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Stochastic Modelling and Random Processes

Hand-out 6
Heavy tails, extreme value statistics

A positive random variable X with CDF F is said to have a power-law tail with power α > 0, if

F (x) := P[X > x] ' Cx−α as x→∞ .

The simplest example is the Pareto distribution with scale parameter xm > 0 and power α > 0,

where X ∼ Pareto(xm, α) and F (x) = (xm/x)α for x ≥ xm .

We have E(X) = αxm/(α− 1) if α > 1 and Var(X) = x2mα
(α−1)2(α−2) if α > 2, otherwise∞.

More generally, X is said to have a heavy tail if 1
x logF (x)→ 0 as x→∞ ,

which includes also Log-Normal or stretched exponential tails (and many more).
Power-laws are also called scale-free distributions since the power does not change under scaling,
e.g. for Pareto distributions we have

X ∼ Pareto(xm, α) then λX ∼ Pareto(λxm, α) for λ > 0 .

In contrast, for X ∼ Exp(α) has scale E[X] = 1/α and we have λX ∼ Exp(α/λ).
This property is relevant in critical phenomena in statistical mechanics, where systems exhibit scale
free distributions at points of phase transitions. Power law degree distributions in complex networks
can emerge from preferential attachment-type dynamics, which is often used as an explanation for the
abundance of power-law distributed observables in social or other types of networks.

A second important example are α-stable Lévy distributions Lα, α ∈ (0, 2], which in the sym-
metric case have characteristic functions

χα(t) = e−|c t|
α

where the scale c > 0 determines the width .

Note that for α = 2 this corresponds to the centred Gaussian, and for α = 1 it is known as the Cauchy
distribution with PDF f1(x) = 1

π
c

c2+x2
.

In general, symmetric Lα distributions have power-law tails Fα(x) ∝ c/|x|α as |x| → ∞.
They are the limit laws for general heavy-tailed distributions with diverging mean and/or variance.

Theorem. Generalized LLN and CLT
Let X1, X2 . . . be iid random variables with symmetric power-law tail P(|Xi| ≥ x) ∝ x−α with
α ∈ (0, 2). For Sn =

∑n
i=1Xi we have for α ∈ (0, 1)

1

n
Sn does not converge, but

1

n1/α
Sn converges to a r.v. (modified LLN) .

If α ∈ (1, 2), E(|Xi|) <∞ and we have convergence in distribution

1

n
Sn

D−→ µ = E(Xi) (usual LLN) ,

1

n1/α
(Sn − nµ)

D−→ Lα (generalized CLT) .

The proof follows the same idea as the usual CLT with |t|α being the leading order term in the
expansion of the characteristic function.
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Extreme value statistics

Consider a sequence of iid random variables X1, X2, . . . in R with CDF F , and let

Mn = max{X1, . . . , Xn} be the maximum of the first n variables .

Similarly to the CLT, the distribution of Mn converges to a (rather) universal limit distribution.

Extreme value theorem - EVT (Fisher-Tippet Gnedenko)
If there exist normalizing sequences an, bn ∈ R such that P

(
Mn−bn
an

≤ x
)

converges to a non-
degenerate CDF G(x) as n→∞, then G is a generalized extreme value distribution

G(x) = exp

(
−
(

1 + k
(x− µ

σ

))−1/k)
(1)

with parameters for location µ ∈ R, scale σ > 0 and shape k ∈ R.

The sequences and parameter values of G are related to the tail F (see e.g. 1 for details). Depending
on the shape parameter k, one typically distinguishes the following three standardized classes:

• Gumbel (Type I): k = 0 and GI(x) = exp
(
− e−x

)
limit if F has exponential tail (including actual exponential or Gaussian rv’s)

• Fréchet (Type II): k = 1/α > 0 and GII(x) =

{
0 , x ≤ 0

exp (−x−α) , x > 0

limit if F has heavy tail (including e.g. power laws)

• Weibull (Type III): k = −1/α < 0 and GIII(x) =

{
exp (−(−x)α) , x < 0

1 , x ≥ 0

limit if F̄ has light tail (including bounded support such as uniform rv’s)

Asymptotic tails as x→∞ of Gumbel and Fréchet are given as

GI(x) ' e−x and GII(x) ' x−α .

The typical scaling (location) sn of E(Mn) as a function of n can be determined relatively easily.
Note that for iid random variables we have

P(Mn ≤ x) = P(X1 ≤ x, . . . ,Xn ≤ x) = P(X1 ≤ x)n = (F (x))n .

Now sn is determined by requiring that (F (sn))n has a non-degenerate limit in (0, 1) as n→∞, so

(F (sn))n =
(
1− F (sn)

)n → e−c , c > 0 which implies F (sn) ' c/n .

• For exponential Xi ∼ Exp(λ) iid random variables with tail F̄ (sn) = e−λsn this leads to

sn ' (log n− log c)/λ which implies Mn = (log n+ ξn)/λ

where ξn is a random variable that converges as n → ∞. This implies that we may choose
bn = log n and an = λ in EVT with convergence to Gumbel.

• For Xi ∼ Pareto(xm, α) iid we get sn ' xm(n/c)1/α , so that Mn = xmn
1/α ξn

with multiplicative randomness, implying bn = 0 and an = xmn
1/α as a valid normalization

with convergence to Fréchet with parameter α.
Note that forα ∈ (0, 1) with infinite mean, this impliesMn ∝ Xn � n so the sum is dominated
by the largest contributions, whereas for α > 1 we have Mn � Sn ∝ n.

• For uniform Xi ∼ U([0, 1)) iid we expect Mn → 1 as n → ∞, and with F (x) = 1 − x we
get sn ' 1− c/n so that we can choose bn = 1 and an = 1/n with convergence to Weibull.
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Statistics of records

Consider iid continuous random variables X1, X2, . . . taking values in a connected set S ⊆ R (e.g.
S = [0, 1) or S = R) with distribution function F . Define the indicators of record events

In := 1(Xn is a record) =

{
1 , if Mn = Xn, Mn−1 < Xn

0 , otherwise
.

• Since the rank order of iidrv’s is uniform independently of F , the record probability is

P[Xn record] = E[In] =
(n− 1)!

n!
=

1

n
and In ∼ Be(1/n) with I1 = 1 .

This implies that the number of records up to time n,

Rn :=
n∑
k=1

In ∈ {1, . . . , n} has expectation E[Rn] =
n∑
k=1

1

k
' log n+ γ +O(1/n)

as n→∞ with Euler constant γ = 0.57721 . . ..

• In+1 andMn+1 depend only onMn andXn+1, and are independent of the rank order ofX1, . . . , Xn

and therefore of I1, . . . , In. Therefore

Var[Rn] =

n∑
k=1

Var[Ik] =

n∑
k=1

1

k

(
1− 1

k

)
' log n+ γ − π2/6 +O(1/n) .

So STD[Rn]/E[Rn] ' 1/
√

log n→ 0 and Rn →∞ with probability 1 as n→∞.

• We can compute the probability generating function for s ∈ [0, 1]

E
[
sRn
]

= E
[
s
∑
k Ik
]

=

n∏
k=1

E
[
sIk
]

=

n∏
k=1

(
s

1

k
+
k−1

k

)
=

1

n!

n−1∏
k=0

(k+s) =
Γ(s+n)

Γ(s)Γ(n+ 1)
.

Then we can use Stirling’s formula for asymptotics of the Gamma function to get as n→∞

G(s) := E
[
sRn−1

]
' 1

sΓ(s)
ns−1 =

1

Γ(s+ 1)
ns−1 ≈ elogn(s−1) ,

since Γ(1) = Γ(2) = 1 and Γ(s + 1) is close to 1 for s ∈ [0, 1]. Recall that the generating function
of Y ∼ Poi(λ) is GY (s) = E

[
sY
]

=
∑n

k=0(λs)
ke−λ/k! = eλ(s−1) .

So for large n, Rn − 1 ∈ N0 is approximately Poisson distributed with mean log n. In particular,
with probability G(0) = 1/n we have Rn = 1 with no further record except R1 = 1 until time n.

• Set T1 = 1 and let Ti+1 = min
{
m > Ti : Xm is record

}
∈ N, defining the sequence of record

times where Ti ↑ ∞ as i→∞ by definition. Since

{Rn < i} = {Ti > n} we have P[Ti > n] ≥ P[Rn = 1] = 1/n

for all i > 1, so record times are heavy-tailed with E[Ti] =∞.
The time to the next record Ti+1 − Ti only depends on the record value XTi , and since XT1 <
XT2 < . . . we have

P
[
Ti+1 − Ti > n

∣∣Ti = m
]
≥ P

[
T2 − 1 > n

]
≥ 1/n

for all i ≥ 1 and m ≥ i. In particular E
[
Ti+1 − Ti

∣∣Ti = m
]

=∞.
On the other hand, given Ti = m the previous record time Ti−1 is uniformly distributed in {i −
1, . . . ,m−1} (modulo boundary effects close to i−1). In general, one can show that ratios of record
times converge in distribution to a uniform random variable

Ti−1/Ti
D−→ U

(
[0, 1)

)
as i→∞ .

Note that NONE of the above depends on the actual distribution F of the Xi!


