Skip to main content

MA4E0 Content

Content: The concept of continuous symmetry suggested by Sophus Lie had an enormous influence on many branches of mathematics and physics in the twentieth century. Created first as a tool in a small number of areas (e.g. PDEs) it developed into a separate theory which influences many areas of modern mathematics such as geometry, algebra, analysis, mechanics and the theory of elementary particles, to name a few.

In this module we shall introduce the classical examples of Lie groups and basic properties of the associated Lie algebra and exponential map.


The lectures will not follow any particular book and there are many in the Library to choose from. See section QA387. Some examples:

C. Chevalley, Theory of Lie Groups, Vol I, Princeton.

J.J. Duistermaat, J.A.C. Kölk, Lie Groups, Springer, 2000.

F.W. Warner, Foundations of Differentiable Manifolds and Lie Groups, (Graduate Texts in Mathematics), Springer, 1983.