Linear algebra

1. Express the determinant of the following matrix as a product of linear polynomials.

- 2. Let A and B be two $n \times n$ matrices. Show that if A + B = AB, then AB = BA.
- 3. Do they exist two $n \times n$ matrices A and B such that AB BA is the unit matrix.
- 4. Let A and B be two $n \times n$ matrices such that the rank of AB BA is one. Show that $(AB - BA)^2 = 0$.
- 5. Let A be an $n \times n$ matrix such that $|a_{ii}| > \sum_{j \neq i} |a_{ij}|$ for every $i = 1, \ldots, n$. Show that A is regular.
- 6. Let X_1, \ldots, X_k be subsets of $\{1, \ldots, n\}$ such that the size of each set X_i is odd and the size of the interesection of any two sets is even. Show that $k \leq n$.
- 7. (HW) Express the determinant of the following matrix as a product of linear polynomials.

8. (HW) Do they exist two distinct $n \times n$ matrices A and B such that $A^3 = B^3$, $A^2B = B^2A$ and $A^2 + B^2$ is invertible?