

2 p (Ω |· · · ) ∝ p (Γ |Ω) p (Ω)

We use adaptive Metropolis-within-Gibbs (Roberts and
Rosenthal, 2008) to adapt the tuning of the proposal for ωjk
on the logit scale

3 p (g |· · · ) ∝ p (Y |X ,g, Γ) p (g)

To avoid tuning of the proposal, we also use adaptive MwG
for g



Evolutionary Monte Carlo for Γ

We reduce stochastic search complexity by sampling Γ at each
sweep:

separately from each k with probability αk

Given k , we use a tempered population of Markov Chains:

Temperature reduces the influence of likelihood such that
subsets of covariates can come in out during exploration

Temperature reduces the dependence between γk and g

Population based MCMC allows simultaneous exploration
of different parts of the model space, each chain
exchanging information with the others

We retain just the non heated chain, while the other chains
are used as “good proposals” for the indicator vector γk



Evolutionary MC for γk

How do we use it? At each sweep, a set of moves is attempted:

“Local (mutation)” moves within each chain

“Global moves”, a combination of:

Selection

Exchange

Crossover

The moves are tuned to improve efficiency. In particular:

Local moves use restricted Gibbs sampling

Selection move for “Exchange” operator based on joint
information on all pairs of chains (Calvo 2005)



Adaptive Exploration Relevant Outcomes

Not all outcomes are equally important, for some of them
γk = ∅

Idea is to spend more time on responses where there is
more “action”, i.e. pγ � 0

We propose to modify αk , i.e. the probability of selecting
the j th full conditional

[p (γk |· · · )]1/t ∝ [p (yk |Xγk , γk ,g ) p (γk |Ωk )]1/t

where Ωk =
(
ωkj
)

j=1,...,p in an adaptive way



Adaptive Exploration Relevant Outcomes (continued)

Optimising random scan Gibbs samplers has been
proposed by Levin and Casella (2006): they adaptively
updates the selection coefficients αk based on the
precision of the estimators of interest
We propose a quasi-finite adaptation for αk :
α̃k (b) = (1− ε) rk (b) + ε with

ε =

{
1 if b ≤ 2√

2√
b

+ 10−3 otherwise

rk (b) =
p̄γk (b)∑
k p̄γk (b) and αk (b) = α̃k (b)∑

k α̃k (b)

After B batches, we “freeze” αk (B)→ αk



Simulated example

Toy example where q = 1000, p = 10 and n = 50

X1, X3, X6 and X10, associated with different outcomes in a
complicated way

Goal: find how many outcomes are associated with each
predictor (“hot spot”)

Here, we focus on illustrating the hierarchically related
regression results under the model

ωkj = ωj , ∀k ,1 ≤ j ≤ p



Simulated example: chains, temperature tuning and exploration
model space
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Simulated example: quasi-finite adaptation
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Simulated example: updating selection coefficient g
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Simulated example: Hot spot evidence
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Real data example: Hot spot evidence
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Real data example: marginal posterior probability of inclusion



Real data example: heat map
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Conclusions

Built a class of models suitable for joint analysis of
genomic data sets, in particular for investigating link
between genetic markers and multiple phenotypes

For the huge dimensional space, we sample using
Evolutionary Monte Carlo

For global hyper-parameters, we sample using adaptive
MwG with diminishing condition and bounded convergence
conditions easy to check

We implemented quasi-finite adaptation, but work in
progress for a full adaptation in the spirit of Roberts and
Rosenthal, 2008.


