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Stochastic Modelling and Random Processes

Hand-out 5
Generating functions, branching processes

For a given sequence of numbers a0, a1, . . . ∈ R we define the generating function

G(s) =
∞∑
n=0

an s
n .

s ≥ 0 is a dummy variable, and if the sequence is bounded the domain of definition of this power
series includes the interval [0, 1).

Examples.

• If a0 = a1 = 1/2 and an = 0 for n ≥ 2, then G(s) = 1
2(1 + s) , s ∈ [0,∞) .

• If an = 2−n−1 then G(s) =
∑∞

n=0 s
−n−1 sn = (2− s)−1 , s ∈ [0, 2) .

G(s) is a convenient way of encoding the sequence, and often one can get an explicit formula.
Given a generating function G(s), we can recover the sequence by differentiation

a0 = G(0) , a1 = G′(0) , a2 =
1

2
G′′(0) , . . . an =

1

n!
G(n)(0) .

We will often use genering functions to encode the sequence of probabilities pn = P(X = n) of a
non-negative, integer-valued random variable X ,

GX(s) =

∞∑
n=0

pn s
n = E

(
sX
)
, s ∈ [0, 1] .

We call GX also probability generating function of X , and

GX(1) = 1 , G′X(1) = E(X) and Var(X) = G′′X(1) +G′X(1)−
(
G′X(1)

)2
.

Useful properties.

• If X,Y are independent non-negative, integer-valued random variables, then

GX+Y (s) = GX(s)GY (s) .

This is often much easier than evaluating the convolution sum

P(X + Y = n) =

n∑
k=0

P(X = k)P(Y = n− k) .

• More generally, ifX1, X2, . . . are independent, identically distributed random variables (iidrv’s),
and N is a random number of summands, then

Z =
N∑
k=1

Xk has generating function GZ(s) = GN

(
GX1(s)

)
.

www2.warwick.ac.uk/fac/sci/mathsys/courses/msc/ma933/


A branching process Z = (Zn : n ∈ N) with state space S = N can be interpreted as a simple
model for cell division or population growth. It is defined recursively by

Z0 = 1 , Zn+1 = Xn
1 + . . .+Xn

Zn
for all n ≥ 0 ,

where the Xn
i ∈ N are iidrv’s denoting the offspring of individuum i in generation n. Zn is then the

size of the population in generation n.
Let G(s) := E

(
sX

0
1
)

be the probability generating function of a single offspring X0
1 and

Gn(s) := E
(
sZn
)
=

∞∑
k=0

P(Zn = k) sk .

Then we can derive the last formula on the previous page,

Gn+1(s) = E
(
sZn+1

)
= E

(
sX

n
1 +...+Xn

Zn

)
=
∞∑
k=0

P(Zn = k)E
(
sX

n
1 +...+Xn

k
)
=

=
∞∑
k=0

P(Zn = k)E
(
sX

n
1
)︸ ︷︷ ︸

=G(s)

k
= Gn

(
G(s)

)
.

With average offspring µ := E(X0
1 ) = G′(0) we get with the chain rule and G(1) = 1,

E(Zn+1) = G′n+1(1) =
(
Gn

(
G(s)

))′ ∣∣∣
s=1

= G′n
(
G(1)

)
G′(1) = E(Zn)µ .

With the initial condition Z0 = 1, this implies E(Zn) = µn
n→∞−→

{
∞ , µ > 1
0 , µ < 1

.

Probability of extinction.
Zn = 0 is an absorbing state of the branching process corresponding to extinction of the population.
Typically, the population either grows to infinite size or gets extinct in finite time. If T is the random
time of extinction, we have

P(T ≤ n) = P(Zn = 0) = Gn(0)

for the probability that the population is extinct in generation n. Thus for the process to get extinct
eventually (we call this event ’extinction’) we have

P(extinction) = P(T <∞) = lim
n→∞

P(T ≤ n) = lim
n→∞

Gn(0) .

So the event T =∞ corresponds to ’non-extinction’ or ’survival’.
Using a cobweb plot, one can easily see that this leads to

P(extinction) = s∗ where s∗ = G(s∗) ,

is the smallest fixed point of G on [0, 1].
The possible scenarios for the fate of the population are

µ ≤ 1 ⇒ P(extinction) = 1 and the population dies out for sure ,

µ > 1 ⇒ P(extinction) < 1 and the population survives with positive probability .


