Linear algebra

1. Express the determinant of the following matrix as a product of linear polynomials.

$$
\left(\begin{array}{cccc}
1 & a & a^{2} & a^{3} \\
1 & b & b^{2} & b^{3} \\
1 & c & c^{2} & c^{3} \\
1 & d & d^{2} & d^{3}
\end{array}\right)
$$

2. Let A and B be two $n \times n$ matrices. Show that if $A+B=A B$, then $A B=B A$.
3. Do they exist two $n \times n$ matrices A and B such that $A B-B A$ is the unit matrix.
4. Let A and B be two $n \times n$ matrices such that the rank of $A B-B A$ is one. Show that $(A B-B A)^{2}=0$.
5. Let A be an $n \times n$ matrix such that $\left|a_{i i}\right|>\sum_{j \neq i}\left|a_{i j}\right|$ for every $i=1, \ldots, n$. Show that A is regular.
6. Let X_{1}, \ldots, X_{k} be subsets of $\{1, \ldots, n\}$ such that the size of each set X_{i} is odd and the size of the interesection of any two sets is even. Show that $k \leq n$.
7. (HW) Express the determinant of the following matrix as a product of linear polynomials.

$$
\left(\begin{array}{cccc}
1 & a & a^{2} & a^{4} \\
1 & b & b^{2} & b^{4} \\
1 & c & c^{2} & c^{4} \\
1 & d & d^{2} & d^{4}
\end{array}\right)
$$

8. (HW) Do they exist two distinct $n \times n$ matrices A and B such that $A^{3}=B^{3}$, $A^{2} B=B^{2} A$ and $A^{2}+B^{2}$ is invertible?
