Networks and Random Processes

Class test

The class test counts $25 / 100$ module marks, [x] indicates weight of each question.
Attempt all 4 questions.

1. (a) State the weak law of large numbers and the central limit theorem.
(b) Consider the following degree sequences D,

$$
(0,1,2,3), \quad(3,3,3,3), \quad(0,1,1,2), \quad(2,3,3,2), \quad(1,1,1,1)
$$

Decide whether D is graphical. If yes, draw a (simple) graph with that degree sequence.
(c) Give the definition of a diffusion process $\left(X_{t}: t \geq 0\right)$ on \mathbb{R} and write down its generator and the corresponding stochastic differential equation (SDE). State Itô's formula for ($X_{t}: t \geq 0$) and a smooth function $f: \mathbb{R} \rightarrow \mathbb{R}$.
(d) Let $\left(B_{t}: t \geq 0\right)$ be standard Brownian motion with diffusion coefficient $\sigma^{2}=1$.

Use Itô's formula to derive the SDE for $Y_{t}:=B_{t}^{2}$.
Write down the generator for the process ($Y_{t}: t \geq 0$).
2. (a) Write down the generator and the heat equation for Brownian motion with diffusion coefficient $\sigma^{2}>0$.

Let $\left(X_{t}: t \geq 0\right)$ be a continuous-time random walk on $S=\mathbb{Z}$ with generator

$$
\mathcal{L} f(n)=(f(n+2)-f(n))+2(f(n-1)-f(n)), \quad f: \mathbb{Z} \rightarrow \mathbb{R},
$$

jumping two steps to the right with rate 1 , and one step to the left with rate 2 . For a small parameter $\epsilon>0$, consider the rescaled process $X_{t}^{\epsilon}:=\epsilon X_{t / \epsilon^{\alpha}}$ for some exponent $\alpha \in \mathbb{R}$.
(b) Write down the generator $\mathcal{L}^{\epsilon} f(x)$ of the rescaled proecess $\left(X_{t}^{\epsilon}: t \geq 0\right)$ for a smooth function $f: \mathbb{R} \rightarrow \mathbb{R}$ evaluated at $x \in \mathbb{R}$.
(c) Show that as $\epsilon \searrow 0, \mathcal{L}^{\epsilon}$ converges to the generator of Brownian motion for an appropriately chosen α which you should identify.
What is the diffusion coefficient of the limiting Brownian motion?
(d) Consider the modified process $\left(X_{t}: t \geq 0\right)$ with generator

$$
\mathcal{L} f(n)=(f(n+2)-f(n))+(f(n-1)-f(n)), \quad f: \mathbb{Z} \rightarrow \mathbb{R},
$$

where jump lengths are unchanged, but both jumps have rate 1 .
Show that now the rescaled process ($X_{t}^{\epsilon}: t \geq 0$) converges to a deterministic limit process ($Y_{t}: t \geq 0$), with a different choice of α which you should identify.
Give the generator of the limit process and solve for Y_{t} with initial condition $Y_{0}=0$.
3. Consider an undirected graph G with degree sequence $\quad D=(2,3,4,3,2)$.
(a) Draw a graph G with this degree sequence (the vertices should be numbered 1 to 5) and write its adjacency matrix.
(b) Identify all cliques of vertices in the graph.
(c) Give the matrix of vertex distances $d_{i j}$ and compute the characteristic path length $L(G)$ and the diameter $\operatorname{diam}(G)$ of G.
(d) Compute the degree distribution $p(k)$ and the average degree $\langle k\rangle$ of G.
(e) Compute the global clustering coefficient C and the average $\left\langle C_{i}\right\rangle$ of the local clustering coefficients C_{i}.
(f) Give all non-zero entries of the joint degree distribution $q\left(k, k^{\prime}\right)$. (You can write this directly going through all the edges of the graph).
4. A general birth-death process $\left(X_{t}: t \geq 0\right)$ is a continuous-time Markov chain with state space $S=\mathbb{N}_{0}=\{0,1, \ldots\}$ and jump rates

$$
x \xrightarrow{\alpha_{x}} x+1 \quad \text { for all } x \in S, \quad x \xrightarrow{\beta_{x}} x-1 \quad \text { for all } x \geq 1 .
$$

(a) Write down the generator as a matrix G and as an operator \mathcal{L}, and write the master equation in explicit form, i.e. $\frac{d}{d t} \pi_{t}(x)=\ldots \quad(x=0$ may need special consideration $)$.
Under which conditions on the jump rates is the process irreducible?
(b) Using detailed balance, find a formula for the stationary probabities $\pi(x)$ in terms of the jump rates and $\pi(0)$, normalization is not required.

From now on take $\alpha_{x}=\alpha(x+1)$ for $x \geq 0$ and $\beta_{x}=\beta x$ for $x \geq 1$ with $\alpha, \beta>0$.
(c) Under which conditions on α and β can the stationary probabilities $\pi(x)$ you found in (b) be normalized?
In that case compute the normalization and give a formula for $\pi(x)$.
(d) Using the evolution equation $\frac{d}{d t} \mathbb{E}\left[f\left(X_{t}\right)\right]=\mathbb{E}\left[\mathcal{L} f\left(X_{t}\right)\right]$ derive an equation for the mean $\mu(t):=\mathbb{E}\left[X_{t}\right]$ and solve it with initial condition $\mu(0)=0$. Consider the case $\alpha=\beta$ separately from $\alpha \neq \beta$.
Sketch the solution $t \mapsto \mu(t)$ for the three cases $\alpha<\beta, \alpha=\beta$ and $\alpha>\beta$.
(e) Using the same approach derive an equation for the second moment $m_{2}(t):=\mathbb{E}\left[X_{t}^{2}\right]$ which involves the first moment $\mu(t)$.
For the case $\alpha=\beta=1$ solve this equation with initial condition $m_{2}(0)=0$, and compute the variance $\operatorname{Var}\left[X_{t}\right]$ as a function of t.

