Test 3

- Write your full name and email on the first sheet
- Time: 50 minutes
- Books, notes and calculators are not allowed

Problem 1 Determine $f(k, d)$, the smallest f such that for every set X of f distinct lattice points in \mathbb{R}^{d} (that is, points with integer coordinates) there are two points $\mathbf{x}, \mathbf{y} \in X$ such that the straight line segment $\{t \mathbf{x}+(1-t) \mathbf{y}: t \in[0,1]\}$ connecting \mathbf{x} to \mathbf{y} contains at least k lattice points in its interior.

Problem 2 Evaluate

$$
\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{m^{2} n}{3^{m}\left(n 3^{m}+m 3^{n}\right)}
$$

