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Sums of Independent Random Variables Markov Chains

Independent Random Variables

Let X1,X2, ...,Xn be family of independent random
variables, such that EXi = 0 and E(exp(|Xi |/c)− 1) 6 1.

To prove the concentration inequality we use Markov
inequality

P(
n∑

i=1

Xi > t) 6 e−λt
n∏

i=1

E exp(λXi).

The simplest bound on the Laplace transform is

E exp(λXi) 6 1+
∞∑

k=2

Eλk |Xi |k

k !
6 1+

∞∑
k=2

λkck 6 exp(
λ2c2

1− λc
).

Therefore

P(
n∑

i=1

Xi > t) 6 e−λt exp(
λ2c2n
1− λc

).
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Variance Improvement

We keep the assumption that X1, ...,Xn are independent,
EXi = 0 and E(exp(|Xi |/c)− 1) 6 1. Let σ2

i = EX 2
i .

If |Xi | 6 M, then the previous argument shows that
n∏

i=1

E exp(λXi) 6 exp(
λ2 ∑n

i=1 σ
2
i

2(1− (1/3)λM)
).

When there is no bound |Xi | 6 M, we can artificially
generate it using decomposition

Xi = (Xi1|Xi |6M − EXi1|Xi |6M) + (Xi1|Xi |>M − EXi1|Xi |>M).

Choosing M = c log n one can show that
n∏

i=1

E exp(λXi) 6 L exp(
λ2 ∑n

i=1 σ
2
i

1− (2/3)λ(c log n)
).
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Basic Inequalities

(Bennet’s Inequality) Suppose that X1,X2, ...,Xn are real
independent random variables such that EXi = 0,
E(exp(|Xi |/c)− 1) 6 1, then

P(|
n∑

i=1

Xi | > t) 6 2 exp(− t2

nc2 + ct
).

(Bernstein’s Inequality) Suppose that X1,X2, ...,Xn are real
independent random variables such that EXi = 0, |Xi | 6 M,∑n

i=1 EX 2
i = nσ2, then

P(|
n∑

i=1

Xi | > t) 6 2 exp(− t2

2(nσ2 + (1/3)Mt)
).
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CLT Inequality

Suppose that X1,X2, ...,Xn are real independent random
variables such that EXi = 0, E(exp(|Xi |/c)− 1) 6 1,∑n

i=1 EX 2
i = nσ2, then

P(|
n∑

i=1

Xi | > t) 6 K exp(− t2

(nσ2 + (2/3)(c log n)t)
),

for some universal constant K .

The meaning of the result is that for exponentially fast
decaying random variables the CLT (Gaussian
concentration) can be observed for t 6 (σ2/c)(

√
n/ log n)
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Markov Chains

Let (Xi)i>0 be a Markov chain on a general state space
(X ,B).

We assume that there exists a stationary distribution π on
(X ,B).
We assume that (Xn)n>0 verifies geometric drift condition:
there exist a small set C, constants b <∞, β > 0 and a
function V > 1 satisfying

PV (x)− V (x) 6 −βV (x) + b1C(x), x ∈ X .

The geometric drift condition is equivalent to the existence
of a small set C ∈ B(X ) and a constant c > 0 such that

Ex (exp(
τC

c
)− 1) 6 1 for x ∈ C.
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Simplified Setting

Let f : X → R be a π-integrable function.

The goal is to show concentration inequalities of the type

Pµ(|
n∑

i=1

f̄ (Xi)| > t) 6 exp(−Φ(µ, t ,n)),

for suitably chosen Φ, where µ is the initial distribution.
We first consider the concentration inequalities for a
bounded f , i.e. we assume that |f | 6 a.
Whenever geometric drift condition holds, then there exists
a set S of full π-measure such that

Ex (exp((2acx )−1
τC−1∑
i=0

f̄ (Xi))− 1) 6 1, for x ∈ S.
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Renewal Decomposition

We can start the Markov chain from any regular point
x ∈ S.

Using the split chain construction the problem can be
reduced to the case where a true atom C = α-exists.
Let τα(1) = τα, τα(k + 1) = inf{n > τα(k) : Xn ∈ α} we
define

Y1 =
τα∑
i=1

f̄ (Xi), Y2 =
n∑

i=τα(N)+1

f̄ (Xi), N =
n∑

k=1

1Xk∈α

Then
n∑

i=1

f̄ (Xi) = Y1 +
N−1∑
i=1

Zi + Y2,

where Zi =
∑τα(i+1)

τα(i)+1 f̄ (Xi).
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Estimates for the Entrance and Exit Part.

We use assumption Ex (exp( ταcx
)− 1) 6 1, to get

Px (|Y1| > t) 6 2 exp(− t
2acx

).

We use the assumption Eα(exp( ταc )− 1) 6 1, to get

Px (|Y2| > t) 6 2 exp(− t
2π(α)ac2 ).

In the similar way way we show that

Px (|ZN | > t) 6 2 exp(− t
2π(α)ac2 ).
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Estimate for the Main Body

To bound
∑N

i=1 Zi we use the martingale method, which
leads to

Ex (exp(λ
N∑

i=1

Zi)) 6 (Ex (Eα exp(2λZ1))N)1/2.

Then one can apply bounds on the Laplace transform of
Z1, e.g.

Eα exp(2λZ1) 6 exp(
4λ2c2a2

1− 2λca
),

which gives

Ex (exp(λ
N∑

i=1

Zi)) 6 (Ex exp(
4Nλ2c2

1− 2λc
))1/2.
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Bounded Case Result

The construction of N, i.e. {N 6 k} = {τα(k + 1) > n},
provides that

Px (N > k) 6 exp(− k
4π(α)2c2 ), for k > 2nπ(α).

Theorem (R.Adamczak,W.B, 2009)
Let (Xn)n>0 be Markov chain with values in (X ,B) satisfying the
geometric drift condition. Then for any regular initial point x ∈ S

Px (|
n∑

i=1

f̄ (Xi)| > t) 6 K exp(− 1
K

min(
t2

nπ(α)c2a2 ,
t

π(α)c2a
,

t
cxa

)).
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Remarks

The result shows that gaussian type concentration works
on |t | 6 a

√
n.

If we apply N 6 n and the variance improvement to bound
Eα exp(λZ1). Consequently CLT works well for
t 6 (σ2/(ac2))(

√
n/ log n). then the following can be

obtained

Theorem (R.Adamczak,W.B 2009)
Let (Xn)n>0 be Markov chain with values in (X ,B) satisfying the
geometric drift condition. Then for any regular initial point x ∈ S

Px (|
n∑

i=1

f̄ (Xi)| > t) 6 K exp(− 1
K

min(
t2

nπ(α)σ2 ,
t(log n)−1

π(α)c2a
,

t
cxa

)),

where σ2 = EαZ 2
1
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General Setting

In the general case we assume the multiplicative drift
condition: there exists a small set C and a function
V : X → R+ and constants b <∞, β > 0 such that

exp(−V (x))P(exp(V ))(x) 6 exp(−β|f (x)|+ b1C(x)).

The multiplicative drift condition is a natural setting to show
multiplicative ergodicity. It guarantees (I.Kontoyiannis,
S.P.Meyn 2005) that there exists a small set C, d <∞ s.t.

Ex (exp(d−1
τC−1∑
k=0

|f (Xk )|)− 1) 6 1, for x ∈ C.

There exists a set S of full π-measure, such that

Ex (exp((2dx )−1
τC−1∑
k=0

|f (Xk )|)− 1) 6 1, for x ∈ X .
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Main Result

Following the idea with the split chain we reduce the
problem to the case where a true atom C = α exists.

In the atomic case our assumptions can be rewritten as

Eα(exp(d−1
τα−1∑
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The result allows to compute the independent-like
concentration inequality in terms of parameters given in
drift conditions.
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