Networks and Random Processes

Class test

The class test counts $25 / 100$ module marks, [x] indicates weight of each question. Attempt all 5 questions.

1. (a) State the weak law of large numbers and the central limit theorem.
(b) Define the Erdős-Rényi random graph model $\mathcal{G}_{N, p}$, including the set of all possible graphs and the corresponding probability distribution.
Compute the expected degree distribution.
(c) Define what it means for a real-valued process $\left(M_{t}: t \geq 0\right)$ to be a martingale.

State Itô's formula for a process ($\left.X_{t}: t \geq 0\right)$ on state space S with generator \mathcal{L} and a function $f: S \rightarrow \mathbb{R}$ which does not explicitly depend on time. Include the expression for the quadratic variation of the martingale.
(d) Give the generator of the Poisson process $\left(N_{t}: t \geq 0\right)$ with rate $\lambda>0$. Use Itô's formula to show that $N_{t}-\lambda t$ is a martingale and compute its quadratic variation.
2. Consider the undirected graph G with adjacency matrix $\quad A=\left(\begin{array}{llllll}0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0\end{array}\right)$.
(a) Draw the graph G. Identify a clique of vertices and draw a spanning tree of G.
(b) Give the matrix of vertex distances $d_{i j}$ and compute the characteristic path length $L(G)$ and the diameter $\operatorname{diam}(G)$ of G.
(c) Give the degree sequence $\left(k_{1}, \ldots, k_{6}\right)$ and compute the degree distribution $p(k)$ and the average degree $\langle k\rangle$ of G.
(d) Compute the global clustering coefficient C and the average $\left\langle C_{i}\right\rangle$ of the local clustering coefficients C_{i}.
(e) Give all non-zero entries of the joint degree distribution $q\left(k, k^{\prime}\right)$.

Compute the marginal $q(k)$. For all k^{\prime} with $q\left(k^{\prime}\right)>0$ compute the conditional distribution $q\left(k \mid k^{\prime}\right)$ and the corresponding expectation $k_{n n}\left(k^{\prime}\right)$.
3. (a) State two equivalent definitions of standard Brownian motion.
(b) Let $\left(B_{t}: t \geq 0\right)$ be a standard Brownian motion. Prove that for any $\lambda>0$, the process $\left(X_{t}: t \geq 0\right)$ with $X_{t}:=\frac{1}{\lambda} B_{t \lambda^{2}}$ is also a standard Brownian motion.
(c) State the definition of a diffusion process on \mathbb{R}.

From now on, consider the Ornstein-Uhlenbeck process ($X_{t}: t \geq 0$) given by the SDE

$$
d X_{t}=-\alpha X_{t} d t+\sigma d B_{t} \quad \text { with } \alpha>0 \quad \text { and } \quad X_{0}=x_{0} \text { (deterministic) . }
$$

(d) Write down the generator of this process.

Derive equations for the mean $m(t):=\mathbb{E}\left[X_{t}\right]$ and the variance $v(t):=\mathbb{E}\left[X_{t}^{2}\right]-\mu(t)^{2}$ and solve them with the above deterministic initial condition $X_{0}=x_{0}$.
(e) Is $\left(X_{t}: t \geq 0\right)$ a Gaussian process?

Use the result of (d) to specify the distribution of X_{t} for all $t \geq 0$, and also give the stationary distribution as $t \rightarrow \infty$.

4. Birth-death processes

A general birth-death process $\left(X_{t}: t \geq 0\right)$ is a continuous-time Markov chain with state space $S=\mathbb{N}_{0}=\{0,1, \ldots\}$ and jump rates

$$
x \xrightarrow{\alpha_{x}} x+1 \quad \text { for all } x \in S, \quad x \xrightarrow{\beta_{x}} x-1 \quad \text { for all } x \geq 1 .
$$

(a) Give the generator G as a matrix and as an operator, and write the master equation in explicit form, i.e. $\frac{d}{d t} \pi_{t}(x)=\ldots \quad(x=0$ may need special consideration). Under which conditions on the jump rates is the process irreducible?
(b) Using detailed balance, find a formula for the stationary probabities $\pi(x)$ in terms of the jump rates and $\pi(0)$, normalization is not required.
(c) Suppose $\alpha_{x}=\alpha>0$ for $x \geq 0$ and $\beta_{x}=x \beta$ for $x \geq 1$ with $\beta>0$.

Under which conditions on α and β can the stationary probabilities $\pi(x)$ you found in (b) be normalized?
In that case compute the normalization and give a formula for $\pi(x)$.
(d) Suppose $\alpha_{x}=\beta_{x}=2^{x}$ for $x \geq 1$ and $\alpha_{0}=1$.

Can the stationary probabilities $\pi(x)$ you found in (b) be normalized?
If yes, compute the normalization and give a formula for $\pi(x)$.
Give the transition probabilities of the corresponding jump chain $\left(Y_{n}: n \in \mathbb{N}_{0}\right)$.
Does it have a stationary distribution? If yes, give a formula.
5. Consider an even number L of individuals, each having one of two possible types denoted by $X_{t}(i) \in\{A, B\}$ for all $i=1, \ldots, L$ and continuous times $t \geq 0$. Each individual changes its type independently of all others at rate 1 , in short $\quad A \xrightarrow{1} B$ and $B \xrightarrow{1} A$.
(a) Denoting by $X_{t}=\left(X_{t}(i): i=1, \ldots, L\right)$ the vector of types, give the state space of the process $\left(X_{t}: t \geq 0\right)$. Is this process irreducible? Does it have absorbing states?

From now on consider $N_{t}:=\sum_{i=1}^{L} \delta_{X_{t}(i), A}$ to be the number individuals of type A at time t.
(b) Give state space and generator of the process $\left(N_{t}: t \geq 0\right)$. Is it irreducible?

Show that the stationary distribution is of binomial form and give the parameters.
(c) Consider the rescaled process $U_{t}^{L}:=\frac{1}{L} N_{t}$ on the state space $[0,1]$.

Write down the generator of $\left(U_{t}^{L}: t \geq 0\right)$ and compute its limit as $L \rightarrow \infty$.
Use this to show that the limit process $U_{t}:=\lim _{L \rightarrow \infty} U_{t}^{L}$ is deterministic and is given as a solution to the ODE $\quad \frac{d}{d t} U_{t}=1-2 U_{t}$.
Solve this ODE for general initial condition $U_{0} \in[0,1]$.
(d) Now take $N_{0}=L / 2$ and consider the 'fluctuation process' $\quad Z_{t}^{L}=\frac{N_{t}-L / 2}{\sqrt{L}} \in \mathbb{R}$.

Write down the generator of this process, and use this to show that $\left(Z_{t}^{L}: t \geq 0\right)$ converges as $L \rightarrow \infty$ to an Ornstein-Uhlenbeck process $\left(Z_{t}: t \geq 0\right)$ with generator

$$
\begin{equation*}
\mathcal{L} f(z)=-2 z f^{\prime}(z)+\frac{1}{2} f^{\prime \prime}(z) \tag{20}
\end{equation*}
$$

