Polynomials

Problem 1 Find all polynomials P(x) such that

$$P(x) = \frac{P(x-1) + P(x+1)}{2}$$
, for all $x \in \mathbb{R}$.

Problem 2 Determine all polynomials P(x) such that $P(x^2 + 1) = (P(x))^2 + 1$ and P(0) = 0.

Problem 3 Find all polynomials P satisfying xP(x-1)=(x-2)P(x).

Problem 4 Find all pairs of integers $m, n \in \mathbb{N}$ such that the polynomial

$$P(x) = 1 + x + x^2 + \dots + x^m$$

divides the polynomial

$$Q(x) = 1 + x^n + x^{2n} \dots + x^{mn}.$$

Problem 5 Show that if a polynomial P(x) with real coefficients satisfies $P(x) \geq 0$ for all $x \in \mathbb{R}$, then it can be represented as

$$P(x) = Q_1^2(x) + \dots + Q_n^2(x),$$

for some polynomials Q_1, \dots, Q_n with real coefficients.

Problem 6 Let polynomial P(x) with real coefficients satisfy inequality P(x) > 0 for all x > 0. Show that there are polynomials Q(x) and R(x) with non-negative coefficients satisfying

$$P(x) = Q(x)/R(x).$$

Problem 7 Let

$$f(z) = az^4 + bz^3 + cz^2 + dz + e$$

= $a(z - r_1)(z - r_2)(z - r_3)(z - r_4),$

where a, b, c, d are integers, $a \neq 0$. Show that if $r_1 + r_2$ is a rational number and $r_1 + r_2 \neq r_3 + r_4$, then r_1r_2 is a rational number.

Problem 8 Can polynomials

$$x^5 - x - 1$$
 and $x^2 + ax + b$.

with $a, b \in \mathbb{Q}$, have a common complex root?