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Variance Improvement

@ We keep the assumption that Xi, ..., X, are independent,
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@ If |Xi| < M, then the previous argument shows that
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@ When there is no bound | X;| < M, we can artificially
generate it using decomposition

Xi = (Xil)x <m — EXit1x <m) + (Xt x>m — EXiT x> m)-
@ Choosing M = clog n one can show that

? Xyl of
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Basic Inequalities
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E(exp(|Xi|/c) —1) <1, then

2

).

n
P Xl >t <2 -
(3012 ) < 200(~ o
@ (Bernstein’s Inequality) Suppose that Xi, X, ..., X,, are real
independent random variables such that EX; = 0, | Xj| < M,
S, EX? = no?, then
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CLT Inequality

@ Suppose that Xj, X, ..., X, are real independent random
variables such that EX; = 0, E(exp(|Xi|/c) — 1) <1,
S, EX? = no?, then

t2
(no? + (2/3)(clog n)t)

n
P(1> X[ >1t) < Kexp(— ),
i=1

for some universal constant K.

@ The meaning of the result is that for exponentially fast
decaying random variables the CLT (Gaussian
concentration) can be observed for t < (¢2/¢)(v/n/ log n)
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Markov Chains

@ Let (Xi)i>o0 be a Markov chain on a general state space
(X, B).

@ We assume that there exists a stationary distribution = on
(X,B).

@ We assume that (X,),>0 verifies geometric drift condition:
there exist a small set C, constants b < oo, 5> 0and a
function V > 1 satisfying

PV(x) — V(x) < —BV(x) + blg(x), x € X.

@ The geometric drift condition is equivalent to the existence
of a small set C € B(X) and a constant ¢ > 0 such that

Ex(exp(%c) —1)<1 for xe C.



Markov Chains

Simplified Setting

@ Let f: X — R be a w-integrable function.



Markov Chains

Simplified Setting

@ Let f: X — R be a w-integrable function.
@ The goal is to show concentration inequalities of the type

Pu( Y f(X)| > 1) < exp(—®(u, t,n)),
i=1

for suitably chosen &, where 1 is the initial distribution.



Markov Chains

Simplified Setting

@ Let f: X — R be a w-integrable function.
@ The goal is to show concentration inequalities of the type

n
P.(ID_ (X)) > t) < exp(=(n, t, ),
i=1
for suitably chosen &, where 1 is the initial distribution.

@ We first consider the concentration inequalities for a
bounded f, i.e. we assume that |f| < a.



Markov Chains

Simplified Setting

@ Let f: X — R be a w-integrable function.
@ The goal is to show concentration inequalities of the type

Pu(1 > F(X)| > 1) < exp(—(u, t,n)),
=1

for suitably chosen &, where 1 is the initial distribution.

@ We first consider the concentration inequalities for a
bounded f, i.e. we assume that |f| < a.

@ Whenever geometric drift condition holds, then there exists
a set S of full -measure such that

Tc—1

Ex(exp((2acy)~ ZfX) )—1)<1, forxeS.
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Renewal Decomposition

@ We can start the Markov chain from any regular point
xeS.

@ Using the split chain construction the problem can be
reduced to the case where a true atom C = «-exists.

@ Let 7,(1) = 7o, Ta(k + 1) =inf{n > 7,(k) : Xh € a} we

define
To n _ n
Yi=31X), Ya= > FX), N= 1xca
=1 i=To (N)+1 k=1
@ Then

n__ N-1
Y HX) =Y+ Zi+ Ve,
i=1 i=1

where Z; = Z:ZE:;R f(X).



Markov Chains

Estimates for the Entrance and Exit Part.

@ We use assumption Ex(exp(f) — 1) < 1, to get

Px(]Y1] > t) < 2exp(— ).

2acy



Markov Chains

Estimates for the Entrance and Exit Part.

@ We use assumption Ex(exp(f) — 1) < 1, to get

Px(]Y1] > t) < 2exp(—

).

2acy

@ We use the assumption E,(exp(’¢) — 1) < 1, to get

Px(|Yo| > t) < 2exp(— ).

2r(a)ac?



Markov Chains

Estimates for the Entrance and Exit Part.

@ We use assumption Ex(exp(f) — 1) < 1, to get

Px(]Y1] > t) < 2exp(—

).

2acy

@ We use the assumption E,(exp(’¢) — 1) < 1, to get

Px(|Yo| > t) < 2exp(— ).
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@ In the similar way way we show that

Px(|Zn] > t) < 2exp(—2 ).

m(a)ac?
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Estimate for the Main Body

@ To bound Z,’L Z; we use the martingale method, which
leads to

x(exp )\ZZ) x(Ea exp(20Z;))M)1/2,

@ Then one can apply bounds on the Laplace transform of
Zi, eq.
42282
E. exp(21Zy) < eXp(m),
which gives

N 2.2
Ex(exp(A ) 2) < (Exexp(3—5, )"

i=1
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Bounded Case Result

@ The construction of N, i.e. {N < k} = {7o(k+ 1) > n},
provides that

Px(N > k) < exp(— 4(;()202)7 for k > 2nm(a).

Theorem (R.Adamczak,W.B, 2009)

Let (Xn)n>o0 be Markov chain with values in (X, B) satisfying the
geometric drift condition. Then for any reqular initial point x € S
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@ The result shows that gaussian type concentration works
on [t| < ay/n.

@ If we apply N < n and the variance improvement to bound
E. exp(AZ;). Consequently CLT works well for
t < (62/(ac?))(v/n/ log n). then the following can be
obtained

Theorem (R.Adamczak,W.B 2009)

Let (Xn)n=0 be Markov chain with values in (X, B) satisfying the
geometric drift condition. Then for any regular initial point x € S

t2

t(log n)~" i))

1 .
|Zf )| > 1) < K exp(— min( ()P G
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@ There exists a set S of full m-measure, such that
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Main Result

@ Following the idea with the split chain we reduce the
problem to the case where a true atom C = « exists.
@ In the atomic case our assumptions can be rewritten as

Ta—1

Eo(exp(d™' ) (X)) —1) <1, Ea(exp(c'a)—1) < 1

Theorem (R.Adamczak, W.B. 2009)

Let (Xn)n>0 be Markov chain with values in (X, B) satisfying the
multiplicative drift condition. Then for any regular initial point
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Main Result

Theorem (R.Adamczak, W.B. 2009)

Let (Xn)n>o0 be Markov chain with values in (X, B) satisfying the
multiplicative drift condition. Then for any regular initial point
xeS

2 -1
01 oot S

where o? = E,Z?

@ It shows that the CLT-type concentration can be seen for
t < (0%/cd)(v/n/log(n)).

@ The result allows to compute the independent-like
concentration inequality in terms of parameters given in
drift conditions.
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