Relative outer automorphism groups of RAAGs and restriction maps

Matthew Day

University of Arkansas

matthewd@uark.edu

On joint work with Ric Wade, University of Oxford

Geometry of outer spaces and outer automorphism groups, The University of Warwick, April 17th, 2018

What are we interested in?

- Let Γ be a finite graph and let A_Γ be the *right-angled Artin group* (RAAG) determined by Γ. So A_Γ has the following presentation:
 - $\bullet\,$ The presentation has a generator for each vertex of $\Gamma\,$
 - The presentation has a relator uv = vu whenever u and v are adjacent vertices in Γ .

- Let Γ be a finite graph and let A_{Γ} be the *right-angled Artin group* (*RAAG*) determined by Γ . So A_{Γ} has the following presentation:
 - $\bullet\,$ The presentation has a generator for each vertex of $\Gamma\,$
 - The presentation has a relator uv = vu whenever u and v are adjacent vertices in Γ .
- We are interested in the class of outer automorphism groups of RAAGs (OARs), i.e. {Out(A_Γ)|Γ a finite graph}.

- Let Γ be a finite graph and let A_{Γ} be the *right-angled Artin group* (*RAAG*) determined by Γ . So A_{Γ} has the following presentation:
 - $\bullet\,$ The presentation has a generator for each vertex of $\Gamma\,$
 - The presentation has a relator uv = vu whenever u and v are adjacent vertices in Γ .
- We are interested in the class of *outer automorphism groups of* RAAGs (OARs), i.e. {Out(A_Γ)|Γ a finite graph}.
- These include $GL_n(\mathbb{Z})$ and $Out(F_n)$ and many other examples.

- Let Γ be a finite graph and let A_{Γ} be the *right-angled Artin group* (*RAAG*) determined by Γ . So A_{Γ} has the following presentation:
 - $\bullet\,$ The presentation has a generator for each vertex of $\Gamma\,$
 - The presentation has a relator uv = vu whenever u and v are adjacent vertices in Γ .
- We are interested in the class of *outer automorphism groups of* RAAGs (OARs), i.e. {Out(A_Γ)|Γ a finite graph}.
- These include $GL_n(\mathbb{Z})$ and $Out(F_n)$ and many other examples.
- We are interested in the finiteness properties and structure of Out(A_Γ).

• Finiteness properties of groups include:

- Finiteness properties of groups include:
 - being finitely generated

- Finiteness properties of groups include:
 - being finitely generated
 - being finitely presentable

- Finiteness properties of groups include:
 - being finitely generated
 - being finitely presentable
 - and many homological finiteness properties.

- Finiteness properties of groups include:
 - being finitely generated
 - being finitely presentable
 - and many homological finiteness properties.
- A group G is of type F if it has a K(G, 1)-space that is a finite cell complex (this is closely related to type FL).

- Finiteness properties of groups include:
 - being finitely generated
 - being finitely presentable
 - and many homological finiteness properties.
- A group G is of type F if it has a K(G, 1)-space that is a finite cell complex (this is closely related to type FL).
- The cohomological dimension of G is

$$\operatorname{cd}(G) = \sup\{n \mid \exists M, H^n(G; M) \neq 0\}.$$

- Finiteness properties of groups include:
 - being finitely generated
 - being finitely presentable
 - and many homological finiteness properties.
- A group G is of type F if it has a K(G, 1)-space that is a finite cell complex (this is closely related to type FL).
- The cohomological dimension of G is

$$\operatorname{cd}(G) = \sup\{n \mid \exists M, H^n(G; M) \neq 0\}.$$

• $cd(G) < \infty$ if there is a finite-dimensional K(G, 1)-space.

- Finiteness properties of groups include:
 - being finitely generated
 - being finitely presentable
 - and many homological finiteness properties.
- A group G is of type F if it has a K(G, 1)-space that is a finite cell complex (this is closely related to type FL).
- The cohomological dimension of G is

$$\operatorname{cd}(G) = \sup\{n \mid \exists M, H^n(G; M) \neq 0\}.$$

- $cd(G) < \infty$ if there is a finite-dimensional K(G, 1)-space.
- G is of type F \implies $cd(G) < \infty$ and G is finitely presentable.

• If G has a nontrivial torsion element, then $cd(G) = \infty$ (and therefore G is not of type F).

- If G has a nontrivial torsion element, then cd(G) = ∞ (and therefore G is not of type F).
- *G* is *of type VF* if some finite-index subgroup of *G* is of type F.

- If G has a nontrivial torsion element, then cd(G) = ∞ (and therefore G is not of type F).
- *G* is *of type VF* if some finite-index subgroup of *G* is of type F.
- The virtual cohomological dimension of G is vcd(G) = cd(H), where H is some torsion-free finite-index subgroup of G (vcd(G) is not defined if no such subgroup exists).

- If G has a nontrivial torsion element, then cd(G) = ∞ (and therefore G is not of type F).
- *G* is *of type VF* if some finite-index subgroup of *G* is of type F.
- The virtual cohomological dimension of G is vcd(G) = cd(H), where H is some torsion-free finite-index subgroup of G (vcd(G) is not defined if no such subgroup exists).
- vcd(G) is well defined by a theorem of Serre.

• Finite presentations of $GL_n(\mathbb{Z})$ and $Out(F_n)$ are classical.

- Finite presentations of $GL_n(\mathbb{Z})$ and $Out(F_n)$ are classical.
- $GL_n(\mathbb{Z})$ has good homological finiteness properties:

Theorem (Borel–Serre 1973)

For every n, $GL_n(\mathbb{Z})$ is of type VF, and $vcd(GL_n(\mathbb{Z})) = n(n-1)/2$.

- Finite presentations of $GL_n(\mathbb{Z})$ and $Out(F_n)$ are classical.
- $GL_n(\mathbb{Z})$ has good homological finiteness properties:

Theorem (Borel–Serre 1973)

For every n, $GL_n(\mathbb{Z})$ is of type VF, and $vcd(GL_n(\mathbb{Z})) = n(n-1)/2$.

Finite K(G, 1) spaces for finite-index subgroups G of GL_n(ℤ) are related to the symmetric space GL_n(ℝ)/O(n).

- Finite presentations of $GL_n(\mathbb{Z})$ and $Out(F_n)$ are classical.
- $GL_n(\mathbb{Z})$ has good homological finiteness properties:

Theorem (Borel–Serre 1973)

For every n, $GL_n(\mathbb{Z})$ is of type VF, and $vcd(GL_n(\mathbb{Z})) = n(n-1)/2$.

- Finite K(G, 1) spaces for finite-index subgroups G of GL_n(ℤ) are related to the symmetric space GL_n(ℝ)/O(n).
- The situation is similar for $Out(F_n)$:

Theorem (Culler–Vogtmann 1986)

For every n, $Out(F_n)$ is of type VF and $vcd(Out(F_n)) = 2n - 3$.

- Finite presentations of $GL_n(\mathbb{Z})$ and $Out(F_n)$ are classical.
- $GL_n(\mathbb{Z})$ has good homological finiteness properties:

Theorem (Borel–Serre 1973)

For every n, $GL_n(\mathbb{Z})$ is of type VF, and $vcd(GL_n(\mathbb{Z})) = n(n-1)/2$.

- Finite K(G, 1) spaces for finite-index subgroups G of GL_n(ℤ) are related to the symmetric space GL_n(ℝ)/O(n).
- The situation is similar for $Out(F_n)$:

Theorem (Culler–Vogtmann 1986)

For every n, $Out(F_n)$ is of type VF and $vcd(Out(F_n)) = 2n - 3$.

• Culler and Vogtmann build a space with an action of $Out(F_n)$, outer space, in order to show these things.

• Theorems for general RAAGs:

• Theorems for general RAAGs:

Theorem (Laurence 1995)

For any Γ , $Out(A_{\Gamma})$ is finitely generated by graph symmetries, inversions, transvections (a.k.a. twists and folds), and partial conjugations.

• Theorems for general RAAGs:

Theorem (Laurence 1995)

For any Γ , $\operatorname{Out}(A_{\Gamma})$ is finitely generated by graph symmetries, inversions, transvections (a.k.a. twists and folds), and partial conjugations.

Theorem (Day 2008)

For any Γ , $Out(A_{\Gamma})$ is finitely presented.

• Theorems for general RAAGs:

Theorem (Laurence 1995)

For any Γ , $\operatorname{Out}(A_{\Gamma})$ is finitely generated by graph symmetries, inversions, transvections (a.k.a. twists and folds), and partial conjugations.

Theorem (Day 2008)

For any Γ , $Out(A_{\Gamma})$ is finitely presented.

Theorem (Charney–Vogtmann 2009)

For any Γ , $\operatorname{vcd}(\operatorname{Out}(A_{\Gamma})) < \infty$.

• A little bit more is known in some special cases.

• A little bit more is known in some special cases.

Theorem (Charney–Crisp–Vogtmann 2007)

If Γ is triangle-free, then ${\rm Out}(A_\Gamma)$ is of type VF. There is an outer space in this setting.

• A little bit more is known in some special cases.

Theorem (Charney–Crisp–Vogtmann 2007)

If Γ is triangle-free, then ${\rm Out}(A_\Gamma)$ is of type VF. There is an outer space in this setting.

Theorem (Charney–Stambaugh–Vogtmann 2017)

There is an outer space for the untwisted subgroup $U(A_{\Gamma})$ of $Out(A_{\Gamma})$, and $U(A_{\Gamma})$ is of type VF.

• A little bit more is known in some special cases.

Theorem (Charney–Crisp–Vogtmann 2007)

If Γ is triangle-free, then ${\rm Out}(A_\Gamma)$ is of type VF. There is an outer space in this setting.

Theorem (Charney–Stambaugh–Vogtmann 2017)

There is an outer space for the untwisted subgroup $U(A_{\Gamma})$ of $Out(A_{\Gamma})$, and $U(A_{\Gamma})$ is of type VF.

 U(A_Γ) = Out(A_Γ) iff there are no pairs u, v ∈ Γ with u adjacent to v and lk(v) ⊂ st(u).

 In examples other than GL_n(ℤ) and Out(F_n), often Out(A_Γ) is kind of "chunky"...

 In examples other than GL_n(ℤ) and Out(F_n), often Out(A_Γ) is kind of "chunky"... Out(A_Γ) may have a structural decomposition into many parts that "feel different".

- In examples other than GL_n(ℤ) and Out(F_n), often Out(A_Γ) is kind of "chunky"... Out(A_Γ) may have a structural decomposition into many parts that "feel different".
- There haven't been any general results along these lines, but there are some results for families of subgroups, for example:

- In examples other than GL_n(ℤ) and Out(F_n), often Out(A_Γ) is kind of "chunky"... Out(A_Γ) may have a structural decomposition into many parts that "feel different".
- There haven't been any general results along these lines, but there are some results for families of subgroups, for example:

Theorem (Duncan–Remeslennikov 2017)

The subgroup of $\operatorname{Aut}(A_{\Gamma})$ generated by transvections and inversions has the structure of an iterated semidirect product. The factors in this product are copies of $\operatorname{GL}_n(\mathbb{Z})$, free abelian groups, and a third kind of group that is hard to describe. These factors are all finitely presentable.

Theorem (D-W 2017)

For every graph Γ , the group $\operatorname{Out}(A_{\Gamma})$ is of type VF.

Theorem (D–W 2017)

For every graph Γ , the group $\operatorname{Out}(A_{\Gamma})$ is of type VF.

• We didn't prove this by finding an outer space for $Out(A_{\Gamma})$.

Theorem (D–W 2017)

For every graph Γ , the group $\operatorname{Out}(A_{\Gamma})$ is of type VF.

- We didn't prove this by finding an outer space for $Out(A_{\Gamma})$.
- Instead, we proved this using restriction maps (more on this later).

• Suppose G is a group with a free product decomposition

$$G = G_1 * G_2 * \ldots * G_r * F_m$$

(not necessarily a Grushko decomposition; any G_i may be freely decomposible, or infinite cyclic). Let $\mathcal{G} = \{G_1, \ldots, G_r\}$.

• Suppose G is a group with a free product decomposition

$$G = G_1 * G_2 * \ldots * G_r * F_m$$

(not necessarily a Grushko decomposition; any G_i may be freely decomposible, or infinite cyclic). Let $\mathcal{G} = \{G_1, \ldots, G_r\}$.

• The Fouxe-Rabinovitch group $FR(G; \mathcal{G})$ is the subgroup of Out(G)with $[\phi] \in FR(G; \mathcal{G})$ if for each G_i , there is $\phi_i \in [\phi]$ with $\phi_i|_{G_i} = id_{G_i}$.

• Suppose G is a group with a free product decomposition

$$G = G_1 * G_2 * \ldots * G_r * F_m$$

(not necessarily a Grushko decomposition; any G_i may be freely decomposible, or infinite cyclic). Let $\mathcal{G} = \{G_1, \ldots, G_r\}$.

- The Fouxe-Rabinovitch group FR(G; G) is the subgroup of Out(G) with [φ] ∈ FR(G; G) if for each G_i, there is φ_i ∈ [φ] with φ_i|_{G_i} = id_{G_i}.
- Now let A_Γ be a RAAG. A special subgroup H of A_Γ is H = ⟨Δ⟩ = A_Δ, for some subgraph Δ of Γ.

• Suppose G is a group with a free product decomposition

$$G = G_1 * G_2 * \ldots * G_r * F_m$$

(not necessarily a Grushko decomposition; any G_i may be freely decomposible, or infinite cyclic). Let $\mathcal{G} = \{G_1, \ldots, G_r\}$.

- The Fouxe-Rabinovitch group FR(G; G) is the subgroup of Out(G) with [φ] ∈ FR(G; G) if for each G_i, there is φ_i ∈ [φ] with φ_i|_{G_i} = id_{G_i}.
- Now let A_Γ be a RAAG. A special subgroup H of A_Γ is H = ⟨Δ⟩ = A_Δ, for some subgraph Δ of Γ.
- $\operatorname{Out}^0(A_{\Gamma})$ is the subgroup of $\operatorname{Out}(A_{\Gamma})$ "without graph symmetries". $\operatorname{Out}^0(A_{\Gamma})$ is normal, $[\operatorname{Out}(A_{\Gamma}) : \operatorname{Out}^0(A_{\Gamma})] < \infty$, and $\operatorname{Out}(A_{\Gamma})/\operatorname{Out}^0(A_{\Gamma})$ is a quotient of $\operatorname{Aut}(\Gamma)$.

Theorem (D–W 2017)

Let Γ be a graph. Then $\operatorname{Out}^0(A_{\Gamma})$ has a subnormal series

$$1 = N_0 < N_1 < \cdots < N_{k-1} < N_k = \operatorname{Out}^0(A_{\Gamma}),$$

such that for each i, $0 < i \le k$, the quotient N_i/N_{i-1} is one of

Theorem (D–W 2017)

Let Γ be a graph. Then $\operatorname{Out}^0(A_{\Gamma})$ has a subnormal series

$$1 = N_0 < N_1 < \cdots < N_{k-1} < N_k = \operatorname{Out}^0(A_{\Gamma}),$$

such that for each i, $0 < i \le k$, the quotient N_i/N_{i-1} is one of

a free abelian group, or

Theorem (D–W 2017)

Let Γ be a graph. Then $\operatorname{Out}^0(A_{\Gamma})$ has a subnormal series

$$1 = N_0 < N_1 < \cdots < N_{k-1} < N_k = \operatorname{Out}^0(A_{\Gamma}),$$

such that for each i, $0 < i \le k$, the quotient N_i/N_{i-1} is one of

- a free abelian group, or
- $\operatorname{GL}_m(\mathbb{Z})$ for some $m \geq 1$, or

Theorem (D–W 2017)

Let Γ be a graph. Then $\operatorname{Out}^0(A_{\Gamma})$ has a subnormal series

$$1 = N_0 < N_1 < \cdots < N_{k-1} < N_k = \operatorname{Out}^0(A_{\Gamma}),$$

such that for each i, $0 < i \le k$, the quotient N_i/N_{i-1} is one of

- a free abelian group, or
- $\mathsf{GL}_m(\mathbb{Z})$ for some $m \ge 1$, or
- a Fouxe-Rabinovitch group FR(A_Δ, H) for some free product decomposition H of some special subgroup A_Δ of A_Γ.

Theorem (D–W 2017)

Let Γ be a graph. Then $\operatorname{Out}^0(A_{\Gamma})$ has a subnormal series

$$1 = N_0 < N_1 < \cdots < N_{k-1} < N_k = \operatorname{Out}^0(A_{\Gamma}),$$

such that for each i, $0 < i \le k$, the quotient N_i/N_{i-1} is one of

- a free abelian group, or
- $\mathsf{GL}_m(\mathbb{Z})$ for some $m \ge 1$, or
- a Fouxe-Rabinovitch group FR(A_Δ, H) for some free product decomposition H of some special subgroup A_Δ of A_Γ.

Notes: Often $GL_1(\mathbb{Z})$ shows up. If A_{Δ} is edgeless and $\mathcal{H} = \emptyset$, then $FR(A_{\Delta}; \mathcal{H})$ is $Out(F_m)$.

• The following theorem is the motivation for our technique.

Theorem (Charney–Crisp–Vogtmann 2007)

Suppose Γ is connected and not a cone on another graph. Then there are proper subgraphs $\Delta_1, \ldots, \Delta_k$, such that for each *i*, restriction to A_{Δ_i} induces a homomorphism

$$R_i: \operatorname{Out}^0(A_{\Gamma}) \to \operatorname{Out}(A_{\Delta_i}),$$

and the product $R = \prod_i R_i$ has a free abelian kernel:

$$0 \to \mathbb{Z}^m o \operatorname{Out}^0(A_{\Gamma}) \stackrel{R}{\longrightarrow} \prod_i \operatorname{Out}(A_{\Delta_i}).$$

• The following theorem is the motivation for our technique.

Theorem (Charney–Crisp–Vogtmann 2007)

Suppose Γ is connected and not a cone on another graph. Then there are proper subgraphs $\Delta_1, \ldots, \Delta_k$, such that for each *i*, restriction to A_{Δ_i} induces a homomorphism

$$R_i: \operatorname{Out}^0(A_{\Gamma}) \to \operatorname{Out}(A_{\Delta_i}),$$

and the product $R = \prod_i R_i$ has a free abelian kernel:

$$0 \to \mathbb{Z}^m \to \operatorname{Out}^0(\mathcal{A}_{\Gamma}) \xrightarrow{R} \prod_i \operatorname{Out}(\mathcal{A}_{\Delta_i}).$$

• This leads to an inductive scheme for proving things about $Out(A_{\Gamma})$.

• The following theorem is the motivation for our technique.

Theorem (Charney–Crisp–Vogtmann 2007)

Suppose Γ is connected and not a cone on another graph. Then there are proper subgraphs $\Delta_1, \ldots, \Delta_k$, such that for each *i*, restriction to A_{Δ_i} induces a homomorphism

$$R_i: \operatorname{Out}^0(A_{\Gamma}) \to \operatorname{Out}(A_{\Delta_i}),$$

and the product $R = \prod_i R_i$ has a free abelian kernel:

$$0 \to \mathbb{Z}^m o \operatorname{Out}^0(\mathcal{A}_{\Gamma}) \xrightarrow{R} \prod_i \operatorname{Out}(\mathcal{A}_{\Delta_i}).$$

- This leads to an inductive scheme for proving things about $Out(A_{\Gamma})$.
- Projection maps are another part of this story.

Matthew Day (UArk)

• The following theorem is the motivation for our technique.

Theorem (Charney–Crisp–Vogtmann 2007)

Suppose Γ is connected and not a cone on another graph. Then there are proper subgraphs $\Delta_1, \ldots, \Delta_k$, such that for each *i*, restriction to A_{Δ_i} induces a homomorphism

$$R_i: \operatorname{Out}^0(A_{\Gamma}) \to \operatorname{Out}(A_{\Delta_i}),$$

and the product $R = \prod_i R_i$ has a free abelian kernel:

$$0 \to \mathbb{Z}^m o \operatorname{Out}^0(A_{\Gamma}) \stackrel{R}{\longrightarrow} \prod_i \operatorname{Out}(A_{\Delta_i}).$$

- This leads to an inductive scheme for proving things about $Out(A_{\Gamma})$.
- Projection maps are another part of this story.
- Hurdle: the image of *R* is difficult to describe.

Matthew Day (UArk)

Definition

Let G be a group, and H a subgroup of G.

- $[\phi] \in Out(G)$ preserves H if there is $\phi \in [\phi]$ with $\phi(H) = H$.
- $[\phi] \in Out(G)$ acts trivially on H if there is $\phi \in [\phi]$ with $\phi|_H = id_H$.

Definition

Let G be a group, and H a subgroup of G.

- $[\phi] \in Out(G)$ preserves H if there is $\phi \in [\phi]$ with $\phi(H) = H$.
- $[\phi] \in Out(G)$ acts trivially on H if there is $\phi \in [\phi]$ with $\phi|_H = id_H$.

Definition

Let \mathcal{G} and \mathcal{H} be collections of subgroups of G. The *relative outer* automorphism group of G with respect to \mathcal{G}, \mathcal{H} , denoted $\operatorname{Out}(G; \mathcal{G}, \mathcal{H}^t)$, is the subgroup of $\operatorname{Out}(G)$ consisting of maps that preserve every group in \mathcal{G} and act trivially on every group in \mathcal{H} .

Definition

Let G be a group, and H a subgroup of G.

- $[\phi] \in Out(G)$ preserves H if there is $\phi \in [\phi]$ with $\phi(H) = H$.
- $[\phi] \in Out(G)$ acts trivially on H if there is $\phi \in [\phi]$ with $\phi|_H = id_H$.

Definition

Let \mathcal{G} and \mathcal{H} be collections of subgroups of G. The *relative outer* automorphism group of G with respect to \mathcal{G}, \mathcal{H} , denoted $\operatorname{Out}(G; \mathcal{G}, \mathcal{H}^t)$, is the subgroup of $\operatorname{Out}(G)$ consisting of maps that preserve every group in \mathcal{G} and act trivially on every group in \mathcal{H} .

 Out(A_Γ; G, H) is a relative outer automorphism group of a RAAG (ROAR) if A_Γ is a RAAG and G and H are collections of special subgroups.

Definition

Let G be a group, and H a subgroup of G.

- $[\phi] \in Out(G)$ preserves H if there is $\phi \in [\phi]$ with $\phi(H) = H$.
- $[\phi] \in Out(G)$ acts trivially on H if there is $\phi \in [\phi]$ with $\phi|_H = id_H$.

Definition

Let \mathcal{G} and \mathcal{H} be collections of subgroups of G. The *relative outer* automorphism group of G with respect to \mathcal{G}, \mathcal{H} , denoted $\operatorname{Out}(G; \mathcal{G}, \mathcal{H}^t)$, is the subgroup of $\operatorname{Out}(G)$ consisting of maps that preserve every group in \mathcal{G} and act trivially on every group in \mathcal{H} .

- Out(A_Γ; G, H) is a relative outer automorphism group of a RAAG (ROAR) if A_Γ is a RAAG and G and H are collections of special subgroups.
- OARs are ROARs, and many well-studied non-OARs are also ROARs.

If Out(A_Γ; G, H^t) is a ROAR and A_Δ ∈ G, then there is a restriction map R_Δ: Out(A_Γ; G, H^t) → Out(A_Δ).

Preliminaries to another theorem

- If Out(A_Γ; G, H^t) is a ROAR and A_Δ ∈ G, then there is a restriction map R_Δ: Out(A_Γ; G, H^t) → Out(A_Δ).
- For technical reasons, we usually consider Out⁰(A_Γ; G, H^t), which is Out⁰(A_Γ) ∩ Out(A_Γ; G, H^t).

Preliminaries to another theorem

- If Out(A_Γ; G, H^t) is a ROAR and A_Δ ∈ G, then there is a restriction map R_Δ: Out(A_Γ; G, H^t) → Out(A_Δ).
- For technical reasons, we usually consider Out⁰(A_Γ; G, H^t), which is Out⁰(A_Γ) ∩ Out(A_Γ; G, H^t).
- Given a special subgroup A_Δ, define G_Δ to be {A_{Λ∩Δ} | A_Λ ∈ G}, and define H_Δ similarly.

Preliminaries to another theorem

- If Out(A_Γ; G, H^t) is a ROAR and A_Δ ∈ G, then there is a restriction map R_Δ: Out(A_Γ; G, H^t) → Out(A_Δ).
- For technical reasons, we usually consider Out⁰(A_Γ; G, H^t), which is Out⁰(A_Γ) ∩ Out(A_Γ; G, H^t).
- Given a special subgroup A_Δ, define G_Δ to be {A_{Λ∩Δ} | A_Λ ∈ G}, and define H_Δ similarly.
- Relative sets G, H are saturated if they are as full as they can possibly be without changing Out⁰(A_Γ; G, H).

Main technical theorem

Theorem (D–W)

Let $\operatorname{Out}(A_{\Gamma}; \mathcal{G}, \mathcal{H}^t)$ be a ROAR, and suppose \mathcal{G} is saturated.

• Suppose $A_{\Delta} \in \mathcal{G}$. Then the restriction map R_{Δ} fits in an exact sequence

$$\begin{split} 1 &\to \operatorname{Out}^{0}(\mathcal{A}_{\Gamma}; \mathcal{G}, (\mathcal{H} \cup \{\mathcal{A}_{\Delta}\})^{t}) \\ &\to \operatorname{Out}^{0}(\mathcal{A}_{\Gamma}; \mathcal{G}, \mathcal{H}^{t}) \xrightarrow{\mathcal{R}_{\Delta}} \operatorname{Out}^{0}(\mathcal{A}_{\Delta}; \mathcal{G}_{\Delta}, \mathcal{H}_{\Delta}^{t}) \to 1. \end{split}$$

Main technical theorem

Theorem (D–W)

Let $\operatorname{Out}(A_{\Gamma}; \mathcal{G}, \mathcal{H}^t)$ be a ROAR, and suppose \mathcal{G} is saturated.

Suppose A_∆ ∈ G. Then the restriction map R_∆ fits in an exact sequence

$$\begin{split} 1 &\to \operatorname{Out}^{0}(\mathcal{A}_{\Gamma}; \mathcal{G}, (\mathcal{H} \cup \{\mathcal{A}_{\Delta}\})^{t}) \\ &\to \operatorname{Out}^{0}(\mathcal{A}_{\Gamma}; \mathcal{G}, \mathcal{H}^{t}) \xrightarrow{\mathcal{R}_{\Delta}} \operatorname{Out}^{0}(\mathcal{A}_{\Delta}; \mathcal{G}_{\Delta}, \mathcal{H}_{\Delta}^{t}) \to 1. \end{split}$$

② Suppose $A_{\Lambda} \leq Z(A_{\Gamma})$, and suppose $\Lambda \subset \bigcup \mathcal{H}$. Let $\Delta = \Gamma \setminus \Lambda$. Then there is a projection map fitting in an exact sequence

$$1 \to \mathbb{Z}^m \to \operatorname{Out}^0(A_{\Gamma}; \mathcal{G}, \mathcal{H}^t) \xrightarrow{P_{\Delta}} \operatorname{Out}^0(A_{\Delta}; \mathcal{G}_{\Delta}, \mathcal{H}^t_{\Delta}) \to 1.$$

Here the \mathbb{Z}^m is generated by twists with multipliers in Λ .

Matthew Day (UArk)

ROARs and Restriction

Remarks

Finding the saturation of G, H is tedious. However, we have a procedure for directly finding a smaller G', H' such that Out⁰(A_Δ; G', H'^t) is the image of R_Δ.

Remarks

- Finding the saturation of G, H is tedious. However, we have a procedure for directly finding a smaller G', H' such that Out⁰(A_Δ; G', H'^t) is the image of R_Δ.
- The hard part of the technical theorem is surjectivity of the restriction map.

Remarks

- Finding the saturation of G, H is tedious. However, we have a procedure for directly finding a smaller G', H' such that Out⁰(A_Δ; G', H'^t) is the image of R_Δ.
- The hard part of the technical theorem is surjectivity of the restriction map.
- This helps:

Theorem (D–W)

Let $\operatorname{Out}(A_{\Gamma}; \mathcal{G}, \mathcal{H}^t)$ be a ROAR. Then $\operatorname{Out}^0(A_{\Gamma}; \mathcal{G}, \mathcal{H}^t)$ is generated by the inversions, transvections, and extended partial conjugations that it contains.

• The images and kernels of projection and restriction maps are simpler than the domains.

- The images and kernels of projection and restriction maps are simpler than the domains.
- The kernel of the restriction map is simpler because fewer vertices from Γ are not fixed up to conjugacy.

- The images and kernels of projection and restriction maps are simpler than the domains.
- The kernel of the restriction map is simpler because fewer vertices from Γ are not fixed up to conjugacy.
- Base cases:

Theorem (D–W)

Suppose $\operatorname{Out}(A_{\Gamma}; \mathcal{G}, \mathcal{H})$ is a ROAR and $\operatorname{Out}^{0}(A_{\Gamma}; \mathcal{G}, \mathcal{H}^{t})$ has no nontrivial projections or restrictions. Then $\operatorname{Out}^{0}(A_{\Gamma}; \mathcal{G}, \mathcal{H}^{t})$ is

- The images and kernels of projection and restriction maps are simpler than the domains.
- The kernel of the restriction map is simpler because fewer vertices from Γ are not fixed up to conjugacy.
- Base cases:

Theorem (D–W)

Suppose $\operatorname{Out}(A_{\Gamma}; \mathcal{G}, \mathcal{H})$ is a ROAR and $\operatorname{Out}^{0}(A_{\Gamma}; \mathcal{G}, \mathcal{H}^{t})$ has no nontrivial projections or restrictions. Then $\operatorname{Out}^{0}(A_{\Gamma}; \mathcal{G}, \mathcal{H}^{t})$ is

• free abelian, or

- The images and kernels of projection and restriction maps are simpler than the domains.
- The kernel of the restriction map is simpler because fewer vertices from Γ are not fixed up to conjugacy.
- Base cases:

Theorem (D–W)

Suppose $\operatorname{Out}(A_{\Gamma}; \mathcal{G}, \mathcal{H})$ is a ROAR and $\operatorname{Out}^{0}(A_{\Gamma}; \mathcal{G}, \mathcal{H}^{t})$ has no nontrivial projections or restrictions. Then $\operatorname{Out}^{0}(A_{\Gamma}; \mathcal{G}, \mathcal{H}^{t})$ is

- free abelian, or
- $GL_n(\mathbb{Z})$ where n is vertex count of Γ , or

- The images and kernels of projection and restriction maps are simpler than the domains.
- The kernel of the restriction map is simpler because fewer vertices from Γ are not fixed up to conjugacy.
- Base cases:

Theorem (D–W)

Suppose $\operatorname{Out}(A_{\Gamma}; \mathcal{G}, \mathcal{H})$ is a ROAR and $\operatorname{Out}^{0}(A_{\Gamma}; \mathcal{G}, \mathcal{H}^{t})$ has no nontrivial projections or restrictions. Then $\operatorname{Out}^{0}(A_{\Gamma}; \mathcal{G}, \mathcal{H}^{t})$ is

- free abelian, or
- $GL_n(\mathbb{Z})$ where n is vertex count of Γ , or
- $FR(A_{\Gamma}, \mathcal{K})$ for some free decomposition \mathcal{K} .

(Switch to the other document.)

Sketch of VF theorem, generalities

• We use induction on the more general statement:

Theorem (DW)

Every ROAR is of type VF.

Sketch of VF theorem, generalities

• We use induction on the more general statement:

Theorem (DW)

Every ROAR is of type VF.

• The main tool is the Borel rebuilding construction [Geoghegan 2008]:

Theorem

If a group G acts cocompactly by rigid homeomorphisms on a contractible CW complex, such that all cell stabilizers are of type F, then G is of type F.

Sketch of VF theorem, generalities

• We use induction on the more general statement:

Theorem (DW)

Every ROAR is of type VF.

• The main tool is the Borel rebuilding construction [Geoghegan 2008]:

Theorem

If a group G acts cocompactly by rigid homeomorphisms on a contractible CW complex, such that all cell stabilizers are of type F, then G is of type F.

• In particular, this implies that type F is preserved under taking group extensions.

Sketch of VF theorem, generalities

• We use induction on the more general statement:

Theorem (DW)

Every ROAR is of type VF.

• The main tool is the Borel rebuilding construction [Geoghegan 2008]:

Theorem

If a group G acts cocompactly by rigid homeomorphisms on a contractible CW complex, such that all cell stabilizers are of type F, then G is of type F.

- In particular, this implies that type F is preserved under taking group extensions.
- We use the level-3 subgroups of $\operatorname{Out}^0(A_{\Gamma}; \mathcal{G}, \mathcal{H}^t)$ at each step.

• \mathbb{Z}^n is of type *F* because a cellulated *n*-torus is a finite $\mathcal{K}(\mathbb{Z}^n, 1)$.

Zⁿ is of type F because a cellulated n-torus is a finite K(Zⁿ, 1).
GL^[3](Z) is of type F by Borel−Serre (1973).

- \mathbb{Z}^n is of type F because a cellulated *n*-torus is a finite $K(\mathbb{Z}^n, 1)$.
- $GL^{[3]}(\mathbb{Z})$ is of type *F* by Borel–Serre (1973).
- FR^[3](A_Γ; K) acts cocompactly on the spine of the Guirardel–Levitt outer space for free products, and simplex stabilizers are RAAGs.

- \mathbb{Z}^n is of type F because a cellulated *n*-torus is a finite $K(\mathbb{Z}^n, 1)$.
- $GL^{[3]}(\mathbb{Z})$ is of type *F* by Borel–Serre (1973).
- FR^[3](A_Γ; K) acts cocompactly on the spine of the Guirardel–Levitt outer space for free products, and simplex stabilizers are RAAGs.

Theorem (Guirardel–Levitt 2007)

The outer space of a free product is contractible.

- \mathbb{Z}^n is of type F because a cellulated *n*-torus is a finite $K(\mathbb{Z}^n, 1)$.
- $GL^{[3]}(\mathbb{Z})$ is of type *F* by Borel–Serre (1973).
- FR^[3](A_Γ; K) acts cocompactly on the spine of the Guirardel–Levitt outer space for free products, and simplex stabilizers are RAAGs.

Theorem (Guirardel–Levitt 2007)

The outer space of a free product is contractible.

 RAAGs are of type F because Salvetti complexes are finite K(A_Γ, 1)-complexes.

Induction details: Invariant special subgroups

- A special subgroup A_{Δ} admits a restriction map iff
 - for all $v \in \Delta$ and $w \in \Gamma$, if $lk(v) \subset st(w)$, then $w \in \Delta$.
 - for all $w \in \Gamma$, if st(w) separates Δ , then $w \in \Delta$.

Induction details: Invariant special subgroups

- A special subgroup A_{Δ} admits a restriction map iff
 - for all $v \in \Delta$ and $w \in \Gamma$, if $lk(v) \subset st(w)$, then $w \in \Delta$.
 - for all $w \in \Gamma$, if st(w) separates Δ , then $w \in \Delta$.
- This quickly implies previously known examples, such as maximal equivalence classes and maximal stars.

• Suppose $Out(A_{\Gamma}; \mathcal{G}, \mathcal{H}^t)$ is a ROAR. Convention: $A_{\Gamma} \notin \mathcal{G}$.

- Suppose $Out(A_{\Gamma}; \mathcal{G}, \mathcal{H}^t)$ is a ROAR. Convention: $A_{\Gamma} \notin \mathcal{G}$.
- Let K ⊂ G. Two vertices u and v are K-adjacent if u is adjacent to b or there is A_Λ ∈ K with u, v ∈ Λ.

- Suppose $Out(A_{\Gamma}; \mathcal{G}, \mathcal{H}^t)$ is a ROAR. Convention: $A_{\Gamma} \notin \mathcal{G}$.
- Let K ⊂ G. Two vertices u and v are K-adjacent if u is adjacent to b or there is A_Λ ∈ K with u, v ∈ Λ.
- \mathcal{K} -paths, \mathcal{K} -connectedness, and the \mathcal{K} -neighborhood $N_{\mathcal{K}}$ of a set are defined using this.

- Suppose $Out(A_{\Gamma}; \mathcal{G}, \mathcal{H}^t)$ is a ROAR. Convention: $A_{\Gamma} \notin \mathcal{G}$.
- Let K ⊂ G. Two vertices u and v are K-adjacent if u is adjacent to b or there is A_Λ ∈ K with u, v ∈ Λ.
- \mathcal{K} -paths, \mathcal{K} -connectedness, and the \mathcal{K} -neighborhood $N_{\mathcal{K}}$ of a set are defined using this.
- A subgraph of Γ is *relatively connected* if it is \mathcal{G} -connected.

 Let A_Δ ∈ G and K ⊂ G. If Θ is a K-connected subset of Γ \ Δ, then the intersection of the K-neighborhood of Θ with Δ generates an invariant special subgroup. In symbols:

$$P_{\mathcal{K},\Theta} = \langle N_{\mathcal{K}}(\Theta) \cap \Delta \rangle.$$

 Let A_Δ ∈ G and K ⊂ G. If Θ is a K-connected subset of Γ \ Δ, then the intersection of the K-neighborhood of Θ with Δ generates an invariant special subgroup. In symbols:

$$P_{\mathcal{K},\Theta} = \langle N_{\mathcal{K}}(\Theta) \cap \Delta \rangle.$$

• Let \mathcal{H}^* be the union of \mathcal{H} with the one-vertex-complements:

 $\mathcal{H}^* = \mathcal{H} \cup \{ \langle \Delta \smallsetminus \{ \nu \} \rangle \mid A_\Delta \in \mathcal{H}, \nu \in \Delta \}.$

Assume that $\mathcal{H}^* \subset \mathcal{G}$.

 Let A_Δ ∈ G and K ⊂ G. If Θ is a K-connected subset of Γ \ Δ, then the intersection of the K-neighborhood of Θ with Δ generates an invariant special subgroup. In symbols:

$$P_{\mathcal{K},\Theta} = \langle N_{\mathcal{K}}(\Theta) \cap \Delta \rangle.$$

• Let \mathcal{H}^* be the union of \mathcal{H} with the one-vertex-complements:

$$\mathcal{H}^* = \mathcal{H} \cup \{ \langle \Delta \smallsetminus \{ \nu \} \rangle \mid A_\Delta \in \mathcal{H}, \nu \in \Delta \}.$$

Assume that $\mathcal{H}^* \subset \mathcal{G}$.

• For each $v \in \Gamma$, let $\mathcal{G}^v = \{A_\Delta \in \mathcal{G} \mid v \notin \mathcal{G}\}.$

 Let A_Δ ∈ G and K ⊂ G. If Θ is a K-connected subset of Γ \ Δ, then the intersection of the K-neighborhood of Θ with Δ generates an invariant special subgroup. In symbols:

$$P_{\mathcal{K},\Theta} = \langle N_{\mathcal{K}}(\Theta) \cap \Delta \rangle.$$

• Let \mathcal{H}^* be the union of \mathcal{H} with the one-vertex-complements:

$$\mathcal{H}^* = \mathcal{H} \cup \{ \langle \Delta \smallsetminus \{ \nu \} \rangle \mid A_\Delta \in \mathcal{H}, \nu \in \Delta \}.$$

Assume that $\mathcal{H}^* \subset \mathcal{G}$.

- For each $v \in \Gamma$, let $\mathcal{G}^{v} = \{A_{\Delta} \in \mathcal{G} \mid v \notin \mathcal{G}\}.$
- Let P_Δ contain all the groups P_{K,Θ}, where K is Ø or some G^v, and Θ is a K-connected subgraph of Γ \ Δ. Then

$$\mathit{R}_{\Delta} \colon \mathrm{Out}^{0}(\mathit{A}_{\Gamma}; \mathcal{G}, \mathcal{H}^{t}) \to \mathrm{Out}^{0}(\mathit{A}_{\Delta}; \mathcal{G}_{\Delta} \cup \mathit{P}_{\Delta}, \mathcal{H}^{t}_{\Delta})$$

is surjective, even if ${\mathcal G}$ is not saturated.

Matthew Day (UArk)

• The cases for $(\Gamma, \mathcal{G}, \mathcal{H})$ can be grouped as:

The cases for (Γ, G, H) can be grouped as:
Complete.

- The cases for $(\Gamma, \mathcal{G}, \mathcal{H})$ can be grouped as:
 - Complete.
 - I Graphs that are a cone on a subgraph but not complete.

- The cases for $(\Gamma, \mathcal{G}, \mathcal{H})$ can be grouped as:
 - Complete.
 - I Graphs that are a cone on a subgraph but not complete.
 - **③** Graphs that are a join but not a cone.

- The cases for $(\Gamma, \mathcal{G}, \mathcal{H})$ can be grouped as:
 - Complete.
 - I Graphs that are a cone on a subgraph but not complete.
 - **③** Graphs that are a join but not a cone.
 - Graphs that are connected but not a join.

- The cases for $(\Gamma, \mathcal{G}, \mathcal{H})$ can be grouped as:
 - Complete.
 - I Graphs that are a cone on a subgraph but not complete.
 - **③** Graphs that are a join but not a cone.
 - Graphs that are connected but not a join.
 - Graphs that are relatively connected but not connected.

- The cases for $(\Gamma, \mathcal{G}, \mathcal{H})$ can be grouped as:
 - Complete.
 - I Graphs that are a cone on a subgraph but not complete.
 - **③** Graphs that are a join but not a cone.
 - Graphs that are connected but not a join.
 - **o** Graphs that are relatively connected but not connected.
 - **o** Graphs that are relatively disconnected.

- The cases for $(\Gamma, \mathcal{G}, \mathcal{H})$ can be grouped as:
 - Complete.
 - I Graphs that are a cone on a subgraph but not complete.
 - **③** Graphs that are a join but not a cone.
 - Graphs that are connected but not a join.
 - Graphs that are relatively connected but not connected.
 - **6** Graphs that are relatively disconnected.
- The relatively connected case was a surprise; it can arise from breaking down absolute OARs.

- The cases for $(\Gamma, \mathcal{G}, \mathcal{H})$ can be grouped as:
 - Complete.
 - I Graphs that are a cone on a subgraph but not complete.
 - **③** Graphs that are a join but not a cone.
 - Graphs that are connected but not a join.
 - **o** Graphs that are relatively connected but not connected.
 - **6** Graphs that are relatively disconnected.
- The relatively connected case was a surprise; it can arise from breaking down absolute OARs.
- In each of the cases in the case analysis, we find subgraphs admitting restrictions or projections, or we are in a base case.

Thank you!