Analysis II

1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a real function. Prove or disprove each of the following statements.
a) If f is continuous and range $(f)=\mathbb{R}$, then f is monotonic.
b) If f is monotonic and range $(f)=\mathbb{R}$, then f is continuous.
c) If f is monotonic and f is continuous, then range $(f)=\mathbb{R}$.
2. Let C be a nonempty closed bounded subset of the real line and $f: C \rightarrow C$ be a nondecreasing continuous function. Show that there exists a point $p \in C$ such that $f(p)=p$.
3. (a) Show that for each function $f: \mathbb{Q} \times \mathbb{Q} \rightarrow \mathbb{R}$ there exists a function $g: \mathbb{Q} \rightarrow \mathbb{R}$ such that $f(x, y) \leq g(x)+g(y)$ for all $x, y \in \mathbb{Q}$. (b) Find a function $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ for which there is no function $g: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x, y) \leq g(x)+g(y)$ for all $x, y \in \mathbb{R}$.
4. (a) A sequence x_{1}, x_{2}, \ldots of real numbers satisfies $x_{n+1}=x_{n} \cos x_{n}$ for all $n \geq 1$. Does it follow that this sequence converges for all initial values x_{1} ? (b) A sequence y_{1}, y_{2}, \ldots of real numbers satisfies $y_{n+1}=y_{n} \sin y_{n}$ for all $n \geq 1$. Does it follow that this sequence converges for all initial values y_{1} ?
5. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a two times differentiable function satisfying $f(0)=1, f^{\prime}(0)=0$, and for all $x \in[0, \infty)$,

$$
f^{\prime \prime}(x)-5 f^{\prime}(x)+6 f(x) \geq 0 .
$$

Prove that for all $x \in[0, \infty)$,

$$
f(x) \geq 3 e^{2 x}-2 e^{3 x}
$$

6. (HW, due 31 Jan) Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for any real numbers $a<b$, the image $f([a ; b])$ is a closed interval of length $b-a$.
7. (HW, due 31 Jan) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. A point x is called a shadow point if there exists a point $y \in \mathbb{R}$ with $y>x$ such that $f(y)>f(x)$. Let $a<b$ be real numbers and suppose that all the points of the open interval $I=(a, b)$ are shadow points, but a and b are not shadow points. Prove that
a) $f(x) \leq f(b)$ for all $a<x<b$;
b) $f(a)=f(b)$.
8. (HW, due 31 Jan) Is it true that there can be at most countably many pairwise disjoint letter T's in the plane?
