Exponential type inequalities for Markov Chains

Witold Bednorz ${ }^{1}$

${ }^{1}$ Department of Mathematics
University of Warsaw

MCMC, Warwick 16-20 March 2009 Joint work with R.Adamczak from Warsaw University

Outline

(1) Sums of Independent Random Variables
(2) Markov Chains

Independent Random Variables

- Let $X_{1}, X_{2}, \ldots, X_{n}$ be family of independent random variables, such that $\mathbf{E} X_{i}=0$ and $\mathbf{E}\left(\exp \left(\left|X_{i}\right| / c\right)-1\right) \leqslant 1$.

Independent Random Variables

- Let $X_{1}, X_{2}, \ldots, X_{n}$ be family of independent random variables, such that $\mathbf{E} X_{i}=0$ and $\mathbf{E}\left(\exp \left(\left|X_{i}\right| / c\right)-1\right) \leqslant 1$.
- To prove the concentration inequality we use Markov inequality

$$
\mathbf{P}\left(\sum_{i=1}^{n} X_{i}>t\right) \leqslant e^{-\lambda t} \prod_{i=1}^{n} \mathbf{E} \exp \left(\lambda X_{i}\right)
$$

Independent Random Variables

- Let $X_{1}, X_{2}, \ldots, X_{n}$ be family of independent random variables, such that $\mathbf{E} X_{i}=0$ and $\mathbf{E}\left(\exp \left(\left|X_{i}\right| / c\right)-1\right) \leqslant 1$.
- To prove the concentration inequality we use Markov inequality

$$
\mathbf{P}\left(\sum_{i=1}^{n} X_{i}>t\right) \leqslant e^{-\lambda t} \prod_{i=1}^{n} \mathbf{E} \exp \left(\lambda X_{i}\right)
$$

- The simplest bound on the Laplace transform is
$\mathbf{E} \exp \left(\lambda X_{i}\right) \leqslant 1+\sum_{k=2}^{\infty} \frac{\mathbf{E} \lambda^{k}\left|X_{i}\right|^{k}}{k!} \leqslant 1+\sum_{k=2}^{\infty} \lambda^{k} c^{k} \leqslant \exp \left(\frac{\lambda^{2} c^{2}}{1-\lambda c}\right)$.

Independent Random Variables

- Let $X_{1}, X_{2}, \ldots, X_{n}$ be family of independent random variables, such that $\mathbf{E} X_{i}=0$ and $\mathbf{E}\left(\exp \left(\left|X_{i}\right| / c\right)-1\right) \leqslant 1$.
- To prove the concentration inequality we use Markov inequality

$$
\mathbf{P}\left(\sum_{i=1}^{n} X_{i}>t\right) \leqslant e^{-\lambda t} \prod_{i=1}^{n} \mathbf{E} \exp \left(\lambda X_{i}\right)
$$

- The simplest bound on the Laplace transform is

$$
\mathbf{E} \exp \left(\lambda X_{i}\right) \leqslant 1+\sum_{k=2}^{\infty} \frac{\mathbf{E} \lambda^{k}\left|X_{i}\right|^{k}}{k!} \leqslant 1+\sum_{k=2}^{\infty} \lambda^{k} c^{k} \leqslant \exp \left(\frac{\lambda^{2} c^{2}}{1-\lambda c}\right)
$$

- Therefore

$$
\mathbf{P}\left(\sum_{i=1}^{n} X_{i}>t\right) \leqslant e^{-\lambda t} \exp \left(\frac{\lambda^{2} c^{2} n}{1-\lambda c}\right)
$$

Variance Improvement

- We keep the assumption that X_{1}, \ldots, X_{n} are independent, $\mathbf{E} X_{i}=0$ and $\mathbf{E}\left(\exp \left(\left|X_{i}\right| / c\right)-1\right) \leqslant 1$. Let $\sigma_{i}^{2}=\mathbf{E} X_{i}^{2}$.

Variance Improvement

- We keep the assumption that X_{1}, \ldots, X_{n} are independent, $\mathbf{E} X_{i}=0$ and $\mathbf{E}\left(\exp \left(\left|X_{i}\right| / c\right)-1\right) \leqslant 1$. Let $\sigma_{i}^{2}=\mathbf{E} X_{i}^{2}$.
- If $\left|X_{i}\right| \leqslant M$, then the previous argument shows that

$$
\prod_{i=1}^{n} \mathbf{E} \exp \left(\lambda X_{i}\right) \leqslant \exp \left(\frac{\lambda^{2} \sum_{i=1}^{n} \sigma_{i}^{2}}{2(1-(1 / 3) \lambda M)}\right)
$$

Variance Improvement

- We keep the assumption that X_{1}, \ldots, X_{n} are independent, $\mathbf{E} X_{i}=0$ and $\mathbf{E}\left(\exp \left(\left|X_{i}\right| / c\right)-1\right) \leqslant 1$. Let $\sigma_{i}^{2}=\mathbf{E} X_{i}^{2}$.
- If $\left|X_{i}\right| \leqslant M$, then the previous argument shows that

$$
\prod_{i=1}^{n} E \exp \left(\lambda X_{i}\right) \leqslant \exp \left(\frac{\lambda^{2} \sum_{i=1}^{n} \sigma_{i}^{2}}{2(1-(1 / 3) \lambda M)}\right)
$$

- When there is no bound $\left|X_{i}\right| \leqslant M$, we can artificially generate it using decomposition

$$
X_{i}=\left(X_{i} 1_{\mid X_{i} \leqslant M}-\mathbf{E} X_{i} 1_{\left|X_{i}\right| \leqslant M}\right)+\left(X_{i} 1_{\left|X_{i}\right|>M}-\mathbf{E} X_{i} 1_{\left|X_{i}\right|>M}\right)
$$

Variance Improvement

- We keep the assumption that X_{1}, \ldots, X_{n} are independent, $\mathbf{E} X_{i}=0$ and $\mathbf{E}\left(\exp \left(\left|X_{i}\right| / c\right)-1\right) \leqslant 1$. Let $\sigma_{i}^{2}=\mathbf{E} X_{i}^{2}$.
- If $\left|X_{i}\right| \leqslant M$, then the previous argument shows that

$$
\prod_{i=1}^{n} \mathbf{E} \exp \left(\lambda X_{i}\right) \leqslant \exp \left(\frac{\lambda^{2} \sum_{i=1}^{n} \sigma_{i}^{2}}{2(1-(1 / 3) \lambda M)}\right)
$$

- When there is no bound $\left|X_{i}\right| \leqslant M$, we can artificially generate it using decomposition

$$
X_{i}=\left(X_{i} 1_{\mid X_{i} \leqslant M}-\mathbf{E} X_{i} 1_{\left|X_{i}\right| \leqslant M}\right)+\left(X_{i} 1_{\left|X_{i}\right|>M}-\mathbf{E} X_{i} 1_{\left|X_{i}\right|>M}\right)
$$

- Choosing $M=c \log n$ one can show that

$$
\prod_{i=1}^{n} \mathbf{E} \exp \left(\lambda X_{i}\right) \leqslant L \exp \left(\frac{\lambda^{2} \sum_{i=1}^{n} \sigma_{i}^{2}}{1-(2 / 3) \lambda(c \log n)}\right)
$$

Basic Inequalities

- (Bennet's Inequality) Suppose that $X_{1}, X_{2}, \ldots, X_{n}$ are real independent random variables such that $\mathrm{E} X_{i}=0$, $\mathbf{E}\left(\exp \left(\left|X_{i}\right| / c\right)-1\right) \leqslant 1$, then

$$
\mathbf{P}\left(\left|\sum_{i=1}^{n} X_{i}\right| \geqslant t\right) \leqslant 2 \exp \left(-\frac{t^{2}}{n c^{2}+c t}\right)
$$

Basic Inequalities

- (Bennet's Inequality) Suppose that $X_{1}, X_{2}, \ldots, X_{n}$ are real independent random variables such that $\mathrm{E} X_{i}=0$, $\mathbf{E}\left(\exp \left(\left|X_{i}\right| / c\right)-1\right) \leqslant 1$, then

$$
\mathbf{P}\left(\left|\sum_{i=1}^{n} X_{i}\right| \geqslant t\right) \leqslant 2 \exp \left(-\frac{t^{2}}{n c^{2}+c t}\right)
$$

- (Bernstein's Inequality) Suppose that $X_{1}, X_{2}, \ldots, X_{n}$ are real independent random variables such that $\mathbf{E} X_{i}=0,\left|X_{i}\right| \leqslant M$, $\sum_{i=1}^{n} \mathbf{E} X_{i}^{2}=n \sigma^{2}$, then

$$
\mathbf{P}\left(\left|\sum_{i=1}^{n} X_{i}\right| \geqslant t\right) \leqslant 2 \exp \left(-\frac{t^{2}}{2\left(n \sigma^{2}+(1 / 3) M t\right)}\right)
$$

CLT Inequality

- Suppose that $X_{1}, X_{2}, \ldots, X_{n}$ are real independent random variables such that $\mathbf{E} X_{i}=0, \mathbf{E}\left(\exp \left(\left|X_{i}\right| / c\right)-1\right) \leqslant 1$, $\sum_{i=1}^{n} \mathbf{E} X_{i}^{2}=n \sigma^{2}$, then

$$
\mathbf{P}\left(\left|\sum_{i=1}^{n} X_{i}\right| \geqslant t\right) \leqslant K \exp \left(-\frac{t^{2}}{\left(n \sigma^{2}+(2 / 3)(c \log n) t\right)}\right)
$$

for some universal constant K.

CLT Inequality

- Suppose that $X_{1}, X_{2}, \ldots, X_{n}$ are real independent random variables such that $\mathbf{E} X_{i}=0, \mathbf{E}\left(\exp \left(\left|X_{i}\right| / c\right)-1\right) \leqslant 1$, $\sum_{i=1}^{n} \mathbf{E} X_{i}^{2}=n \sigma^{2}$, then

$$
\mathbf{P}\left(\left|\sum_{i=1}^{n} X_{i}\right| \geqslant t\right) \leqslant K \exp \left(-\frac{t^{2}}{\left(n \sigma^{2}+(2 / 3)(c \log n) t\right)}\right)
$$

for some universal constant K.

- The meaning of the result is that for exponentially fast decaying random variables the CLT (Gaussian concentration) can be observed for $t \leqslant\left(\sigma^{2} / c\right)(\sqrt{n} / \log n)$

Markov Chains

- Let $\left(X_{i}\right)_{i \geqslant 0}$ be a Markov chain on a general state space $(\mathcal{X}, \mathcal{B})$.

Markov Chains

- Let $\left(X_{i}\right)_{i \geqslant 0}$ be a Markov chain on a general state space $(\mathcal{X}, \mathcal{B})$.
- We assume that there exists a stationary distribution π on $(\mathcal{X}, \mathcal{B})$.

Markov Chains

- Let $\left(X_{i}\right)_{i \geqslant 0}$ be a Markov chain on a general state space $(\mathcal{X}, \mathcal{B})$.
- We assume that there exists a stationary distribution π on $(\mathcal{X}, \mathcal{B})$.
- We assume that $\left(X_{n}\right)_{n \geqslant 0}$ verifies geometric drift condition: there exist a small set C, constants $b<\infty, \beta>0$ and a function $V \geqslant 1$ satisfying

$$
P V(x)-V(x) \leqslant-\beta V(x)+b 1_{C}(x), \quad x \in \mathcal{X}
$$

Markov Chains

- Let $\left(X_{i}\right)_{i \geqslant 0}$ be a Markov chain on a general state space $(\mathcal{X}, \mathcal{B})$.
- We assume that there exists a stationary distribution π on $(\mathcal{X}, \mathcal{B})$.
- We assume that $\left(X_{n}\right)_{n \geqslant 0}$ verifies geometric drift condition: there exist a small set C, constants $b<\infty, \beta>0$ and a function $V \geqslant 1$ satisfying

$$
P V(x)-V(x) \leqslant-\beta V(x)+b 1_{C}(x), \quad x \in \mathcal{X}
$$

- The geometric drift condition is equivalent to the existence of a small set $C \in \mathcal{B}(\mathcal{X})$ and a constant $c>0$ such that

$$
\mathbf{E}_{x}\left(\exp \left(\frac{\tau_{C}}{c}\right)-1\right) \leqslant 1 \text { for } x \in C .
$$

Simplified Setting

- Let $f: \mathcal{X} \rightarrow \mathbb{R}$ be a π-integrable function.

Simplified Setting

- Let $f: \mathcal{X} \rightarrow \mathbb{R}$ be a π-integrable function.
- The goal is to show concentration inequalities of the type

$$
\mathbf{P}_{\mu}\left(\left|\sum_{i=1}^{n} \bar{f}\left(X_{i}\right)\right|>t\right) \leqslant \exp (-\Phi(\mu, t, n))
$$

for suitably chosen Φ, where μ is the initial distribution.

Simplified Setting

- Let $f: \mathcal{X} \rightarrow \mathbb{R}$ be a π-integrable function.
- The goal is to show concentration inequalities of the type

$$
\mathbf{P}_{\mu}\left(\left|\sum_{i=1}^{n} \bar{f}\left(X_{i}\right)\right|>t\right) \leqslant \exp (-\Phi(\mu, t, n))
$$

for suitably chosen Φ, where μ is the initial distribution.

- We first consider the concentration inequalities for a bounded f, i.e. we assume that $|f| \leqslant a$.

Simplified Setting

- Let $f: \mathcal{X} \rightarrow \mathbb{R}$ be a π-integrable function.
- The goal is to show concentration inequalities of the type

$$
\mathbf{P}_{\mu}\left(\left|\sum_{i=1}^{n} \bar{f}\left(X_{i}\right)\right|>t\right) \leqslant \exp (-\Phi(\mu, t, n))
$$

for suitably chosen Φ, where μ is the initial distribution.

- We first consider the concentration inequalities for a bounded f, i.e. we assume that $|f| \leqslant a$.
- Whenever geometric drift condition holds, then there exists a set S of full π-measure such that

$$
E_{x}\left(\exp \left(\left(2 a c_{x}\right)^{-1} \sum_{i=0}^{\tau_{C}-1} \bar{f}\left(X_{i}\right)\right)-1\right) \leqslant 1, \text { for } x \in S
$$

Renewal Decomposition

- We can start the Markov chain from any regular point $x \in S$.

Renewal Decomposition

- We can start the Markov chain from any regular point $x \in S$.
- Using the split chain construction the problem can be reduced to the case where a true atom $C=\alpha$-exists.

Renewal Decomposition

- We can start the Markov chain from any regular point $x \in S$.
- Using the split chain construction the problem can be reduced to the case where a true atom $C=\alpha$-exists.
- Let $\tau_{\alpha}(1)=\tau_{\alpha}, \tau_{\alpha}(k+1)=\inf \left\{n>\tau_{\alpha}(k): X_{n} \in \alpha\right\}$ we define

$$
Y_{1}=\sum_{i=1}^{\tau_{\alpha}} \bar{f}\left(X_{i}\right), \quad Y_{2}=\sum_{i=\tau_{\alpha}(N)+1}^{n} \bar{f}\left(X_{i}\right), \quad N=\sum_{k=1}^{n} 1_{X_{k} \in \alpha}
$$

Renewal Decomposition

- We can start the Markov chain from any regular point $x \in S$.
- Using the split chain construction the problem can be reduced to the case where a true atom $C=\alpha$-exists.
- Let $\tau_{\alpha}(1)=\tau_{\alpha}, \tau_{\alpha}(k+1)=\inf \left\{n>\tau_{\alpha}(k): X_{n} \in \alpha\right\}$ we define

$$
Y_{1}=\sum_{i=1}^{\tau_{\alpha}} \bar{f}\left(X_{i}\right), \quad Y_{2}=\sum_{i=\tau_{\alpha}(N)+1}^{n} \bar{f}\left(X_{i}\right), \quad N=\sum_{k=1}^{n} 1_{X_{k} \in \alpha}
$$

- Then

$$
\sum_{i=1}^{n} \bar{f}\left(X_{i}\right)=Y_{1}+\sum_{i=1}^{N-1} Z_{i}+Y_{2}
$$

where $Z_{i}=\sum_{\tau_{\alpha}(i)+1}^{\tau_{\alpha}(i+1)} \bar{f}\left(X_{i}\right)$.

Estimates for the Entrance and Exit Part.

- We use assumption $\mathbf{E}_{x}\left(\exp \left(\frac{\tau_{\alpha}}{c_{x}}\right)-1\right) \leqslant 1$, to get

$$
\mathbf{P}_{x}\left(\left|Y_{1}\right|>t\right) \leqslant 2 \exp \left(-\frac{t}{2 a c_{x}}\right)
$$

Estimates for the Entrance and Exit Part.

- We use assumption $\mathbf{E}_{x}\left(\exp \left(\frac{\tau_{\alpha}}{c_{x}}\right)-1\right) \leqslant 1$, to get

$$
\mathbf{P}_{x}\left(\left|Y_{1}\right|>t\right) \leqslant 2 \exp \left(-\frac{t}{2 a c_{x}}\right)
$$

- We use the assumption $\mathbf{E}_{\alpha}\left(\exp \left(\frac{\tau_{\alpha}}{c}\right)-1\right) \leqslant 1$, to get

$$
\mathbf{P}_{x}\left(\left|Y_{2}\right|>t\right) \leqslant 2 \exp \left(-\frac{t}{2 \pi(\alpha) a c^{2}}\right)
$$

Estimates for the Entrance and Exit Part.

- We use assumption $\mathbf{E}_{x}\left(\exp \left(\frac{\tau_{\alpha}}{c_{x}}\right)-1\right) \leqslant 1$, to get

$$
\mathbf{P}_{x}\left(\left|Y_{1}\right|>t\right) \leqslant 2 \exp \left(-\frac{t}{2 a c_{x}}\right)
$$

- We use the assumption $\mathbf{E}_{\alpha}\left(\exp \left(\frac{\tau_{\alpha}}{c}\right)-1\right) \leqslant 1$, to get

$$
\mathbf{P}_{x}\left(\left|Y_{2}\right|>t\right) \leqslant 2 \exp \left(-\frac{t}{2 \pi(\alpha) a c^{2}}\right)
$$

- In the similar way way we show that

$$
\mathbf{P}_{x}\left(\left|Z_{N}\right|>t\right) \leqslant 2 \exp \left(-\frac{t}{2 \pi(\alpha) a c^{2}}\right) .
$$

Estimate for the Main Body

- To bound $\sum_{i=1}^{N} Z_{i}$ we use the martingale method, which leads to

$$
\mathbf{E}_{x}\left(\exp \left(\lambda \sum_{i=1}^{N} Z_{i}\right)\right) \leqslant\left(\mathbf{E}_{x}\left(\mathbf{E}_{\alpha} \exp \left(2 \lambda Z_{1}\right)\right)^{N}\right)^{1 / 2}
$$

Estimate for the Main Body

- To bound $\sum_{i=1}^{N} Z_{i}$ we use the martingale method, which leads to

$$
\mathbf{E}_{x}\left(\exp \left(\lambda \sum_{i=1}^{N} Z_{i}\right)\right) \leqslant\left(\mathbf{E}_{x}\left(\mathbf{E}_{\alpha} \exp \left(2 \lambda Z_{1}\right)\right)^{N}\right)^{1 / 2}
$$

- Then one can apply bounds on the Laplace transform of Z_{1}, e.g.

$$
\mathbf{E}_{\alpha} \exp \left(2 \lambda Z_{1}\right) \leqslant \exp \left(\frac{4 \lambda^{2} c^{2} a^{2}}{1-2 \lambda c a}\right)
$$

which gives

$$
\mathbf{E}_{x}\left(\exp \left(\lambda \sum_{i=1}^{N} Z_{i}\right)\right) \leqslant\left(\mathbf{E}_{x} \exp \left(\frac{4 N \lambda^{2} c^{2}}{1-2 \lambda c}\right)\right)^{1 / 2}
$$

Bounded Case Result

- The construction of N, i.e. $\{N \leqslant k\}=\left\{\tau_{\alpha}(k+1)>n\right\}$, provides that

$$
\mathbf{P}_{x}(N>k) \leqslant \exp \left(-\frac{k}{4 \pi(\alpha)^{2} c^{2}}\right), \text { for } k \geqslant 2 n \pi(\alpha)
$$

Bounded Case Result

- The construction of N, i.e. $\{N \leqslant k\}=\left\{\tau_{\alpha}(k+1)>n\right\}$, provides that

$$
\mathbf{P}_{x}(N>k) \leqslant \exp \left(-\frac{k}{4 \pi(\alpha)^{2} c^{2}}\right), \text { for } k \geqslant 2 n \pi(\alpha)
$$

Theorem (R.Adamczak,W.B, 2009)

Let $\left(X_{n}\right)_{n \geqslant 0}$ be Markov chain with values in $(\mathcal{X}, \mathcal{B})$ satisfying the geometric drift condition. Then for any regular initial point $x \in S$
$\mathbf{P}_{x}\left(\left|\sum_{i=1}^{n} \bar{f}\left(X_{i}\right)\right|>t\right) \leqslant K \exp \left(-\frac{1}{K} \min \left(\frac{t^{2}}{n \pi(\alpha) c^{2} a^{2}}, \frac{t}{\pi(\alpha) c^{2} a}, \frac{t}{c_{x} a}\right)\right)$.

Remarks

- The result shows that gaussian type concentration works on $|t| \leqslant a \sqrt{n}$.

Remarks

- The result shows that gaussian type concentration works on $|t| \leqslant a \sqrt{n}$.
- If we apply $N \leqslant n$ and the variance improvement to bound $\mathbf{E}_{\alpha} \exp \left(\lambda Z_{1}\right)$. Consequently CLT works well for $t \leqslant\left(\sigma^{2} /\left(a c^{2}\right)\right)(\sqrt{n} / \log n)$. then the following can be obtained

Remarks

- The result shows that gaussian type concentration works on $|t| \leqslant a \sqrt{n}$.
- If we apply $N \leqslant n$ and the variance improvement to bound $\mathbf{E}_{\alpha} \exp \left(\lambda Z_{1}\right)$. Consequently CLT works well for $t \leqslant\left(\sigma^{2} /\left(a c^{2}\right)\right)(\sqrt{n} / \log n)$. then the following can be obtained

Theorem (R.Adamczak,W.B 2009)

Let $\left(X_{n}\right)_{n \geqslant 0}$ be Markov chain with values in $(\mathcal{X}, \mathcal{B})$ satisfying the geometric drift condition. Then for any regular initial point $x \in S$
$\mathbf{P}_{x}\left(\left|\sum_{i=1}^{n} \bar{f}\left(X_{i}\right)\right|>t\right) \leqslant K \exp \left(-\frac{1}{K} \min \left(\frac{t^{2}}{n \pi(\alpha) \sigma^{2}}, \frac{t(\log n)^{-1}}{\pi(\alpha) c^{2} a}, \frac{t}{c_{x} a}\right)\right)$, where $\sigma^{2}=\mathbf{E}_{\alpha} Z_{1}^{2}$

General Setting

- In the general case we assume the multiplicative drift condition: there exists a small set C and a function $V: \mathcal{X} \rightarrow \mathbb{R}_{+}$and constants $b<\infty, \beta>0$ such that

$$
\exp (-V(x)) P(\exp (V))(x) \leqslant \exp \left(-\beta|f(x)|+b 1_{C}(x)\right)
$$

General Setting

- In the general case we assume the multiplicative drift condition: there exists a small set C and a function $V: \mathcal{X} \rightarrow \mathbb{R}_{+}$and constants $b<\infty, \beta>0$ such that

$$
\exp (-V(x)) P(\exp (V))(x) \leqslant \exp \left(-\beta|f(x)|+b 1_{C}(x)\right)
$$

- The multiplicative drift condition is a natural setting to show multiplicative ergodicity. It guarantees (I.Kontoyiannis, S.P.Meyn 2005) that there exists a small set $C, d<\infty$ s.t.

$$
\mathbf{E}_{x}\left(\exp \left(d^{-1} \sum_{k=0}^{\tau_{C}-1}\left|f\left(X_{k}\right)\right|\right)-1\right) \leqslant 1, \text { for } x \in C
$$

General Setting

- In the general case we assume the multiplicative drift condition: there exists a small set C and a function $V: \mathcal{X} \rightarrow \mathbb{R}_{+}$and constants $b<\infty, \beta>0$ such that

$$
\exp (-V(x)) P(\exp (V))(x) \leqslant \exp \left(-\beta|f(x)|+b 1_{C}(x)\right)
$$

- The multiplicative drift condition is a natural setting to show multiplicative ergodicity. It guarantees (I.Kontoyiannis, S.P.Meyn 2005) that there exists a small set $C, d<\infty$ s.t.

$$
\mathbf{E}_{x}\left(\exp \left(d^{-1} \sum_{k=0}^{\tau_{C}-1}\left|f\left(X_{k}\right)\right|\right)-1\right) \leqslant 1, \text { for } x \in C
$$

- There exists a set S of full π-measure, such that

$$
\mathbf{E}_{x}\left(\exp \left(\left(2 d_{x}\right)^{-1} \sum_{k=0}^{\tau_{C}-1}\left|f\left(X_{k}\right)\right|\right)-1\right) \leqslant 1, \text { for } x \in \mathcal{X}
$$

Main Result

- Following the idea with the split chain we reduce the problem to the case where a true atom $\boldsymbol{C}=\alpha$ exists.

Main Result

- Following the idea with the split chain we reduce the problem to the case where a true atom $\boldsymbol{C}=\alpha$ exists.
- In the atomic case our assumptions can be rewritten as

$$
\mathbf{E}_{\alpha}\left(\exp \left(d^{-1} \sum_{k=0}^{\tau_{\alpha}-1}\left|f\left(X_{k}\right)\right|\right)-1\right) \leqslant 1, \quad \mathbf{E}_{\alpha}\left(\exp \left(c^{-1} \tau_{\alpha}\right)-1\right) \leqslant 1
$$

Main Result

- Following the idea with the split chain we reduce the problem to the case where a true atom $\boldsymbol{C}=\alpha$ exists.
- In the atomic case our assumptions can be rewritten as

$$
\mathbf{E}_{\alpha}\left(\exp \left(d^{-1} \sum_{k=0}^{\tau_{\alpha}-1}\left|f\left(X_{k}\right)\right|\right)-1\right) \leqslant 1, \quad \mathbf{E}_{\alpha}\left(\exp \left(c^{-1} \tau_{\alpha}\right)-1\right) \leqslant 1
$$

Theorem (R.Adamczak, W.B. 2009)

Let $\left(X_{n}\right)_{n \geqslant 0}$ be Markov chain with values in $(\mathcal{X}, \mathcal{B})$ satisfying the multiplicative drift condition. Then for any regular initial point $x \in S$

$$
\mathbf{P}_{x}\left(\left|\sum_{i=1}^{n} \bar{f}\left(X_{i}\right)\right|>t\right) \leqslant K \exp \left(-\frac{1}{K} \min \left(\frac{t^{2}}{n \pi(\alpha) d^{2}}, \frac{t}{\pi(\alpha) c d}, \frac{t}{d_{x}}\right)\right)
$$

Main Result

Theorem (R.Adamczak, W.B. 2009)

Let $\left(X_{n}\right)_{n \geqslant 0}$ be Markov chain with values in $(\mathcal{X}, \mathcal{B})$ satisfying the multiplicative drift condition. Then for any regular initial point $x \in S$
$\mathbf{P}_{x}\left(\left|\sum_{i=1}^{n} \bar{f}\left(X_{i}\right)\right|>t\right) \leqslant K \exp \left(-\frac{1}{K} \min \left(\frac{t^{2}}{n \pi(\alpha) \sigma^{2}}, \frac{t(\log n)^{-1}}{\pi(\alpha) c d}, \frac{t}{d_{x}}\right)\right)$, where $\sigma^{2}=\mathbf{E}_{\alpha} \boldsymbol{Z}_{1}^{2}$

Main Result

Theorem (R.Adamczak, W.B. 2009)

Let $\left(X_{n}\right)_{n \geqslant 0}$ be Markov chain with values in $(\mathcal{X}, \mathcal{B})$ satisfying the multiplicative drift condition. Then for any regular initial point $x \in S$
$\mathbf{P}_{x}\left(\left|\sum_{i=1}^{n} \bar{f}\left(X_{i}\right)\right|>t\right) \leqslant K \exp \left(-\frac{1}{K} \min \left(\frac{t^{2}}{n \pi(\alpha) \sigma^{2}}, \frac{t(\log n)^{-1}}{\pi(\alpha) c d}, \frac{t}{d_{x}}\right)\right)$, where $\sigma^{2}=\mathbf{E}_{\alpha} Z_{1}^{2}$

- It shows that the CLT-type concentration can be seen for $t \leqslant\left(\sigma^{2} / c d\right)(\sqrt{n} / \log (n))$.

Main Result

Theorem (R.Adamczak, W.B. 2009)

Let $\left(X_{n}\right)_{n \geqslant 0}$ be Markov chain with values in $(\mathcal{X}, \mathcal{B})$ satisfying the multiplicative drift condition. Then for any regular initial point $x \in S$
$\mathbf{P}_{x}\left(\left|\sum_{i=1}^{n} \bar{f}\left(X_{i}\right)\right|>t\right) \leqslant K \exp \left(-\frac{1}{K} \min \left(\frac{t^{2}}{n \pi(\alpha) \sigma^{2}}, \frac{t(\log n)^{-1}}{\pi(\alpha) c d}, \frac{t}{d_{x}}\right)\right)$,
where $\sigma^{2}=\mathbf{E}_{\alpha} Z_{1}^{2}$

- It shows that the CLT-type concentration can be seen for $t \leqslant\left(\sigma^{2} / c d\right)(\sqrt{n} / \log (n))$.
- The result allows to compute the independent-like concentration inequality in terms of parameters given in drift conditions.

