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INVARIANT TENSORS FOR BINARY FORMS

BRUCE W. WESTBURY

ABSTRACT. These are notes for a talk.

1. BINARY FORMS

1.1. Classical. For n > 2 we have an algebraic group SL(n) and a Lie algebra sl(n).
The group SL(n) is the group of n x n matrices whose determinant is 1 and the Lie
algeba sl(n) is the vector space of n x n matrices whose trace is 0. For n = 2 the
Lie algebra has dimension 3 and a basis is given by

s=(G0) () a-( 5

The Lie brackets are given by
[E,Fl=H [E,H)=-FE [F,H]=F

These are the infintesimal generators of the three one parameter subgroups of
SL(2)
(1 =z (10 _ [exp(z) 0
exp(zF) = (0 1) exp(zF) = (z 1) exp(zH) = ( 0 exp(—2)

The universal enveloping algebra, U, is a cocommutative Hopf algebra. The
algebra U is generated by elements F, F', H and defining relations are

EF-FE=H EH-HE=-FE FH-HF =F

The coproduct is an algebra homomorphism A: U — U ® U and so is determined
by the map on generators. This map is

A(E)=E®1+1QE
A(F)=F®1+1QF
AH) =H®1+1QH

There is a representation of SL(2) on the polynomial ring C[z,y]. The associated
action of s(2) is given by the following homomorphism U — W where W is a Weyl

algebra
Ew— 2 F— mg H— i —z—
Yor Oy y@y oz
For each d > 0 let V(d) be the subspace of C[z, y] of homogeneous polynomials
of degree d. Then the decomposition of vector spaces Clz,y] = @ o V(d) is also a
decomposition of representations. -
Furthermore, in characteristic zero, each representation V'(d) is irreducible and
every irreducible representation is isomorphic to V(d) for a unique d > 0.
These representations can be given explicitly. For r,s > 0 put v, s = (rts)a:rys.
Then we have

E'Ur,s = (5 + 1)Ur—1,s+1 F'Ur,s = (T =+ 1)'Ur+1,.<s—1 Hvr,s = (T - S)Ur,s

Date: February 2014.
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Note that {v.s|r + s =d} is a basis of V(d) for each d > 0.

1.2. Quantum. The quantised enveloping algebra or Drinfled-Jimbo quantum
group, Uy, is a Hopf algebra over Q(g). The algebra U is generated by elements E,
F, K, K~! and defining relations are

KK'=1=K"'K

KEK™! =¢’E
KFK™'=¢7%F
_ -1
EF — FFE = %
q—q

The counit e: Uy — Q(g) is determined by
Em0 Fw—0 Kfel

The coproduct is an algebra homomorphism A : U, — U,®U, and so is determined
by the map on generators. This map is

AE)=E®L1+KQFE
AF)=F®K'+1®F
AK)=KQ®K
The antipode S: Uy — UgP is determined by
Ew -KE F~-FK K KT
The coproduct is not unique. For example an alternative is
A(E)=EQ1+K'®F
A(F)=F®QK+1Q®F
AK)=KQ®K
The antipode is determined by the coproduct and for this alternative is
E— -KE Fw-FK' K* o K¥

One sequence of representations is given by

Ev, s = [5 -+ l]Ur—l,s+1 er,s = [7' I 1]'U1-+1,s—1 K'Ur,s = qr—s'vr,s

For each d > 0 let V,(d) be the vector space with basis {vys|r + s = d}. These are
irreducible representations.
Another sequence of representations is given by

r+

Evr,s = [S + 1]'Ur——l,s+1 er,s = [T + 1]”r+1,s—1 KUT,S =q svr,s

For each d > 0 let V_(d) be the vector space with basis {vys|r + s = d}. These are
irreducible representations.

Then every finite dimensional irreducible representation is isomorphic to precisely
one of these.

2. TEMPERLEY-LIEB

Let V = V. (1). Define the category of invariant tensors to have objects N and
morphisms Hom(n, m) = Homy, (®"V,®™V). This category is isomorphic to the
Temperley-Lieb category.

The Temperley-Lieb category is generated as a monoidal category by

Defining relations are
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The r-string Temperley-Lieb algebra is generated by {u;|1 < 7 < r — 1} and
defining relations are
uf = (g+q Hus
U1 Ui = Uj
wiu; = uju; for |i —j| > 1
This is the endomorphism algebra of r in the Temperley-Lieb category.
Then there is a homomorphism from the r-string braid group to the r-string
Temperley-Lieb algebra. This is given on the generators by
O'z;tl — qil — U
This also satisfies the tangle relations
uiuiilaiﬂ = uio'?::tll crl?tluiilui = U;Fillui
There is also a solution to the Yang-Baxter equation given by
uo; —u "ot uqg—u"1g? uw—u!
Ri(u) = T - = - T ) W
q—q a—q a—q
This is normalised to satisfy R;(1) = 1.
This satisfies

Ri(u)Riy1(wv) R;(v) = Rit1(v)Ri(wv) Rig1(u)
This also satisfies
w1 Ri(v) = wiRiz1 (—u™')  Ri(uw)uiriui = Rixr(—u™Hu;

These are the single bond transfer matrices in the six vertex model and in the
Potts model.



