
Prof. David Quigley
Director, Centre and RTP for Scientific Computing

Scientific Computing RTP
Part 2 : Batch processing and HPC

warwick.ac.uk/scrtp

Shared hardware
Funded centrally by the university, not individual groups/departments

Subject to resource restrictions
–Maximum runtime (currently 48 hours)

–Maximum number of CPUs, RAM etc per user

Restrictions are in place to prevent monopolization by single user

Good codes support checkpoint & restart
– e.g. dump parameters at final iteration and restart from these

– e.g. store state of simulation and read on restart

Cluster of Workstations (CoW)

warwick.ac.uk/scrtp/desktop/cow/

The Cluster of Workstations (CoW)
System for batch processing of calculations

Mostly suitable for serial, low I/O computations
–Generally available taskfarm queue (shared)

–Some research groups have their own servers/nodes (not shared)

#!/bin/bash
#SBATCH --ntasks=1
#SBATCH --mem=512
#SBATCH --time=48:00:00

module load GCC/7.3.0-2.30 OpenMPI/3.1.1 Python/3.6.6

python my_cool_thing.py

Submit job script to the CoW, it will run on the next
available node in the queue

High Performance Computing

warwick.ac.uk/scrtp/hpc/

Orac (2017)
Compute nodes: Lenovo NeXtScale nx360 M5 servers with 2 x Intel Xeon E5-
2680 v4 (Broadwell) 2.4 GHz 14-core processors; 28 cores per node; 84 nodes;
2352 cores; 128 GB 2400 MHz DDR4 memory per node

Interconnect: Intel Omni-Path X16, 100 Gbit/s with 1 μs latency

• Phi node testbed: Intel Xeon Phi 7250F
(Knights Landing) 1.4 GHz 68-core host
processors; 4 nodes; 272 cores; 96 GB
2400 MHz DDR4 memory per node

• OpenPOWER node testbed: 2 x IBM
POWER8 3.259 GHz 8-core processors;
16 cores per node; 1 node; 256 GB
DDR4 memory; 4 x NVIDIA P100
GPGPUs (SXM2 NVLink-enabled)

Tinis (2015)
Compute nodes: Lenovo NeXtScale nx360 M5 servers with 2 x Intel Xeon E5-
2630 v3 2.4 GHz (Haswell) 8-core processors; 16 cores per node; 203 nodes;
3488 cores; 64 GB DDR4 memory per node / 4 GB per core

Interconnect: QLogic TrueScale InfiniBand, 40GB/s with 1 μs latency

• GPU nodes: 8 x NVIDIA Tesla K80 GPU
cards; 2 GPU cards per node; 4 GPUs
per node; 4 nodes; 64 GB DDR4
memory per node

• Fat nodes: 128 x Intel Xeon E7-4809 v3
2.0 GHz Haswell cores; 32 cores per
node; 4 nodes; 1 TB DDR3 memory per
node; 1 x NVIDIA GRID K2 GPU per
node

Parallel code (Python)
Tinis and Orac are primary for parallel computing

from mpi4py import MPI
import numpy as np

Number of points to integrate over
n = 1400

comm = MPI.COMM_WORLD # Initialise an MPI communicator
my_rank = comm.Get_rank() # Get the rank of the current process
p = comm.Get_size() # Get the size of the current communicator

i1 = int(n/p) * my_rank # Current rank starts at point number i1
i2 = int(n/p) * (my_rank+1). # ” “ “ “ “ “ i2

tot = 0.0 # Every rank computes 4/(1+x^2) at points
for i in range(i1,i2): # in the segment of [0,1] it has been assigned

x = (i+0.5)/n
tot += 4.0/(1.0+x**2)

Parallel code (Python)
Parallel code requires communications

Part of the calculation cannot be done in parallel

if (my_rank != 0): # Everyone but rank 0 sends to rank 0

comm.send(tot, dest=0, tag=999)

else: # Rank 0 has to receive p-1 messages
for partner in range(1,p):

Add what rank 0 received into the total
tot += comm.recv(source=partner, tag=999)

tot = tot/n # This is only done by rank 0 - serial
print("Final result = %s "%tot) # and prints result

Amdahl’s Law
Consider a code with a serial fraction of F
Limits parallel speedup

PX425 – High Performance Computing

Covers code optimisation and parallel programming in C

15 lectures + 5 two-hour workshops starting this week

OpenMP – multithreaded parallelism for multicore machines

MPI – message passing parallelism for clusters

Contact Dr Nick Hine (N.D.M.Hine@Warwick.ac.uk) if wanting to
audit or take for credit (7.5 CATS)

Serial jobs on the HPC clusters
Individual serial runs should be run on a dedicated machine or
submitted to the CoW
Workflows involving hundreds or even thousands of serial runs
can and should be submitted to the HPC clusters as a single job

#!/bin/bash
#SBATCH --nodes=2
#SBATCH --ntasks-per-node=28
#SBATCH --time=08:00:00
#SBATCH --mem-per-cpu=4571

module load parallel intel/2017.4.196-GCC-6.4.0-2.28 impi/2017.3.196 Python/3.6.6

MY_PARALLEL_OPTS="-N 1 --delay .2 -j $SLURM_NTASKS --joblog parallel-${SLURM_JOBID}.log"
MY_SRUN_OPTS="-N 1 -n 1 --exclusive"
MY_EXEC="python my_code.py {1}"

parallel $MY_PARALLEL_OPTS srun $MY_SRUN_OPTS $MY_EXEC ::: {0..99}

Research Software Engineering
warwick.ac.uk/rse/
More detailed talk from Chris Brady/Heather Ratclifffe

warwick.ac.uk/scrtp

Take home message

