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What are we interested in?

Let Γ be a finite graph and let AΓ be the right-angled Artin group
(RAAG) determined by Γ. So AΓ has the following presentation:

The presentation has a generator for each vertex of Γ
The presentation has a relator uv = vu whenever u and v are adjacent
vertices in Γ.

We are interested in the class of outer automorphism groups of
RAAGs (OARs), i.e. {Out(AΓ)|Γ a finite graph}.
These include GLn(Z) and Out(Fn) and many other examples.

We are interested in the finiteness properties and structure of
Out(AΓ).
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Review of finiteness properties

Finiteness properties of groups include:

being finitely generated
being finitely presentable
and many homological finiteness properties.

A group G is of type F if it has a K (G , 1)-space that is a finite cell
complex (this is closely related to type FL).

The cohomological dimension of G is

cd(G ) = sup{n | ∃M,Hn(G ; M) 6= 0}.

cd(G ) <∞ if there is a finite-dimensional K (G , 1)-space.

G is of type F =⇒ cd(G ) <∞ and G is finitely presentable.
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Virtual finiteness properties

If G has a nontrivial torsion element, then cd(G ) =∞ (and therefore
G is not of type F).

G is of type VF if some finite-index subgroup of G is of type F.

The virtual cohomological dimension of G is vcd(G ) = cd(H), where
H is some torsion-free finite-index subgroup of G (vcd(G ) is not
defined if no such subgroup exists).

vcd(G ) is well defined by a theorem of Serre.
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History of finiteness properties of OARs, 1

Finite presentations of GLn(Z) and Out(Fn) are classical.

GLn(Z) has good homological finiteness properties:

Theorem (Borel–Serre 1973)

For every n, GLn(Z) is of type VF, and vcd(GLn(Z)) = n(n − 1)/2.

Finite K (G , 1) spaces for finite-index subgroups G of GLn(Z) are
related to the symmetric space GLn(R)/O(n).

The situation is similar for Out(Fn):

Theorem (Culler–Vogtmann 1986)

For every n, Out(Fn) is of type VF and vcd(Out(Fn)) = 2n − 3.

Culler and Vogtmann build a space with an action of Out(Fn), outer
space, in order to show these things.
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History of finiteness properties of OARs, 2

Theorems for general RAAGs:

Theorem (Laurence 1995)

For any Γ, Out(AΓ) is finitely generated by graph symmetries, inversions,
transvections (a.k.a. twists and folds), and partial conjugations.

Theorem (Day 2008)

For any Γ, Out(AΓ) is finitely presented.

Theorem (Charney–Vogtmann 2009)

For any Γ, vcd(Out(AΓ)) <∞.
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History of finiteness properties of OARs, 3

A little bit more is known in some special cases.

Theorem (Charney–Crisp–Vogtmann 2007)

If Γ is triangle-free, then Out(AΓ) is of type VF. There is an outer space in
this setting.

Theorem (Charney–Stambaugh–Vogtmann 2017)

There is an outer space for the untwisted subgroup U(AΓ) of Out(AΓ),
and U(AΓ) is of type VF.

U(AΓ) = Out(AΓ) iff there are no pairs u, v ∈ Γ with u adjacent to v
and lk(v) ⊂ st(u).
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Structural properties

In examples other than GLn(Z) and Out(Fn), often Out(AΓ) is kind
of “chunky”...

Out(AΓ) may have a structural decomposition into
many parts that “feel different”.

There haven’t been any general results along these lines, but there are
some results for families of subgroups, for example:

Theorem (Duncan–Remeslennikov 2017)

The subgroup of Aut(AΓ) generated by transvections and inversions has
the structure of an iterated semidirect product. The factors in this product
are copies of GLn(Z), free abelian groups, and a third kind of group that is
hard to describe. These factors are all finitely presentable.
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Main Theorem 1

Theorem (D–W 2017)

For every graph Γ, the group Out(AΓ) is of type VF.

We didn’t prove this by finding an outer space for Out(AΓ).

Instead, we proved this using restriction maps (more on this later).
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Preliminaries for Main Theorem 2

Suppose G is a group with a free product decomposition

G = G1 ∗ G2 ∗ . . . ∗ Gr ∗ Fm,

(not necessarily a Grushko decomposition; any Gi may be freely
decomposible, or infinite cyclic). Let G = {G1, . . . ,Gr}.

The Fouxe-Rabinovitch group FR(G ;G) is the subgroup of Out(G )
with [φ] ∈ FR(G ;G) if for each Gi , there is φi ∈ [φ] with φi |Gi

= idGi
.

Now let AΓ be a RAAG. A special subgroup H of AΓ is
H = 〈∆〉 = A∆, for some subgraph ∆ of Γ.

Out0(AΓ) is the subgroup of Out(AΓ) “without graph symmetries”.
Out0(AΓ) is normal, [Out(AΓ) : Out0(AΓ)] <∞, and
Out(AΓ)/Out0(AΓ) is a quotient of Aut(Γ).
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Main Theorem 2

Theorem (D–W 2017)

Let Γ be a graph. Then Out0(AΓ) has a subnormal series

1 = N0 < N1 < · · · < Nk−1 < Nk = Out0(AΓ),

such that for each i , 0 < i ≤ k, the quotient Ni/Ni−1 is one of

a free abelian group, or

GLm(Z) for some m ≥ 1, or

a Fouxe-Rabinovitch group FR(A∆,H) for some free product
decomposition H of some special subgroup A∆ of AΓ.

Notes: Often GL1(Z) shows up. If A∆ is edgeless and H = ∅, then
FR(A∆;H) is Out(Fm).
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Charney–Crisp–Vogtmann restriction and projection maps

The following theorem is the motivation for our technique.

Theorem (Charney–Crisp–Vogtmann 2007)

Suppose Γ is connected and not a cone on another graph. Then there are
proper subgraphs ∆1, . . . ,∆k , such that for each i , restriction to A∆i

induces a homomorphism

Ri : Out0(AΓ)→ Out(A∆i
),

and the product R =
∏

i Ri has a free abelian kernel:

0→ Zm → Out0(AΓ)
R−→

∏
i

Out(A∆i
).

This leads to an inductive scheme for proving things about Out(AΓ).

Projection maps are another part of this story.

Hurdle: the image of R is difficult to describe.
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Relative outer automorphism groups

Definition

Let G be a group, and H a subgroup of G .

[φ] ∈ Out(G ) preserves H if there is φ ∈ [φ] with φ(H) = H.

[φ] ∈ Out(G ) acts trivially on H if there is φ ∈ [φ] with φ|H = idH .

Definition

Let G and H be collections of subgroups of G . The relative outer
automorphism group of G with respect to G,H, denoted Out(G ;G,Ht), is
the subgroup of Out(G ) consisting of maps that preserve every group in G
and act trivially on every group in H.

Out(AΓ;G,H) is a relative outer automorphism group of a RAAG
(ROAR) if AΓ is a RAAG and G and H are collections of special
subgroups.

OARs are ROARs, and many well-studied non-OARs are also ROARs.
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Preliminaries to another theorem

If Out(AΓ;G,Ht) is a ROAR and A∆ ∈ G, then there is a restriction
map R∆ : Out(AΓ;G,Ht)→ Out(A∆).

For technical reasons, we usually consider Out0(AΓ;G,Ht), which is
Out0(AΓ) ∩Out(AΓ;G,Ht).

Given a special subgroup A∆, define G∆ to be {AΛ∩∆ | AΛ ∈ G}, and
define H∆ similarly.

Relative sets G,H are saturated if they are as full as they can possibly
be without changing Out0(AΓ;G,H).
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Main technical theorem

Theorem (D–W)

Let Out(AΓ;G,Ht) be a ROAR, and suppose G is saturated.

1 Suppose A∆ ∈ G. Then the restriction map R∆ fits in an exact
sequence

1→ Out0(AΓ;G, (H ∪ {A∆})t)

→ Out0(AΓ;G,Ht)
R∆−→ Out0(A∆;G∆,Ht

∆)→ 1.

2 Suppose AΛ ≤ Z (AΓ), and suppose Λ ⊂
⋃
H. Let ∆ = Γ r Λ. Then

there is a projection map fitting in an exact sequence

1→ Zm → Out0(AΓ;G,Ht)
P∆−→ Out0(A∆;G∆,Ht

∆)→ 1.

Here the Zm is generated by twists with multipliers in Λ.
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Remarks

Finding the saturation of G,H is tedious. However, we have a
procedure for directly finding a smaller G′,H′ such that
Out0(A∆;G′,H′t) is the image of R∆.

The hard part of the technical theorem is surjectivity of the restriction
map.

This helps:

Theorem (D–W)

Let Out(AΓ;G,Ht) be a ROAR. Then Out0(AΓ;G,Ht) is generated by the
inversions, transvections, and extended partial conjugations that it
contains.
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Induction

The images and kernels of projection and restriction maps are simpler
than the domains.

The kernel of the restriction map is simpler because fewer vertices
from Γ are not fixed up to conjugacy.

Base cases:

Theorem (D–W)

Suppose Out(AΓ;G,H) is a ROAR and Out0(AΓ;G,Ht) has no nontrivial
projections or restrictions. Then Out0(AΓ;G,Ht) is

free abelian, or

GLn(Z) where n is vertex count of Γ, or

FR(AΓ,K) for some free decomposition K.
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An example

(Switch to the other document.)
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Sketch of VF theorem, generalities

We use induction on the more general statement:

Theorem (DW)

Every ROAR is of type VF.

The main tool is the Borel rebuilding construction [Geoghegan 2008]:

Theorem

If a group G acts cocompactly by rigid homeomorphisms on a contractible
CW complex, such that all cell stabilizers are of type F, then G is of
type F.

In particular, this implies that type F is preserved under taking group
extensions.

We use the level-3 subgroups of Out0(AΓ;G,Ht) at each step.
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Sketch of VF theorem, base cases

Zn is of type F because a cellulated n-torus is a finite K (Zn, 1).

GL[3](Z) is of type F by Borel–Serre (1973).

FR[3](AΓ;K) acts cocompactly on the spine of the Guirardel–Levitt
outer space for free products, and simplex stabilizers are RAAGs.

Theorem (Guirardel–Levitt 2007)

The outer space of a free product is contractible.

RAAGs are of type F because Salvetti complexes are finite
K (AΓ, 1)-complexes.
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Induction details: Invariant special subgroups

A special subgroup A∆ admits a restriction map iff

for all v ∈ ∆ and w ∈ Γ, if lk(v) ⊂ st(w), then w ∈ ∆.
for all w ∈ Γ, if st(w) separates ∆, then w ∈ ∆.

This quickly implies previously known examples, such as maximal
equivalence classes and maximal stars.
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Induction details: relative connectedness

Suppose Out(AΓ;G,Ht) is a ROAR. Convention: AΓ /∈ G.

Let K ⊂ G. Two vertices u and v are K-adjacent if u is adjacent to b
or there is AΛ ∈ K with u, v ∈ Λ.

K-paths, K-connectedness, and the K-neighborhood NK of a set are
defined using this.

A subgraph of Γ is relatively connected if it is G-connected.
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A subgraph of Γ is relatively connected if it is G-connected.
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Induction details: the peripheral structure

Let A∆ ∈ G and K ⊂ G. If Θ is a K-connected subset of Γ r ∆, then
the intersection of the K-neighborhood of Θ with ∆ generates an
invariant special subgroup. In symbols:

PK,Θ = 〈NK(Θ) ∩∆〉.

Let H∗ be the union of H with the one-vertex-complements:

H∗ = H ∪ {〈∆ r {v}〉 | A∆ ∈ H, v ∈ ∆}.

Assume that H∗ ⊂ G.

For each v ∈ Γ, let Gv = {A∆ ∈ G | v /∈ G}.
Let P∆ contain all the groups PK,Θ, where K is ∅ or some Gv , and Θ
is a K-connected subgraph of Γ r ∆. Then

R∆ : Out0(AΓ;G,Ht)→ Out0(A∆;G∆ ∪ P∆,Ht
∆)

is surjective, even if G is not saturated.
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Induction details: case analysis

The cases for (Γ,G,H) can be grouped as:

1 Complete.
2 Graphs that are a cone on a subgraph but not complete.
3 Graphs that are a join but not a cone.
4 Graphs that are connected but not a join.
5 Graphs that are relatively connected but not connected.
6 Graphs that are relatively disconnected.

The relatively connected case was a surprise; it can arise from
breaking down absolute OARs.

In each of the cases in the case analysis, we find subgraphs admitting
restrictions or projections, or we are in a base case.
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Thank you!
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