Stochastic Modelling and Random Processes

Hand-out 1
Linear Algebra

Consider a square matrix $A \in \mathbb{R}^{n \times n}$ with elements $a_{i j}$. The determinant of the matrix is given by

$$
\operatorname{det}(A)=\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) \prod_{i=1}^{n} a_{i \pi(i)}
$$

where the first sum is over all permutations π of the indices $1, \ldots, n$ with associated signature $\operatorname{sgn}(\pi) \in\{-1,1\} . A$ has n complex eigenvalues $\lambda_{i}, \ldots, \lambda_{n} \in \mathbb{C}$ which are the roots of the characteristic polynomial

$$
\chi_{A}(\lambda)=\operatorname{det}\left(A-\lambda \mathbb{I}_{n}\right)=\prod_{i=1}^{n}\left(\lambda_{i}-\lambda\right)
$$

which is a polynomial of degree n. If λ_{i} is an eigenvalue, so is the complex conjugate $\bar{\lambda}_{i}$, since χ_{A} has real coefficients. Furthermore

$$
\operatorname{det} A=\prod_{i=1}^{n} \lambda_{i} \quad \text { and } \quad \operatorname{Tr}(A)=\sum_{i=1}^{n} a_{i i}=\sum_{i=1}^{n} \lambda_{i}
$$

where the trace Tr is defined as the sum of the diagonal elements of A.
$|v\rangle \in \mathbb{C}^{n}$ is right (column) eigenvector with eigenvalue $\lambda \in \mathbb{C}$ and $\langle u|$ left (row) eigenvector if

$$
A|v\rangle=\lambda|v\rangle, \quad\langle u| A=\lambda\langle u| .
$$

From now we assume that all eigenvalues are distinct (see overleaf for other cases). Then A has a complete basis of eigenvectors, which can be normalized and are orthogonal in the sense that

$$
\left\langle u_{i} \mid v_{j}\right\rangle=\delta_{i j} \quad \text { and } \quad \sum_{i=1}^{n}\left|v_{i}\right\rangle\left\langle u_{i}\right|=\mathbb{I}
$$

Gershgorin theorem. Every eigenvalue of A lies in at least one Gershgorin disc

$$
D\left(a_{i i}, R_{i}\right) \subseteq \mathbb{C}, i=1, \ldots, n, \quad \text { where } \quad R_{i}=\sum_{j \neq i}\left|a_{i j}\right|
$$

Further remarks, including diagonalization

- If all eigenvalues are distinct, the matrix $\left|v_{i}\right\rangle\left\langle u_{i}\right| \in \mathbb{C}^{n \times n}$ projects a vector $\langle x|$ onto the eigenspace of the corresponding eigenvalue λ_{i}

$$
\left\langle x \mid v_{i}\right\rangle\left\langle u_{i}\right|=a_{i}\left\langle u_{i}\right| \quad \text { with coefficient } \quad a_{i}=\left\langle x \mid v_{i}\right\rangle .
$$

A itself can be decomposed as a linear combination of such projectors, $\quad A=\sum_{i=1}^{n} \lambda_{i}\left|v_{i}\right\rangle\left\langle u_{i}\right|$ For projections we have $\left|v_{i}\right\rangle\left\langle u_{i}\right|\left|v_{j}\right\rangle\left\langle u_{j}\right|=\delta_{i j}\left|v_{i}\right\rangle\left\langle u_{i}\right|$ so for powers of A we simply get

$$
A^{k}=\sum_{i=1}^{n} \lambda_{i}^{k}\left|v_{i}\right\rangle\left\langle u_{i}\right| \quad \text { for all } k \geq 1
$$

- Alternatively, one often considers the similarity transformation matrix

$$
Q=\sum_{j=1}^{n}\left|v_{j}\right\rangle\left\langle e_{j}\right|=\left[\left|v_{1}\right\rangle, \ldots,\left|v_{n}\right\rangle\right] \in \mathbb{C}^{n \times n} \quad\left(\left\langle e_{j}\right| \text { is } j \text {-th basis vector }\right),
$$

built from writing the right column eigenvectors into a square matrix. Then

$$
A Q=\sum_{i, j=1}^{n} \lambda_{i}\left|v_{i}\right\rangle\left\langle u_{i} \mid v_{j}\right\rangle\left\langle e_{j}\right|=\sum_{i=1}^{n} \lambda_{i}\left|v_{i}\right\rangle\left\langle e_{i}\right|=\sum_{i, j=1}^{n}\left|v_{i}\right\rangle\left\langle e_{i} \mid e_{j}\right\rangle\left\langle e_{j}\right| \lambda_{j}=Q \Lambda
$$

where $\Lambda=\sum_{j=1}^{n} \lambda_{j}\left|e_{j}\right\rangle\left\langle e_{j}\right|$ is the diagonal matrix of eigenvalues, and we have

$$
A=Q \Lambda Q^{-1} \quad \text { where the inverse of } Q \text { is } \quad Q^{-1}=\sum_{j=1}^{n}\left|e_{j}\right\rangle\left\langle u_{j}\right| .
$$

- If $A=A^{T}$ is symmetric, then all eigenvalues $\lambda_{i} \in \mathbb{R}$ are real and the eigenvectors have real entries, 'are equal' in the sense that $\left\langle\left. u_{i}\right|^{T}=\mid v_{i}\right\rangle$, and form an orthonormal basis of \mathbb{R}^{n}. In this case $Q \in \mathbb{R}^{n \times n}$ is an orthogonal matrix, i.e. $Q^{-1}=Q^{T}$.
- A matrix is diagonalizable with diagonal form Λ as given above if and only if the eigenvectors form a basis. If this is not the case, the matrix is called defective, and the Jordan normal form is not diagonal.

Justification of projector represenation

Recall for $A \in \mathbb{R}^{n \times n}$ we denote by $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$ its eigenvalues, and by $\left\langle u_{i}\right|$ and $\left|v_{i}\right\rangle$ the corresponding left and right eigenvectors. We assume that they both form a basis of \mathbb{C}^{n} and the normal form of the matrix A is a diagonal matrix. One simple sufficient condition for this is all eigenvalues to be distinct. Let $\lambda_{i} \neq \lambda_{j}$ be two distinct eigenvalues. Then

$$
\lambda_{i}\left\langle u_{i} \mid v_{j}\right\rangle=\left\langle u_{i}\right| A\left|v_{j}\right\rangle=\lambda_{j}\left\langle u_{i} \mid v_{j}\right\rangle,
$$

which implies $\left\langle u_{i} \mid v_{j}\right\rangle=0$, so corresponding left and right eigenvectors are orthogonal. Even if not all eigenvalues are distinct, as long as eigenvectors form a basis, they can be chosen such that

$$
\begin{equation*}
\left\langle u_{i} \mid v_{j}\right\rangle=\delta_{i j} \quad \text { for all } i, j=1, \ldots, n . \tag{1}
\end{equation*}
$$

The projector matrices form a partition of unity (the identity matrix) in the sense that

$$
\sum_{i=1}^{n}\left|v_{i}\right\rangle\left\langle u_{i}\right|=\mathbb{I} .
$$

This can be seen from (1) and the fact that eigenvectors form a basis, since for any k, l we have

$$
\left\langle u_{k}\right|\left(\sum_{i=1}^{n}\left|v_{i}\right\rangle\left\langle u_{i}\right|\right)\left|v_{l}\right\rangle=\sum_{i=1}^{n}\left\langle u_{k} \mid v_{i}\right\rangle\left\langle u_{i} \mid v_{l}\right\rangle=\sum_{i=1}^{n} \delta_{k i} \delta_{l i}=\delta_{k l}=\left\langle u_{k} \mid v_{l}\right\rangle=\left\langle u_{k}\right| \mathbb{I}\left|v_{l}\right\rangle .
$$

This implies of course $\quad A=A \sum_{i=1}^{n}\left|v_{i}\right\rangle\left\langle u_{i}\right|=\sum_{i=1}^{n} \lambda_{i}\left|v_{i}\right\rangle\left\langle u_{i}\right|$.

