## Polynomials

Problem 1 Let $x_{1}, x_{2}, x_{3}$ be the roots of $x^{3}+a x^{2}+b x+c$. Determine

$$
\frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}} .
$$

Problem 2 Let $P(x)=x^{3}+a x^{2}+b x+c$ have roots $x_{1}, x_{2}, x_{3}$. Find the polynomial $Q(x)=$ $x^{3}+\alpha x^{2}+\beta x+\gamma$ of degree 3 that has roots $x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{3}$.

Problem 3 Find all polynomials $P(x)$ such that

$$
P(x)=\frac{P(x-1)+P(x+1)}{2}, \quad \text { for all } x \in \mathbb{R} .
$$

Problem 4 Determine all polynomials $P(x)$ such that $P\left(x^{2}+1\right)=(P(x))^{2}+1$ and $P(0)=0$.
Problem 5 Find all polynomials $P$ satisfying $x P(x-1)=(x-2) P(x)$.
Problem 6 Show that if a polynomial $P(x)$ with real coefficients satisfies $P(x) \geq 0$ for all $x \in \mathbb{R}$, then it can be represented as

$$
P(x)=Q_{1}^{2}(x)+\ldots+Q_{n}^{2}(x),
$$

for some polynomials $Q_{1}, \ldots, Q_{n}$ with real coefficients.
Problem 7 Let polynomial $P(x)$ with real coefficients satisfy inequality $P(x)>0$ for all $x>0$. Show that there are polynomials $Q(x)$ and $R(x)$ with non-negative coefficients satisfying

$$
P(x)=Q(x) / R(x) .
$$

Problem 8 Represent

$$
S\left(x_{1}, \ldots, x_{n}\right)=\sum_{\substack{1 \leq i, j \leq n \\ i \neq j}} x_{i}^{3} x_{j}
$$

as a polynomial in the elementary symmetric polynomials.
Problem 9 Can polynomials

$$
x^{5}-x-1 \quad \text { and } \quad x^{2}+a x+b,
$$

with $a, b \in \mathbb{Q}$, have a common complex root?
Problem 10 Find all pairs of integers $m, n \in \mathbb{N}$ such that the polynomial

$$
P(x)=1+x+x^{2}+\ldots+x^{m}
$$

divides the polynomial

$$
Q(x)=1+x^{n}+x^{2 n} \ldots+x^{m n} .
$$

