
Optimisation of Car Electronics
J. Binysh*, T. Francis* and G. Politis*

* University of Warwick, Complexity Department

Abstract—Car electronics networks consist of Electronic
Control Units (ECUs), which communicate with each
other via an electronic network. Jaguar Landrover (JLR)
is interested in techniques which can suggest intelligent
architectures for this network, a problem they refer to
as the N2 Problem. In this report, we propose modelling
this electronic network as a weighted, directed network
(graph), with edge weights representing a measure of
similarity between ECUs. We then discuss the application
of community detection algorithms to this network as a
method of solving the N2 problem, and compare several
recent algorithms. Finally, we construct a connectivity
network from a dataset provided by JLR, and apply these
algorithms to it - we detect several community structures,
and make suggestions for how these results might influence
future network designs.

I. INTRODUCTION

Car electronics networks consist of Electronic Control
Units (ECUs), each responsible for its own set of low
level functions. These ECUs are connected together in
a network architecture, and communicate through it.
Typically, a network will be broken into several sub-
networks, with communication between them occurring
via a Gateway (Fig. 1). Implementing high level func-
tionality in a car will require ECUs to co-ordinate the
use of their functions through this network.

Fig. 1. An example of a car electonics network architecture. Two
data buses, with several ECU’s connected to each bus, and a gateway
ECU connecting the two buses.

Jaguar Landrover (JLR) are interested in techniques
which will suggest ‘optimal’ network architectures, a
problem they refer to as the N2 problem [1]. Currently,
architectures are designed using ‘best practice’ [2], often

constrained by legacy considerations. As JLR seek a
major redesign of their network architecture, there is
scope for tools which will aid engineers by automatically
suggesting architectures. In this report, we will survey
techniques which can be used to make such suggestions,
as well as discussing and demonstrating their applicabil-
ity to a car electronics network.

The report is structured as follows: In section II we
will discuss in detail the design of car electronics archi-
tectures, before suggesting how they might be modelled
as weighted networks1, and discussing which properties
of this network could be optimised. In sections III
and IV, we introduce a technique, community detection,
which can be used to perform this optimisation, before
discussing a variety of algorithms which perform it, and
how they might be assessed. In section V, we will briefly
discuss related methods which may be of use to JLR.
In section VI, we will demonstrate the application of
these techniques to a dataset provided by JLR, before
suggesting further work and concluding in section VII.

II. CAR ELECTRONICS NETWORKS

Car electronics networks consist of Electronic Control
Units (ECUs), which communicate via an electronic ar-
chitecture. Sharing data amongst ECUs removes the need
for redundant sensors, and allows complex functionality,
distributed over many ECUs, to be implemented.

Each ECU knows which messages it sends to, and
receives from, other ECUs. A message sent across the
network may be thought of as having a type, a single
sender ECU, a list of receiver ECUs, and some content.
So, separate from the electronic architecture, there is
a network of connectivity between ECUs, which any
architecture will need to implement.

A. The Current Architecture and its Limitations

As it stands, architectures which allow this informa-
tion sharing typically consist of several long data buses,
with many ECUs connected to them, through which
information is sent and received (Fig. 2).

1We mean network in the mathematical sense of a graph [3], rather
than in any engineering sense.

OPTIMISATION OF CAR ELECTRONICS 2 of 14

Fig. 2. ECUs control low level functions, and communicate with one
another via a bus.

When a new ECU is to be added to the architecture,
it is attached to the most appropriate bus, as judged by
an engineer. A typical network may consist of approxi-
mately 100 ECUs, each responsible for perhaps several
hundred low level functions. This architecture reportedly
presents several problems:

1) If an ECU fails, it is not easy to localise the error
- every ECU on a bus must be tested.

2) Having all messages passed along a single bus
brings trouble with bus message capacity the more
ECUs are added.

3) A bus cannot accommodate an indefinite number of
ECUs - it is limited to around 30.

B. Future Architecture Designs

Because of these limitations, future designs will split
ECUs up into domains [4]. Within a domain, ECUs
will be connected to one another, and there will be
sparse inter-domain connections. It is hoped that this
design will make it easier to localise errors and minimise
inter-domain network talk. The question then becomes,
how should the division be done? One approach [2] [4]
is to specify broad classes of functionality into which
ECUs can be assigned by hand. However, there is no
guarantee that an ECU has one clearly defined type of
functionality - an ECU may have functions which are
used in entertainment, safety, and many other types of
functionality. If obvious divisions of ECUs cannot be
made, then there is no guarantee that, when they are
partitioned into domains, these domains will achieve
the goals stated above. How then should we go about
detecting these domains?

C. Our Model

We model the ECUs as nodes in a network [3], and use
the terms interchangeably. The edges represent messages
sent and received between ECUs. They are directed,
representing the fact that messages are sent from one
ECU to another, and weighted.

A network can be represented by its adjacency matrix,
a matrix A where an element Aij is non-zero if an edge
exists from node i to node j, with its value being the

weight of that edge. Note that, since edges are directed,
in general A is not symmetric. A simple network, and
its adjacency matrix, are shown in Fig. 3.

1

2

3

4

5

3

2
1

4

5

2 1

2

4

A =


0 5 3 0
2 0 1 4
0 5 0 2
1 2 4 0



Fig. 3. A simple network and its adjacency matrix. The weights
shown on the network links appear in the adjacency matrix, with a
zero meaning no link.

We propose that the weight of an edge between two
nodes should represent a measure of similarity between
two ECUs, and should be used to judge whether the
ECUs should reside in the same domain. This weight
could represent several related quantities, depending on
what is considered an appropriate measure of similarity.
Some examples are:

1) Number of messages shared between two ECUs:
The weight could simply be the number of messages
one ECU sends to another.

2) Total information content: If the number of bits of
data in a message can vary between message types,
we could multiply the number of messages shared
between ECU’s by the number of bits of data each
message contains.

3) Expected frequency of communication: One ECU
may only send a single message to another ECU, but
during car operation it may do so very frequently.
We could weight each message by how frequently
it is sent.

4) Signal Latency: Messages sent over the network
have expiry times - they must complete their jour-
ney before this time elapses, or they expire. It
would make sense to weight messages using their
expiry times, such that ECU’s with low expiry time
communications are placed in the same domain.

One could imagine constructing some combination of
these factors. For example, the weight of an edge from
node i to node j could be

Wij =
∑
k

(fij)k(sij)k (1)

where the sum is taken over all messages sent between
the two ECUs, with (fij)k the frequency of the kth

message between nodes i and j, and (sij)k its size.

OPTIMISATION OF CAR ELECTRONICS 3 of 14

Once this weighted connectivity network is con-
structed, it needs to be examined to see if there are nat-
ural groupings of nodes into domains within it. This can
be accomplished using community detection algorithms2.
These algorithms find natural groupings of nodes in a
network, based on the topology of the network, and the
weights of the edges. Fig. 4 demonstrates an example of
their use.

(a) Randomly ordered
nodes

(b) Sorted using Commu-
nity detection

Fig. 4. A network derived from an electric circuit [5]. The nodes
are circuit elements, and the edges wires between them. 4a has the
nodes randomly ordered in a circle. 4b shows them sorted according
to natural groupings of nodes, as found by a community detection
algorithm. The colours represent detected communities. Note the
relative sparsity of inter-community links.

There is a large literature on this subject [6] - in
the following sections (III, IV) we give an outline of
recent theory, and discuss several notable algorithms, all
available under the GNU General Public License, which
JLR may wish to use.

III. COMMUNITY DETECTION THEORY

In this section, we will consider a network G =
(V,E), with |V | = N vertices, |E| = m edges and
adjacency matrix A. We will denote in-degree and out-
degree by kin and kout. If we are discussing an undirected
network, the degree is simply denoted by k.

Intuitively, a community is a group of nodes within a
network with a relatively high density of links between
them compared to links to nodes outside of the com-
munity (Fig. 5) - any precise definition of a community
should respect this intuition.

2Note that a domain, in the above engineering language, is a
community in the community detection literature. We will use these
terms interchangeably.

Fig. 5. A network with an intuitively clear community structure,
which is captured by the partition chosen, shown in grey. Image
reproduced from [7]. .

However, there is no agreed upon definition of a
community - many different ones have been proposed,
all compatible with the above intuitive description, and
the most useful definition may vary depending on the
problem at hand. To give some intuition for typical def-
initions in the literature, here we present two examples:

1) Intra-cluster link density: [6] proposes a fitness
function as follows. Given a group of nodes U ⊂ V ,
we can define the fraction of possible edges which
are present between these nodes

δint(U) =
#internal edges of U

1
2 |U |(|U | − 1)

(2)

and require that it exceeds some threshold for it to
be considered a community.

2) Weak and strong communities: [8] defines a strong
community as a group of nodes in which each node
has more links to other nodes within the group,
than to nodes outside. The authors define a weak
community as a group of nodes which has, in total,
more links within it than to the nodes outside it.

Both of these definitions are local - they only depend
on the nodes inside the community. By contrast, global
definitions quantitatively measure the amount of com-
munity structure in the network as a whole. As input,
these definitions take a network, and a partition of that
network.

Given a set of community labels C, with |C| = nC , a
partition C is a map f : V → C of every node i ∈ V to a
community c ∈ C. We denote the labelling of node i into
community c as ci. Fig. 5 shows an example partition -
for any network there are many possible ones.

Given a partition, as output global measures give a
score indicating the quality of the community structure in
the given partition. These measures make sense if there
is reason to believe a global community structure exists
in the network - rather than communities simply existing
within the network, the network as a whole possesses a
modular structure.

OPTIMISATION OF CAR ELECTRONICS 4 of 14

In the following subsections we will describe two
well known global measures, the modularity, Q, and the
minimum description length, L.

A. The Modularity

The underlying idea of the modularity is to compare
the number of edges within each community in C to
how many we expect to find in a null model with no
community structure [9]. We will begin by discussing
the undirected, unweighted case. In the most common
null model [3], networks are generated by placing links
between nodes i and j independently with probability

ki
2m
× kj

2m
(3)

where ki and kj are the degrees of the nodes i and j
in the original network. Under this model, the expected
number of links between nodes i and j is

kikj
2m

(4)

and so the expected number of intra-community edges
is

1

2

∑
ij

kikj
2m

δ(ci, cj) (5)

where the Kronecker delta δ(ci, cj) ensures we are only
counting edges within a given community. Note that this
allows multiple edges between two nodes. For the actual
given network, the total number of intra-community
edges is:

1

2

∑
ij

Aijδ(ci, cj) (6)

Subtracting Eq. (5) from Eq. (6), and normalising by m
gives the modularity, Q, of the partition C:

QC =
1

2m

∑
ij

(
Aij −

kikj
2m

)
δ(ci, cj) (7)

The modularity can be extended to weighted, directed
networks [10] [11]. Suppose A is now a weighted,
directed matrix. We define the in-degree of node i as

kin
i =

∑
j

Aij (8)

and the out-degree as:

kout
j =

∑
i

Aij (9)

These are the total weights flowing in and out of a node.
The modularity is then extended in a natural way:

QC =
1

m

∑
ij

(
Aij −

kin
i k

out
j

m

)
δ(ci, cj) (10)

A positive Q tells us we have more links than expected
and is indicative of community structure. The measure
must be used with care - it is not equal to 1 even
for networks with links only within communities [3];
unnormalized, it cannot be used to compare networks
of different sizes [6]; and it is well known that it
suffers from a resolution limit, where it can fail to detect
communities which are small relative to the network size
[12]. Nevertheless, one common strategy for community
detection is to search for the partition of G with maxi-
mum modularity.

We decided to present in some detail the modularity,
because it gives intuition for the sorts of measures
commonly used to assess the community structure of
a partition. It is also the basis of a large class of algo-
rithms, some of which we will discuss later. However,
many other measures exist [6], and very often, rather
than explicitly defining communities, an algorithm will
simply present a method to be carried out on a network,
the output of which is the communities. One recent, and
notable, alternate measure is the minimum description
length [13].

B. Minimum Description Length

The idea behind this measure is that, when encoding
a description of a network, community structure can be
exploited to give efficient encodings. [13] considers the
problem of encoding a random walkers trajectory on a
weighted, directed network using a two-stage Huffman
encoding scheme. At the top level, each community is
given a unique name, and then names are re-used within
communities. Given a partition C, the map equation

L(C) = ryH(R) +

m∑
i=1

pi�H(P i) (11)

tells us the average length of codeword needed to encode
a single step in the path of a random walker on the
network.

The first term, H(R), is the Shannon Entropy of the
random variable R. The states of R are community
labels, and its distribution riy gives the probability a
random walker will leave community i. These quantities
can easily be computed using the theory of Markov
Chains. Then

ry =
∑
i

riy (12)

OPTIMISATION OF CAR ELECTRONICS 5 of 14

and we see the first term of Eq. (11) is interpreted
as the average length of codeword needed to describe
movement between modules. H(P i) is the Shannon
Entropy of the random variable P i. The states of P i are
labels for nodes within the ith community (these labels
are re-used between communities). The second term is
interpreted as the length of codeword needed to describe
movement within modules.
L(C) is dependent on the partition C which is used,

and a short L(C) indicates a partition which has captured
the community structure present in the network. Another
class of algorithms thus use L(C) as a quality function
to optimise.

We have now seen some examples of the sorts of struc-
tures one might wish to detect, or quantities one might
wish to optimise, to go about detecting communities. In
the following section we discuss how algorithms can use
these ideas to perform community detection.

IV. COMMUNITY DETECTION ALGORITHMS

As we understand it, JLR’s current approach to the
problem stated in section II is to write down the adja-
cency matrix of the network, and exhaustively try row
and column permutations to bring it into a form where
groupings can be read off. It is reported that their method
breaks down once the number of nodes in the network
exceeds 30.

Two problems arise with this method. The first has
been addressed above: how should we ‘read off’ group-
ings? In other words, what criteria do we use to assess
communities. The second problem is: given a criteria
to determine whether we have communities or not, how
should we search through solution space?

The number of possible permutations of a matrix rises
factorially with its size. Exhaustive searches of permu-
tation space therefore quickly become computationally
intractable as network size increases, explaining why,
above 30 nodes, JLR’s current method breaks down.
This is not a problem unique to their method - the
number of partitions, as defined above, of a network
rises super-exponentially with the network size [6]. So
an exhaustive search of partition space, for example
attempting to maximise Q, will not be possible. Indeed,
recently modularity maximisation was proved to be an
NP - hard problem [6], as is searching for both types
of communities defined in section III [6]. To deal with
these issues, algorithms typically rely on heuristic search
methods.

In this section we will present three recent algorithms,
representing the ‘state of the art’, before discussing
how the performance of these algorithms, and indeed

any community detection algorithm, might be assessed.
Justification for why we have chosen these algorithms in
particular will come in subsection IV-B.

A. Recent Community Detection Algorithms

The three algorithms discussed below all work by
optimising a quality measure - either the modularity, Eqs.
(7, 10), or the minimum description length Eq. (11) -
by using a heuristic search procedure through partition
space.

1) The Louvain method [14]
This algorithm optimises the modularity Q with
a greedy search through partition space. It begins
with each node as its own community. It then
considers each node in turn, testing whether
Q can be increased by moving the node to a
community it is connected to, and doing so if Q
increases. After this, it takes the new communities
formed, considers them single nodes in a new
hyper-network, and iterates this procedure until
no increase in Q can be found. This produces a
hierarchy of communities, of increasing Q. The
method is experimentally found to be O(N). In
implementations currently available, it takes into
account link weights, but not directions.

2) Infomap [13]
This algorithm was introduced in [13] along with
the minimum description length Eq. (11), and
attempts to optimise it. Implementations have
varied over time; the current one uses a greedy
search procedure similar to the Louvain method.

3) Combo [15]
This algorithm can use either the modularity or
the minimum description length as its objective
function. It searches partition space as follows:
Given a partition C, for each community c ∈ C,
redistributions of every node in c into other commu-
nities are trialled. The trial with the largest increase
in the objective function is accepted.
The redistribution of nodes from the source com-
munity into other (possibly empty) communities is
fashioned after the Kernighan-Lin algorithm [16].
The algorithm starts with a list of all nodes in the
source community. The node which gives the high-
est gain (or smallest loss) in the objective function
when moved to another community is then found.
This node is moved (and cannot be considered
again), and the value of the objective function is
noted. The process is then iterated for all nodes in

OPTIMISATION OF CAR ELECTRONICS 6 of 14

the source community. When all nodes have been
considered, the intermediate state with the largest
value of the objective function is accepted. It is
reported that the upper bound of the execution time
scales as O(N2 log nC).

B. Assessing the Performance of Algorithms

When assessing how an algorithm performs, two fac-
tors are relevant: How execution time varies with net-
work size, and how accurately an algorithm uncovers the
‘true’ community structure within a network. On the first
point, it should be noted that all modern algorithms can
evaluate a network of thousands of nodes in seconds or
minutes on a typical laptop, depending on the algorithm.
Indeed, greedy algorithms have been applied to networks
of several million nodes. So for an ECU network of 100
nodes, it will not be speed, but quality of results, which
will primarily determine the choice of algorithm.

Assessing the quality of results from a community
detection algorithm is not straightforward. We have seen
that there are many different definitions of community,
and several commonly used objective functions which
are considered proxies for community structure, each
with some theoretical justification behind them. To be
confident in any method we would like to see it uncover
community structure we ‘know’ to be present in a
network; and in the absence of community structure, for
example in a random network, we would expect to see
it give a null result.

One method of assessment is to use existing datasets
with built in community structure separate from the
network topology, which we wish to rediscover using
the algorithm. Another is to use synthetic data generated
with predefined community structure. This is the ap-
proach taken in the recent LFR benchmark [17] [18] [19],
a tool which generates networks, with built in community
structure, which show properties mirroring those found
in many real world networks - power law distributions
of node degree and community size. This benchmark
improves on previous network generation tools to present
a standardised set of challenging networks which algo-
rithms can be tested on.

We can measure the extent to which the community
structure found by our algorithm matches that built in
to the data using the normalised mutual information
(NMI) [20], a measure drawn from information theory.
In this measure, given two partitions X , Y , we consider
each pair of community labellings (xi, yi) of node i
as a realisation of a random variable pair (X,Y). We
then compute the mutual information between these two

random variables, and normalise it:

I(X,Y) =
2
∑

x

∑
y PX,Y (x, y) log

PX,Y (x,y)
PX(x)PY (y)∑

x PX(x) logPX(x) +
∑

y PY (y) logPY (y)
(13)

We approximate

PX,Y (x, y) =
nxy
n

(14)

where nxy denotes the number of nodes found in both
community x ∈ X and y ∈ Y . Similar approximations
are made for the marginal probabilities. I(X,Y) ∈ [0, 1],
and, intuitively, tells us how much information we learn
about one partition, given the other - if they are iden-
tical, I(X,Y) = 1, whereas if they are uncorrelated,
I(X,Y) = 0.

Using the LFR benchmark to generate networks,
and the NMI to assess how well algorithms capture
their community structure, [19] compares a range of
algorithms, concluding that Infomap, followed by the
Louvain method perform best on the tests set. This
justifies our choice of these particular algorithms for
discussion.

Combo was published after this comparative analysis
was done, and the authors report it capable of finding
partitions of better modularity than all other algorithms
available at the time of publication (2014). They further
report that it performs comparably to Infomap on mini-
mum description length optimisation. These are promis-
ing results - however, as discussed above, assessing the
quality of algorithms is problematic, and it is not clear
that these findings will translate to good performance on
the benchmark found in [19], which is a better measure
of the quality of an algorithm. To be able to assess the
value of Combo, it should be submitted to the same tests
as [19].

The LFR benchmark can generate (un)weighted,
(un)directed networks to be tested. To begin, we com-
pared Combo3, Infomap, and the Louvain method on
unweighted, undirected networks (Fig. 6). In all that
follows, we use the same parameters as those found in
[19], namely: The network size was set to 1000 nodes,
the average degree was set to 20, the maximum degree
was set to 50, the exponent for the degree sequence was
set to 2, the exponent for the community size distribution
was set to 1, and the community sizes were set to a
range from 10 to 50. Each data point is averaged over
100 generated networks, with errors shown.

In Fig. 6, the algorithms were run for a range of values
of the topological mixing parameter 0 ≤ µt ≤ 1. This

3Note that Combo can use modularity or minimum description
length as its quality function. Currently, the only publicly available
implementation uses modularity, and this is the version we use.

OPTIMISATION OF CAR ELECTRONICS 7 of 14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MuT (topological)

N
M

I

Unweighted & undirected network Combo, Louvain, Infomap

Combo
Louvain
Infomap

Fig. 6. A comparison of the normalised mutual information for
Combo, the Louvain method and Infomap on undirected, unweighted
networks generated using the LFR benchmark [17]. Each generated
network has N = 1000, and each data point is averaged over 100
realisations. LFR parameter values can be found in section IV-B.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MuW

N
M

I

Weighted & undirected network, Combo & Infomap & Louvain µt = 0.7

Combo, N = 1000
Infomap, N = 1000
Louvain, N = 1000

Fig. 7. A comparison of the normalised mutual information for
Combo, the Louvain method and Infomap on weighted, undirected
networks, for µt = 0.7.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MuT (topological)

N
M

I

Unweighted & directed network Combo, Infomap

Combo
Infomap

Fig. 8. A comparison of the normalised mutual information for
Combo and Infomap for unweighted, directed networks.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MuW

N
M

I
Weighted & directed network, Combo & Infomap µt = 0.7

Combo, N = 1000
Infomap, N = 1000

Fig. 9. A comparison of the normalised mutual information for
Combo and Infomap on weighted, directed networks, for µt = 0.7.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MuW

N
M

I

Weighted & directed network, Combo & Infomap µt = 0.8

Combo, N = 1000
Infomap, N = 1000

Fig. 10. A comparison of the normalised mutual information for
Combo and Infomap on weighted, directed networks, for µt = 0.8.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MuT (topological)

N
M

I

Test of directedness for Combo & Infomap

Infomap undirected
Infomap directed
Combo directed
Combo undirected

Fig. 11. Tests on the importance of edge direction for community
detection on Combo and Infomap. A directed, unweighted graph is
generated, and the algorithm is run on it. Edge direction is then
neglected, and the algorithm run again.

OPTIMISATION OF CAR ELECTRONICS 8 of 14

parameter is defined as the ratio between the external
degree of a node i (the number of links it has to nodes
outside its own community) and the total degree of
the node. In the LFR benchmark, µt is the same for
all nodes, and measures the strength of the community
structure embedded in the network - [17] shows that, for
the networks we consider, communities are in principle
detectable until µt = 0.95.

The LFR benchmark can also generate weighted net-
works. After generating an unweighted network, the
benchmark uses a weight mixing parameter, µw, to
assign weights to the edges. µw is the ratio between the
external strength of a node (the sum of its edge weights)
and all other nodes in its community. To investigate
the effect of edge weights on algorithm performance,
in Fig. 7 we fix µt = 0.7, near the transition in Fig.
6, and vary 0 ≤ µw ≤ 1. We find similar results
to the unweighted, undirected case, with the Louvain
Method slightly outperforming Combo, and Infomap
outperforming both until µw = 0.6.

We can also assess the algorithms performance on
directed graphs, shown in Figs. 8, 9 and 10 - current
implementations of the Louvain method do not take edge
direction into account, so we only compare Combo and
Infomap. We again find Infomap outperforming Combo
for smaller values of µt and µw, with its performance
rapidly dropping off for larger values.

Theoretically, when we neglect edge direction, we are
not using the full information present in the network
topology - taking direction into account should lead to
better community detection. Further, direction of edges is
an important part of how we model JLR’s ECU networks.
Thus, it is interesting to test whether neglecting edge
direction really does affect the quality of community
detection. To test this, we generated directed, unweighted
networks, and ran Combo and Infomap on them. We then
neglected edge direction, and ran the algorithms again
on the undirected networks. The results are shown in
Fig. 11. We find that neglecting edge direction does not
significantly affect the performance of Combo, though it
does degrade Infomap’s results.

Taken together, these findings do not suggest a clearly
superior algorithm. The Louvain Method outperforms
Combo on modularity optimisation, but does not take
into account edge direction. Infomap fares slightly better
than Combo in some parameter ranges, but worse in
others. We also find edge direction to be unimportant
for community detection on the LFR benchmark graphs,
though reports of neglecting edge direction leading to
incorrect community detection do exist in the literature
[10]. We will discuss this last point further in section
VII.

V. OTHER TECHNIQUES

In this section, we will briefly survey other techniques,
related to those above, which may be of use to JLR.

A. Optimisation Functions

[1] suggests a method to simplify designs where,
given an adjacency matrix (an N squared chart or design
structure matrix in the language of the paper), a genetic
algorithm can be used to suggest permutations of the
rows and columns, which are assessed using some cost
function. This is a very general setup - the use of a
genetic algorithm is not necessary; any stochastic opti-
misation method, for example Simulated Annealing [21],
could be used. Further, while [1] presents a weighted
average of the distances of elements in the matrix from
the diagonal as the cost function, in principle many other
functions could be used, depending on what the designer
is interested in optimising.

1) Matrix bandwidth: One commonly optimised quan-
tity is the matrix bandwidth. Given a matrix A, the
bandwidth B(A) is defined as:

B(A) = max
i,j
{|i− j| : Aij 6= 0} (15)

In words, the largest gap between a non-zero ele-
ment and the matrix diagonal [22] [23]. Motivation
for optimising this quantity comes in several forms.
As in [1], one is to simplify the N2 chart for the
designer, allowing them to restrict their attention to
a sub band of the full matrix. Another comes from
electronic network design, where the bandwidth is
interpreted as the maximum signal delay time in a
circuit.

2) Weighted averages: As in [1], one may wish to
optimise some form of weighted average

B(A) =
∑
i,j

Aij |i− j|α (16)

for α > 0. This form accounts for matrix element
weights, with a value of α which can be tailored to
the problem.

It should be noted that, though these techniques seem
similar to community detection, they may give very
different results. [1] presents the example of weighted
averages as an optimisation function, and gives an exam-
ple matrix, before and after this analysis ([1], Figs. 3 and
5). However it is not clear the methods suggested in [1]
will yield the adjacency matrix it desires. To demonstrate
this, we take an example matrix with strong community
structure, and apply a community detection algorithm

OPTIMISATION OF CAR ELECTRONICS 9 of 14

(the Louvain Method)4 and a bandwidth minimisation
algorithm (the Cuthill-Mckee algorithm [22]) to it. The
results are shown in Figs. 12, 13.

26

21 8

23 25

1

7

3

27

28

29

24

6

14

12
30

19

20

2

10

1122

13

15

5

17

4

18

9

16

(a) Community detection la-
belling.

23

19

29

11

18

2

161

22

17

28

8

6

4

3021

15

20

3

27

24

10

26

7

9

14

5

13

25

12

(b) Bandwidth minimisation
labelling.

(c) Community detection la-
belling, linear layout.

(d) Bandwidth minimisation la-
belling.

Fig. 12. 12a, 12b show labellings of nodes derived from a community
detection algorithm, and those of a bandwidth minimisation algo-
rithm, for a network of 30 nodes, Q = 0.85. Colour increases linearly
with node label. 12c, 12d show these labellings linearly ordered. Note
the difference in link distribution.

Original Matrix

10 20 30

5

10

15

20

25

30

Community Detection

10 20 30

5

10

15

20

25

30

Bandwidth Minimization

10 20 30

5

10

15

20

25

30

Fig. 13. The adjacency matrix of Fig. 12, permuted randomly, into
communities, and into minimum bandwidth order.

We see that the results are very different - the matrix
bandwidth fails to capture community structure within
the graph entirely. This makes sense - there is no
justification for why matrix bandwidth, or some vari-
ant of it, should measure community structure. Simply
constructing an optimisation function which punishes
elements far from the matrix diagonal will not lead to the
identification of useful community structure, contrary to
what [1] states. By contrast, the Louvain method cap-
tures the (intuitively obvious from Fig. 12a) community
structure present.

B. Graph Partitioning

The graph partitioning problem [3] is defined as
follows: Given a graph, divide its nodes into two separate

4Community detection algorithms don’t offer a complete labelling
of every node - the labels within communities are arbitrary. Here
we have applied the Cuthill Mckee within each community to give a
labelling.

groups such that the number of edges between the two
groups is minimised. Importantly, the number of nodes
in each group is fixed, in contrast to the community
detection problem, which imposes no fixed size on the
communities. Typically, division into more than two
groups is achieved by recursively splitting the existing
groups.

For JLR, the interest in this problem, and where it
differs from the community detection approach, is in the
predefined community size and number. It may be that
external constraints force designers to put ECUs into a
certain number of fixed size groups, but which ECUs go
in which groups is to be optimised.

The problem suffers from the same super-exponential
growth of possible divisions as community detection,
and algorithms used to solve it are again heuristic. Two
commonly used ones are spectral partitioning, an O(N2)
method which works with the eigenvectors of the graph
Laplacian [3] [24], and the Kernighan-Lin method [16],
an O(N3) algorithm which repeatedly tries node swaps
between the two groups, recomputing the number of
intergroup edges each time. Combined, these methods
can solve the graph partitioning problem for hundreds of
thousands of nodes, well in excess of the typical number
of ECUs JLR is interested in.

VI. APPLICATION TO JLR DATASET

In this section, we present a dataset provided by JLR,
and the results of applying the above techniques to it.

A. ECU network communication dataset

The dataset consists of a complete list of messages
sent between ECUs, on two sub-networks of a typi-
cal car electronics system. The datasets are made up
of 15 (subnetwork 1) and 14 (subnetwork 2) ECUs
respectively. Each entry is of the form (Message ID,
Sender ECU, Reciever ECUs). The two subnetworks are
connected together via a gateway node, which also has
other subnetworks attached to it, which we do not have
access to in the dataset. The setup is similar to that found
in Fig. 1, except for the fact that the gateway ECU has
several other subnetworks connected to it.

The dataset does not contain information on the fre-
quency at which messages are sent, or their acceptable
travel times, though these data are in principle available.
As such, we simply weight edges by the number of
messages sent from one ECU to another.

B. Results

Fig. 14 shows the network of connectivity constructed
from the dataset. The central node is a Gateway ECU,

OPTIMISATION OF CAR ELECTRONICS 10 of 14

labelled INST - messages sent to it are forwarded onto
other ECU’s, but the dataset does not contain their des-
tinations (equally, messages sent from it originally came
from another ECU, but we do not know which). They
may be sent to ECU’s outside of the subnetworks we
have data for, or they may be communications between
our two subnetworks - but we cannot infer it from the
given dataset. Thus we cannot run the algorithms on the
full dataset.

To account for this, we remove the gateway node, and
all messages sent to and from it, from the dataset and
focus on uncovering structure in the two isolated sub-
networks.

Network of connectivity
constructed from JLR dataset

PIE

EPB

VEC_X

ESCL

ICP

TCM

DSC

GSM

ACC

OCS

RCM

ADCM

ECM

PAM
ICM

KVM

DSM

RSJB

DCCSM

DDM

FSJB

BSMLBSMR

PDM

RCCM

AFLS

TPMS

INST

Fig. 14. Network of ECU connectivity constructed from JLR’s elec-
tronic network dataset. The red (subnetwork 1) and blue (subnetwork
2) nodes show the sub-networks, with the gateway node, INST, shown
in green. The thickness of the edges is defined by the average link
weights between two nodes.

Figs. 15, 16 show the sub-networks with communities,
as detected by Combo, shown in colour. It should be
noted that, for networks this small, simply visualising
them tells us a lot about the structure of communication.
For example, inspection of Fig. 15 shows the majority
of communication occurring between a few key nodes
(ISM, RSJB, RCCM, FSJB and KVM), and shows
that nodes DCCSM, PAM, BSML, BSMR and TPMS
communicate strongly with RSJB and weakly with the
rest of the network. This suggests isolating them from
the main bus, and perhaps routing their communication
with the rest of the network through the RSJB node. Fig.
16 shows a core of strong communication between the

TCM, ECM and DCS nodes, with a periphery of nodes
communicating with these three, and not between them-
selves. This sub-network structure suggests isolating the
RCM, OCS and vec x nodes.

The networks also demonstrate the importance of
directed edges - for example, in Fig. 16 we see that
communication with the ACC node is almost entirely
one way.

On sub-network 1, Combo detects 4 communities,
with a Modularity of 0.123. On sub-network 2, it detects
2 communities, with a Modularity of 0.154. As discussed
above, positive Q is indicative of community structure.
Here, the maximum. Figs. 17 and 18 show the results
of the Louvain method applied to the same network.
On sub-network 1, it detects 2 communities, with a
modularity of 0.124. On sub-network 2, it detects 2
communities, with a modularity of 0.1285. The results
reported by the Louvain method for the second sub-
network (Fig. 18) are similar to the ones of Combo.
For the first sub-network, the Louvain method finds two
communities - they are combinations of communities
found by Combo (shown in green and light blue, purple
and red in Fig. 15), with the exception of the PAM
module. This merging of communities corresponds to
a slight increase in modularity from Combo to the
Louvain method - they are two related partitions of
similar modularity. This is not unexpected - there may
be many related partitions, all of similar modularities,
near the true optimum [6].

Figs. 19 and 20 show the results of Infomap applied
to the same network. The communities found on sub-
network 2 are very similar to those found with Combo,
but there is substantial difference in sub-network 1, with
all nodes except BSMR and BSML being placed in one
community. We will remark further on this in the next
section.

VII. CONCLUSIONS AND FURTHER WORK

In this report, we have discussed methods capable
of solving the N2 problem. We have shown that, in
contrast to JLR’s current upper bound of 30 ECUs, tech-
niques exist which can easily handle several thousand
ECUs. We have discussed three examples, concluding
that Infomap and Combo are two available algorithms
capable of handling weighted and directed edges with
excellent performance. We have also demonstrated how
assessment of community detection algorithms may be

5For subnetwork 2, the different values of Q found from Combo
vs. Louvain, despite the same partition being found, can be attributed
to the fact one uses the weighted directed modularity, and the other
only uses weights.

OPTIMISATION OF CAR ELECTRONICS 11 of 14

Sub-network 1 (Combo)

KVM

PAM

TPMS

DDM
DSM

RCCM

RSJB

FSJBPDM

BSML

BSMR

ICP

ISM

DCCSM

Fig. 15. A network of ECU connectivity, constructed from the
first sub-network of the JLR dataset discussed in section VI. Each
node is an ECU, and edges represent messages sent from one ECU
to another. Communities, as detected by the community detection
algorithm Combo, are shown as colours. Q = 0.123.

Sub-network 2 (Combo)

PIE

AFLS

vec_x

ESCL

ACC

DCS

GSM
TCM

OCS

RCM
ADCM

ECM

EPB

Fig. 16. ECU network constructed from second sub-network dataset,
with communities, as detected by Combo, shown as colours. Q =
0.154.

Sub-network 1 (Louvain)

KVM

PAM

TPMS

DDM
DSM

RCCM

RSJB

FSJBPDM

BSML

BSMR

ICP

ISM

DCCSM

Fig. 17. ECU network constructed from first sub-network dataset,
with communities, as detected by Louvain, shown as colours. Q =
0.124.

Sub-network 2 (Louvain)

PIE

AFLS

vec_x

ESCL

ACC

DCS

GSM
TCM

OCS

RCM
ADCM

ECM

EPB

Fig. 18. ECU network constructed from second sub-network dataset,
with communities, as detected by Louvain, shown as colours. Q =
0.128.

OPTIMISATION OF CAR ELECTRONICS 12 of 14

Sub-network 1 (Infomap)

KVM

PAM

TPMS

DDM
DSM

RCCM

RSJB

FSJBPDM

BSML

BSMR

ICP

ISM

DCCSM

Fig. 19. A network of ECU connectivity, constructed from the
first sub-network of the JLR dataset discussed in section VI. Each
node is an ECU, and edges represent messages sent from one ECU
to another. Communities, as detected by the community detection
algorithm Infomap, are shown as colours.

Sub-network 2 (Infomap)

PIE

AFLS

vec_x

ESCL

ACC

DCS

GSM
TCM

OCS

RCM
ADCM

ECM

EPB

Fig. 20. ECU network constructed from second sub-network dataset,
with communities, as detected by Infomap, shown as colours.

performed, and indeed what suitable definitions of a
‘community’ are. We have also briefly surveyed other,
related, techniques which JLR may find a use for, and
have demonstrated that finding the structures they desire
is not as simple as [1] might suggest. Finally, we have
applied these techniques to data provided by JLR.

It should be noted that, toward the end of this project,
we discovered independent work [25] which discusses
using community detection algorithms to improve in-
vehicle security, and contains many ideas similar to
those found in this report. The authors apply several
community detection algorithms to ECU network data
provided by Volvo. The dataset is weighted in a manner
similar to ours, but is undirected. Their results show
that using community detection algorithms can suggest
designs which improve on those suggested by general
guidelines.

One result which is similar to our findings is that
when Infomap is applied to their dataset, it returns one
community containing almost all nodes, which is not
further commented upon. Future work could explore why
this might be - [13] discusses the differences between
the structures uncovered by modularity optimisation vs.
code description length. It would be interesting to know
what properties of these networks is causing Infomap to

give these answers, given that Infomap has shown strong
performance in [17] and our own LFR tests.

[25] also states that edge direction is unimportant
when detecting communities in ECU connectivity net-
works. We have found mixed results on this point,
with direction important for the results of Infomap, but
not Combo when tested against the LFR benchmark,
and Combo and the Louvain method (which neglects
direction) giving similar but not identical results when
applied to the JLR dataset. This is a further issue which
could be explored when selecting appropriate algorithms
for JLR to use.

We interpret the existence of [25] as validation of our
approach, and suggest that there is certainly scope to
apply the above methods to a JLR dataset, and reason to
believe useful results will follow.

The results shown in section VI are a proof of princi-
ple - they demonstrate the applicability of the techniques
discussed to datasets possessed by JLR. The obvious next
step is to apply the method to a more complete dataset
- one for the whole ECU network, rather than small
subsections of it, and one which contains information

OPTIMISATION OF CAR ELECTRONICS 13 of 14

such as message frequency. 6

It would also be of interest to discuss the results of
community detection algorithms with JLR engineers, to
see how groupings of ECUs suggested by the algorithms
tie in to their knowledge of ECU functionality. It may
even be interesting to compare the results of algorithms
to architectures suggested by engineers.

Two additional considerations, known to be important
to JLR, but not considered here, are message and node
priority. It is known that ECU’s are divided into different
levels of importance - the most important being safety
critical ECU’s, for example - and it is likely these levels
will need to be taken into consideration when making de-
sign suggestions. Exactly how is unclear - it may be that
nodes of the same priority should preferentially belong
in the same communities, which could be incorporated
into edge weights, but more work is needed to clarify
this. One suggestion would be to model these levels as
a multi layer network [26].

It should also be noted that applications of community
detection algorithms are not limited to ECU network
architecture design. For example, a related problem is the
distribution of functions into ECUs. ECUs need to com-
municate because functions in one ECU depend on data
provided by functions contained in other ECUs. There is
thus a network of connectivity between functions, similar
to that between ECUs, but with many more nodes. Run-
ning community detection algorithms on this network
would suggest ways of grouping functions together into
ECUs. At the moment, we understand JLR does not have
this freedom to move functions between ECUs, but in
future designs they may have.

ACKNOWLEDGEMENTS

We would like to thank Samuel Johnson and Harita
Joshi for their useful help and input throughout the
project. We would also like to thank Gunwant Dhadyalla,
Alexandros Mouzakitis, George Pappas, Charo Del Ge-
nio and the EPSRC.

REFERENCES

[1] J. Simpson and M. Simpson, “System of systems complexity
identification and control,” in Proc. IEEE International Con-
ference on System of Systems Engineering, Albuquerque, NM,
May 2009.

[2] S. M. Mahmud. In-vehicle network architecture for the next-
generation vehicles. [Online]. Available: http://ece.eng.wayne.
edu/∼smahmud/PersonalData/PubPapers/IGI-Book-2009.pdf

[3] M. Newman, Networks:An Introduction. Oxford: Oxford
University Press, 2015, p. 358.

6On a practical level, it is understood that message ID’s often
change when they pass through a gateway - a complete dataset would
need to trace these changes.

[4] “Easis general architecture framework. d0.2.4.” Aug 2004.
[5] U. Alon, “Public dataset,” http://wws.weizmann.ac.il/mcb/

UriAlon/index.php?q=download/collection-complex-networks,
2004, [Online; accessed 7-May-2015].

[6] S. Fortunato, “Community detection in graphs,” Physics Re-
ports, p. , 2010.

[7] Wikipedia, “Small network,” 2011, [Online;
accessed 11-June-2015]. [Online]. Available:
http://en.wikipedia.org/wiki/Community structure#/media/File:
Network Community Structure.svg

[8] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and
D. Parisi, “Defining and identifying communities in networks,”
Proceedings of the National Academy of Sciences of the United
States of America, vol. 101, no. 9, pp. 2658–2663, 2004.
[Online]. Available: http://www.pnas.org/content/101/9/2658.
abstract

[9] M. E. J. Newman and M. Girvan, “Finding and evaluating
community structure in networks,” Phys. Rev. E, 2004.

[10] E. A. Leicht and M. E. J. Newman, “Community Structure in
Directed Networks,” Physical Review Letters, vol. 100, no. 11,
p. 118703, Mar. 2008.

[11] M. E. J. Newman, “Analysis of weighted networks,” Phys.
Rev. E, vol. 70, p. 056131, Nov 2004. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevE.70.056131

[12] S. Fortunato and M. Barthlemy, “Resolution limit in community
detection,” Proceedings of the National Academy of Sciences,
vol. 104, no. 1, pp. 36–41, 2007. [Online]. Available:
http://www.pnas.org/content/104/1/36.abstract

[13] M. Rosvall and C. Bergstrom, “An information-theoretic frame-
work for resolving community structure in complex networks,”
Proc. Natl. Acad. Sci. USA, vol. 104, no. 18, pp. 7327–7331,
2007.

[14] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre,
“Fast unfolding of communities in large networks,” Journal of
Statistical Mechanics: Theory and Experiment, p. , 2008.

[15] S. Sobolevsky, R. Campari, A. Belyi, and C. Ratti, “A general
optimization technique for high quality community detection in
complex networks,” CoRR, vol. abs/1308.3508, 2013. [Online].
Available: http://arxiv.org/abs/1308.3508

[16] B. W. Kernighan and S. Lin, “An efficient heuristic
procedure for partitioning graphs,” Bell System Technical
Journal, vol. 49, no. 2, pp. 291–307, 1970. [Online]. Available:
http://dx.doi.org/10.1002/j.1538-7305.1970.tb01770.x

[17] A. Lancichinetti, S. Fortunato, and F. Radicchi, “Benchmark
graphs for testing community detection algorithms,” Phys.
Rev. E, vol. 78, p. 046110, Oct 2008. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevE.78.046110

[18] A. Lancichinetti and S. Fortunato, “Benchmarks for testing
community detection algorithms on directed and weighted
graphs with overlapping communities,” Phys. Rev. E, vol. 80,
p. 016118, Jul 2009.

[19] ——, “Community detection algorithms: A comparative
analysis,” Phys. Rev. E, vol. 80, p. 056117, Nov 2009. [Online].
Available: http://link.aps.org/doi/10.1103/PhysRevE.80.056117

[20] L. Danon, A. Daz-Guilera, J. Duch, and A. Arenas, “Comparing
community structure identification,” Journal of Statistical Me-
chanics: Theory and Experiment, vol. 2005, no. 09, p. P09008,
2005.

[21] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery, Numerical Recipes 3rd Edition: The Art of Scientific
Computing. New York: Cambridge University Press, 2007, p.
549.

[22] E. Cuthill and J. McKee, “Reducing the bandwidth of sparse
symmetric matrices,” in ACM ’69 Proceedings of the 1969 24th
national conference, pp. 157–172.

OPTIMISATION OF CAR ELECTRONICS 14 of 14

[23] M. Tan Khoa Vo, “Exact and heuristic solutions
to the bandwidth minimization problem,” Master’s
thesis, Heidelberg University, Oct 2011. [Online]. Avail-
able: http://archiv.ub.uni-heidelberg.de/volltextserver/12580/1/
KhoaVo Dissertation.pdf

[24] A. Pothen, H. D. Simon, and K.-P. Liou, “Partitioning sparse
matrices with eigenvectors of graphs,” SIAM J. Matrix Anal.
Appl., vol. 11, no. 3, pp. 430–452, May 1990. [Online].
Available: http://dx.doi.org/10.1137/0611030

[25] P. Kleberger, N. Nowdehi, and T. Olovsson, “Towards designing
secure in-vehicle network architectures using community detec-
tion algorithms,” in Vehicular Networking Conference (VNC),
2014 IEEE, Dec 2014, pp. 69–76.

[26] M. Kivelä, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno,
and M. A. Porter, “Multilayer Networks,” ArXiv e-prints, Sep.
2013.

