IMC Preparation 17 January 2017

Péter Pál Pach p.pach@warwick.ac.uk

Analysis I

1. Does there exist a bijective map $\pi : \mathbb{N} \to \mathbb{N}$ such that $\sum_{n=1}^{\infty} \frac{\pi(n)}{n^2} < \infty$?

2. Let 0 < a < b. Prove that

$$\int_{a}^{b} (x^{2} + 1)e^{-x^{2}} dx \ge e^{-a^{2}} - e^{-b^{2}}.$$

3. a) Is it true that for every bijection $f : \mathbb{N} \to \mathbb{N}$ the series $\sum_{n=1}^{\infty} \frac{1}{nf(n)}$ is convergent? b) Is it true that for every bijection $f : \mathbb{N} \to \mathbb{N}$ the series $\sum_{n=1}^{\infty} \frac{1}{n+f(n)}$ is divergent?

4. Let $f: \mathbb{R} \to [0,1)$ be a continuously differentiable function. Prove that

$$\left| \int_{0}^{1} f^{3}(x) dx - f^{2}(0) \int_{0}^{1} f(x) dx \right| \leq \max_{0 \leq x \leq 1} |f'(x)| \left(\int_{0}^{1} f(x) dx \right)^{2}.$$

- 5. Let $g: [0,1] \to \mathbb{R}$ be a continuous function and let $f_n: [0,1] \to \mathbb{R}$ be a sequence of functions defined by $f_0(x) = g(x)$ and $f_{n+1}(x) = \frac{1}{x} \int_0^x f_n(t) dt$ $(x \in (0,1], n = 0, 1, 2, ...)$. Determine $\lim_{n \to \infty} f_n(x)$ for every $x \in (0,1]$.
- 6. Let $f: [0;1] \to [0;1]$ be a differentiable function such that $|f'(x)| \neq 1$ for all $x \in [0;1]$. Prove that there exist unique points $\alpha, \beta \in [0,1]$ such that $f(\alpha) = \alpha$ and $f(\beta) = 1 \beta$.
- 7. Suppose that f and g are real-valued functions on the real line and $f(r) \leq g(r)$ for every rational r. Does this imply that $f(x) \leq g(x)$ for every real x if
 - a) f and g are non-decreasing?
 - b) f and g are continuous?
- 8. Prove or disprove the following statements:

(a) There exists a monotone function $f : [0,1] \to [0,1]$ such that for each $y \in [0,1]$ the equation f(x) = y has uncountably many solutions x.

(b) There exists a continuously differentiable function $f : [0,1] \to [0,1]$ such that for each $y \in [0,1]$ the equation f(x) = y has uncountably many solutions x.

9. (HW, due 24 Jan) Let a, b, c be positive reals. Prove that

$$\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} \ge \frac{3}{2}.$$

10. (HW, due 24 Jan)

(a) Let a_1, a_2, \ldots be a sequence of real numbers such that $a_1 = 1$ and $a_{n+1} > \frac{3}{2}a_n$ for all n. Prove that the sequence $\frac{a_n}{\left(\frac{3}{2}\right)^{n-1}}$ has a finite limit or tends to infinity.

(b) Prove that for all $\alpha > 1$ there exists a sequence a_1, a_2, \ldots with the same properties such that $\lim \frac{a_n}{\left(\frac{3}{2}\right)^{n-1}} = \alpha$.