MA933 02.11.2017

Networks and Random Processes

Class test

The class test counts 25/100 module marks, [x] indicates weight of each question. Attempt all 5 questions.

- 1. (a) State the weak law of large numbers and the central limit theorem.
 - (b) Define the Erdős-Rényi random graph model G_{N,p}, including the set of all possible graphs and the corresponding probability distribution.
 Compute the expected degree distribution.
 - (c) Define what it means for a real-valued process (M_t : t ≥ 0) to be a martingale. State Itô's formula for a process (X_t : t ≥ 0) on state space S with generator L and a function f : S → R which does not explicitly depend on time. Include the expression for the quadratic variation of the martingale.
 - (d) Give the generator of the Poisson process $(N_t : t \ge 0)$ with rate $\lambda > 0$. Use Itô's formula to show that $N_t - \lambda t$ is a martingale and compute its quadratic variation. [20]

2. Consider the undirected graph G with adjacency matrix $A = \begin{pmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{pmatrix}$.

- (a) Draw the graph G. Identify a clique of vertices and draw a spanning tree of G.
- (b) Give the matrix of vertex distances d_{ij} and compute the characteristic path length L(G) and the diameter diam(G) of G.
- (c) Give the degree sequence (k_1, \ldots, k_6) and compute the degree distribution p(k) and the average degree $\langle k \rangle$ of G.
- (d) Compute the global clustering coefficient C and the average $\langle C_i \rangle$ of the local clustering coefficients C_i .
- (e) Give all non-zero entries of the joint degree distribution q(k, k'). Compute the marginal q(k). For all k' with q(k') > 0 compute the conditional distribution q(k|k') and the corresponding expectation $k_{nn}(k')$.
- 3. (a) State two equivalent definitions of standard Brownian motion.
 - (b) Let $(B_t : t \ge 0)$ be a standard Brownian motion. Prove that for any $\lambda > 0$, the process $(X_t : t \ge 0)$ with $X_t := \frac{1}{\lambda} B_{t\lambda^2}$ is also a standard Brownian motion.
 - (c) State the definition of a diffusion process on \mathbb{R} .

From now on, consider the Ornstein-Uhlenbeck process $(X_t : t \ge 0)$ given by the SDE

 $dX_t = -\alpha X_t dt + \sigma dB_t$ with $\alpha > 0$ and $X_0 = x_0$ (deterministic).

- (d) Write down the generator of this process. Derive equations for the mean $m(t) := \mathbb{E}[X_t]$ and the variance $v(t) := \mathbb{E}[X_t^2] - \mu(t)^2$ and solve them with the above deterministic initial condition $X_0 = x_0$.
- (e) Is (X_t : t ≥ 0) a Gaussian process?
 Use the result of (d) to specify the distribution of X_t for all t ≥ 0, and also give the stationary distribution as t → ∞.

[20]

4. Birth-death processes

A general birth-death process $(X_t : t \ge 0)$ is a continuous-time Markov chain with state space $S = \mathbb{N}_0 = \{0, 1, ...\}$ and jump rates

 $x \xrightarrow{\alpha_x} x + 1$ for all $x \in S$, $x \xrightarrow{\beta_x} x - 1$ for all $x \ge 1$.

- (a) Give the generator G as a matrix and as an operator, and write the master equation in explicit form, i.e. $\frac{d}{dt}\pi_t(x) = \dots$ (x = 0 may need special consideration). Under which conditions on the jump rates is the process irreducible?
- (b) Using detailed balance, find a formula for the stationary probabilies $\pi(x)$ in terms of the jump rates and $\pi(0)$, normalization is not required.
- (c) Suppose α_x = α > 0 for x ≥ 0 and β_x = xβ for x ≥ 1 with β > 0. Under which conditions on α and β can the stationary probabilities π(x) you found in (b) be normalized?

In that case compute the normalization and give a formula for $\pi(x)$.

(d) Suppose α_x = β_x = 2^x for x ≥ 1 and α₀ = 1.
Can the stationary probabilities π(x) you found in (b) be normalized?
If yes, compute the normalization and give a formula for π(x).
Give the transition probabilities of the corresponding jump chain (Y_n : n ∈ N₀).
Does it have a stationary distribution? If yes, give a formula.

[20]

- 5. Consider an even number L of individuals, each having one of two possible types denoted by $X_t(i) \in \{A, B\}$ for all i = 1, ..., L and continuous times $t \ge 0$. Each individual changes its type independently of all others at rate 1, in short $A \xrightarrow{1} B$ and $B \xrightarrow{1} A$.
 - (a) Denoting by $X_t = (X_t(i) : i = 1, ..., L)$ the vector of types, give the state space of the process $(X_t : t \ge 0)$. Is this process irreducible? Does it have absorbing states?

From now on consider $N_t := \sum_{i=1}^{L} \delta_{X_t(i),A}$ to be the number individuals of type A at time t.

- (b) Give state space and generator of the process $(N_t : t \ge 0)$. Is it irreducible? Show that the stationary distribution is of binomial form and give the parameters.
- (c) Consider the rescaled process $U_t^L := \frac{1}{L}N_t$ on the state space [0, 1]. Write down the generator of $(U_t^L : t \ge 0)$ and compute its limit as $L \to \infty$. Use this to show that the limit process $U_t := \lim_{L\to\infty} U_t^L$ is deterministic and is given as a solution to the ODE $\frac{d}{dt}U_t = 1 - 2U_t$. Solve this ODE for general initial condition $U_0 \in [0, 1]$.
- (d) Now take $N_0 = L/2$ and consider the 'fluctuation process' $Z_t^L = \frac{N_t L/2}{\sqrt{L}} \in \mathbb{R}$. Write down the generator of this process, and use this to show that $(Z_t^L : t \ge 0)$ converges as $L \to \infty$ to an Ornstein-Uhlenbeck process $(Z_t : t \ge 0)$ with generator

$$\mathcal{L}f(z) = -2zf'(z) + \frac{1}{2}f''(z) .$$
[20]