Polynomials

Problem 1 Find all polynomials $P(x)$ such that

$$
P(x)=\frac{P(x-1)+P(x+1)}{2}, \quad \text { for all } x \in \mathbb{R}
$$

Problem 2 Determine all polynomials $P(x)$ such that $P\left(x^{2}+1\right)=(P(x))^{2}+1$ and $P(0)=0$.

Problem 3 Find all polynomials P satisfying $x P(x-1)=(x-2) P(x)$.

Problem 4 Find all pairs of integers $m, n \in \mathbb{N}$ such that the polynomial

$$
P(x)=1+x+x^{2}+\ldots+x^{m}
$$

divides the polynomial

$$
Q(x)=1+x^{n}+x^{2 n} \ldots+x^{m n}
$$

Problem 5 Show that if a polynomial $P(x)$ with real coefficients satisfies $P(x) \geq 0$ for all $x \in \mathbb{R}$, then it can be represented as

$$
P(x)=Q_{1}^{2}(x)+\ldots+Q_{n}^{2}(x)
$$

for some polynomials Q_{1}, \ldots, Q_{n} with real coefficients.

Problem 6 Let polynomial $P(x)$ with real coefficients satisfy inequality $P(x)>0$ for all $x>0$. Show that there are polynomials $Q(x)$ and $R(x)$ with non-negative coefficients satisfying

$$
P(x)=Q(x) / R(x)
$$

Problem 7 Let

$$
\begin{aligned}
f(z) & =a z^{4}+b z^{3}+c z^{2}+d z+e \\
& =a\left(z-r_{1}\right)\left(z-r_{2}\right)\left(z-r_{3}\right)\left(z-r_{4}\right)
\end{aligned}
$$

where a, b, c, d are integers, $a \neq 0$. Show that if $r_{1}+r_{2}$ is a rational number and $r_{1}+r_{2} \neq r_{3}+r_{4}$, then $r_{1} r_{2}$ is a rational number.

Problem 8 Can polynomials

$$
x^{5}-x-1 \quad \text { and } \quad x^{2}+a x+b
$$

with $a, b \in \mathbb{Q}$, have a common complex root?

