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Factor analysis

• For dj ∈ Rnf , j = 1, . . . , J :

dj = Asj + εj , sj ∈ Rns ,

where εj ∼ N(0, diag(τ−1
1 , . . . , τ−1

nf
)), A is a nf × ns factor

loading matrix;

• Sk = (s1k , . . . , sJk) is kth factor;

• Goal: observe the dj and infer the sj and A;
• Known as source separation in signal processing literature

where:
• A known as the mixing matrix;
• Sk known as the sources.



Source separation for multi-channel images

• nf images, each of J pixels:
• dj is vector of intensities at pixel j across all nf images;

• In remote sensing, each image is of same scene at
different frequencies ν1, . . . , νnf

;

• sj is then the vector of the ns different sources at pixel j ;

• Aik is the contribution of the kth source at the ith
frequency.



Cosmic microwave background (CMB)

• Discovered by accident in 1964;

• By 1970’s agreed to be an image of the first scattering of
EM radiation at recombination ≈ 300,000 years after Big
Bang;

• Of great interest as an observation of the state of the
early universe:

• In particular it is remarkably uniform;
• But accurate measurement of the small anisotropies place

strong restrictions on theories of big bang, galaxy formation
etc.;

• Cosmic expansion ⇒ radiation has cooled to 2.7K
(microwave);



Source separation problem for the CMB



Source separation problem for the CMB

• Upcoming data (Planck satellite) will have J ≈ 107,
nf = 9 at frequencies from 30 to 857 GHz;

• Sk , k = 1, . . . , ns are the sources that make up the
microwave signal received by the satellite:

• One of these sources is the CMB (source 1);
• Other important ones are synchrotron radiation and galactic

dust;
• There are many others.... is ns known?
• A lot is known from physics about the properties of these

sources e.g. their spectrum, mean, variance etc;

• A is not known but the physics tell us a lot about it;

• A lot of “prior” information ⇒ a Bayesian approach looks
promising.



Likelihood

• Different number rj of observations at pixel j . So

p(D |S,A, τ)

∝

(
nf∏
i=1

τ
P

j rj
i

)0.5

exp

(
−0.5

nf∑
i=1

τi

J∑
j=1

rj (dij − Ai ·sj)
2

)
,

where now dij is average over the rj observations;

• D = (d1,d2, . . . ,dJ),S = (s1, s2, . . . , sJ).

• rj are assumed known.



Prior information about A: CMB is black
body



Prior for A

• Both A and any sj unknown ⇒ solution up to a constant
in each column (source) of A;

• Aik interpreted as the response of the detector at
frequency νi to source k ;

• The physics tells us a lot about what this should be for
each source;

• The CMB is black body radiation at T0 = 2.725K, so
response at νi is known:

Ai1 =

(
hνi

kT0

)2
ehνi/kT0

(ehνi/kT0 − 1)2
,

h is Planck constant, k is Boltzmann’s constant.



Prior for A

• For other sources, physical argument to say that
approximately:

Aik =

(
νi

ν0,k

)θk
,

for a reference frequency ν0,k and parameter θk ;

• So one free parameter θk per column of A;

• So A parameterised by (ns − 1) dimensional θ;

• Physical theories give tight bounds on these θ:
(−3.5,−2.0) for synchrotron, (0.5, 1.5) for galactic dust,
etc.



Prior model for sources

• Source distributions across sky show skewness,
multimodality;

• Sources exhibit within and across (spatial) pixel
correlations:

• Galactic sources, extra-galactic sources and CMB should be
independent;

• Sources within galaxy show dependencies, similarly
extra-galactic;

• Most sources show spatial smoothness.



Prior model for sources

• This all suggests a mixture of GMRFs as a prior for S:

p(S |m,p,µ,Q)

∝
m∑

a=1

pa|Qa|0.5 exp(−0.5(S− µa)TQa(S− µa)),

where µa ∈ RnsJ , Qa is an nsJ × nsJ precision matrix.

• Lots of structure in the Qa (but can it be made into a
band matrix?);

• Two simplifications:
1 Between source only: no spatial correlation ⇒ each Qa is

block-diagonal of J identical ns × ns matrices;
2 Independent: no within-pixel correlation either ⇒ Qa is

diagonal (blocks of J identical ns × ns diagonal matrices);

• For last case, each source is an iid Gaussian mixture.



Sampling from the Posterior Distribution

• Gibbs sampling;
• Update parameters in blocks where possible:

• Full conditional samples of mixture means, precisions and
weights;

• No. of mixture components for each source sampled by the
usual Richardson and Green (JRSS B, 1997) reversible jump
move;

• Full conditional of each source at each pixel skj is a univariate
mixture of Gaussians;

• Better: full conditional of sj is a mixture of multivariate
Gaussians;

• Components of θ updated jointly with their corresponding
source by a Metropolis move (e.g. (θk ,Sk));



Full conditional of sj in the independent
case

• sjk is Gaussian mixture with mk components;

• There are
∏

k mk components in sj , indexed (l1, . . . , lns );

• Component (l1, . . . , lns ) has:
• weight

∏
k pklk ;

• precision matrix T(l1···lns )
with elements:

(T(l1···lns )
)ab = I (a = b)tala +

∑
j

τjAjaAjb;

• mean:

µ(l1···lns )
= T −1

(l1···lns )


 t1l1µ1l1

...
tns lns

+ AT

 τ1dj1

...
τnf

djnf


 .



Full conditional of sj in the
between-source dependence case

• sj still a mixture of MVNs;

• Somewhat more complicated form for means and precision
matrices (but still OK to compute quickly).



Metropolis step for (θk ,Sk)

• Independent prior case:
• Propose θ∗k from N(θk , s

2
θ ) ⇒ new loading matrix A∗;

• S∗k proposed from P(Sk |A∗,S−k ,D);
• (θ∗k ,S

∗
k) accepted with probability∫

p(D |S,A∗, τ ) p(Sk |pk ,µk , tk) dSk∫
p(D |S,A, τ ) p(Sk |pk ,µk , tk) dSk

• Similarly for between-source dependence case:
• But computationally more difficult.



Metropolis step for (θk ,Sk) (indpt. case)

∫
p(D |S,A, τ ) p(Sk |pk ,µk , tk) dSk

∝
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.



Example 1: simulated data

• Three sources (simulated Gaussian mixtures and Gaussian
MRFs) at five channels on a 256× 256 grid;

• Mixing matrix A generated using reasonable values from
CMB, synchrotron and dust at the 9 Planck frequencies,
giving:

A =



1.0000 1.0000 1.0000
0.9737 0.3293 2.1109
0.9031 0.0857 5.1571
0.7952 0.0305 10.0990
0.6186 0.0108 19.4469
0.3417 0.0032 40.2804
0.0791 0.0008 87.0180
0.0064 0.0002 153.0462
0.0001 0.0001 221.6442


.



Example 1: simulated data

Figure: Simulated values of the 3 sources, from left to right, assigned to
be CMB, synchrotron and dust.



Example 1: simulated data

Figure: Resulting observed signal at two frequencies: 30 GHz (left) and
143 GHz (right).



Example 1: simulated data with
independent prior

Figure: The posterior mean reconstruction of the CMB (left), the true
(centre) with a scatter plot of true vs posterior mean (right).



Example 1: simulated data with
independent prior

Figure: On the left, the posterior distribution of the CMB at pixel
(200,20). The true value is indicated by the vertical line. On the right,
the marginal posterior distribution of the CMB, with the histogram of
true values for comparison.



Example 2: WMAP Data

• 512× 512 pixel patch from WMAP satellite at 5 channels;

• Fit 4 sources: CMB, synchrotron, dust and free-free
emission;

• The spectral index of free-free emission is assumed to be
−2.19.



Example 2: WMAP Data



Example 2: Posterior mean of sources
with independent priors



Example 2: Posterior standard deviation
of sources with independent priors



Example 2: Model fit: dij vs. E(Ai ·sj |D)
for independent prior case



Example 2: How did the MCMC do?
Independent prior case



Example 2: How did the MCMC do?
Between-source dependence case



Example 2: Model fit: dij vs. E(Ai ·sj |D)
for between-source dependence case



Issues

• Currently solved problem for J × ns ≈ 106 vs. 108 for whole
sky reconstruction;

• Whole sky needed to construct posterior for spectral density of
CMB;

• Within pixel dependence MCMC run took 2 weeks with
MATLAB!!

• How to practically implement the spatial dependence case;

• Is the prior important?

• Marginalise out the GMRF parameters (as in Nobile and
Fearnside, Stats & Computing, 2007)?

• Separation at resolution of shortest wavelength;
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