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Stochastic Modelling and Random Processes

Hand-out 5
Generating functions, branching processes

For a given sequence of numbers ag, a1, . .. € R we define the generating function
o0
G(s) = Z an s" .
n=0

s > 0 is a dummy variable, and if the sequence is bounded the domain of definition of this power
series includes the interval [0, 1).

Examples.

e Ifag=a; =1/2and a, =0forn >2,then G(s)=3(1+s), s€0,00).

e Ifa, =2""lthen G(s)=> oo gs " ls"=(2-5"1, s€][0,2).
G (s) is a convenient way of encoding the sequence, and often one can get an explicit formula.
Given a generating function G/(s), we can recover the sequence by differentiation

1 1
ap=G0), a1 =G0), ay= 3 G"(0), ... an= EG(”)(O) .

We will often use genering functions to encode the sequence of probabilities p,, = P(X = n) of a
non-negative, integer-valued random variable X,

Gx(s) = an s"=E(sY), sel0,1].
n=0

We call Gx also probability generating function of X, and

Gx(1)=1, Gx(1)=E(X) and Var(X)=G%(1)+Gy%(1) — (G%(1)*.

Useful properties.

e If X Y are independent non-negative, integer-valued random variables, then
Gxiv(s) = Gx(s)Gy(s) .

This is often much easier than evaluating the convolution sum
n
P(X+Y =n)=) P(X=kPY =n—k).
k=0

e More generally, if X7, X, ... are independent, identically distributed random variables (iidrv’s),
and N is a random number of summands, then

N
Z = ZXk has generating function Gz(s) = Gn(Gx,(s)) .
k=1
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A branching process Z = (Z,, : n € N) with state space S = N can be interpreted as a simple
model for cell division or population growth. It is defined recursively by

Zo=1, Zpp1=X{+...+Xz foralln>0,

where the X' € N are iidrv’s denoting the offspring of individuum 7 in generation n. Z,, is then the
size of the population in generation n.
Let G(s) := E(SX? ) be the probability generating function of a single offspring X{ and

(e e]
Gn(s) :=E(s7) => P(Z,=k)s".
k=0
Then we can derive the last formula on the previous page,

Gni1(s) = E(s71) = E(s™ %) = " P(Z, = k) E(sM ) =
k=0

= SRz = RGN = Ga(G)
kzzo :(G(s)) ( )

With average offspring 1z := E(XY) = G’(0) we get with the chain rule and G(1) = 1,

E(Zus1) = Gpaa (1) = (Ga(€(9)))’

= G, (G() ¢'(1) = E(Zy)

s=1
With the initial condition Zy = 1, this implies E(Z,) =u" — {

Probability of extinction.
Zy = 0 is an absorbing state of the branching process corresponding to extinction of the population.
Typically, the population either grows to infinite size or gets extinct in finite time. If 7" is the random
time of extinction, we have

(T < n) = P(Zy = 0) = Gn(0)

for the probability that the population is extinct in generation n. Thus for the process to get extinct
eventually (we call this event ’extinction’) we have

P(extinction) = P(T < 00) = lim P(T < n) = lim G,(0).

n—oo n—oo

So the event 1" = oo corresponds to "non-extinction’ or ’survival’.
Using a cobweb plot, one can easily see that this leads to

P(extinction) = s* where s* = G(s"),

is the smallest fixed point of G on [0, 1].
The possible scenarios for the fate of the population are

u<1 = P(extinction) =1 and the population dies out for sure ,
uw>1 = P(extinction) < 1 and the population survives with positive probability .



