Analysis II

- 1. Let $f : \mathbb{R} \to \mathbb{R}$ be a real function. Prove or disprove each of the following statements.
 - a) If f is continuous and $\operatorname{range}(f) = \mathbb{R}$, then f is monotonic.
 - b) If f is monotonic and range $(f) = \mathbb{R}$, then f is continuous.
 - c) If f is monotonic and f is continuous, then range $(f) = \mathbb{R}$.
- 2. Let C be a nonempty closed bounded subset of the real line and $f : C \to C$ be a nondecreasing continuous function. Show that there exists a point $p \in C$ such that f(p) = p.
- 3. (a) Show that for each function $f : \mathbb{Q} \times \mathbb{Q} \to \mathbb{R}$ there exists a function $g : \mathbb{Q} \to \mathbb{R}$ such that $f(x,y) \leq g(x) + g(y)$ for all $x, y \in \mathbb{Q}$. (b) Find a function $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ for which there is no function $g : \mathbb{R} \to \mathbb{R}$ such that $f(x,y) \leq g(x) + g(y)$ for all $x, y \in \mathbb{R}$.
- 4. (a) A sequence x_1, x_2, \ldots of real numbers satisfies $x_{n+1} = x_n \cos x_n$ for all $n \ge 1$. Does it follow that this sequence converges for all initial values x_1 ? (b) A sequence y_1, y_2, \ldots of real numbers satisfies $y_{n+1} = y_n \sin y_n$ for all $n \ge 1$. Does it follow that this sequence converges for all initial values y_1 ?
- 5. Suppose $f : \mathbb{R} \to \mathbb{R}$ is a two times differentiable function satisfying f(0) = 1, f'(0) = 0, and for all $x \in [0, \infty)$,

$$f''(x) - 5f'(x) + 6f(x) \ge 0.$$

Prove that for all $x \in [0, \infty)$,

$$f(x) \ge 3e^{2x} - 2e^{3x}.$$

- 6. (HW, due 31 Jan) Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that for any real numbers a < b, the image f([a; b]) is a closed interval of length b a.
- 7. (HW, due 31 Jan) Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function. A point x is called a shadow point if there exists a point $y \in \mathbb{R}$ with y > x such that f(y) > f(x). Let a < b be real numbers and suppose that all the points of the open interval I = (a, b) are shadow points, but a and b are not shadow points. Prove that
 - a) $f(x) \le f(b)$ for all a < x < b; b) f(a) = f(b).
- 8. (HW, due 31 Jan) Is it true that there can be at most countably many pairwise disjoint letter T's in the plane?