MA933 05.12.2019

Stochastic Modelling and Random Processes

Hand-out 6

Heavy tails, extreme value statistics

A positive random variable X with CDF F is said to have a **power-law tail** with **power** $\alpha > 0$, if

$$\overline{F}(x) := \mathbb{P}[X > x] \simeq C x^{-\alpha} \quad \text{as } x \to \infty .$$

The simplest example is the **Pareto distribution** with scale parameter $x_m > 0$ and power $\alpha > 0$,

where
$$X \sim \text{Pareto}(x_m, \alpha)$$
 and $\overline{F}(x) = (x_m/x)^{\alpha}$ for $x \ge x_m$

We have $\mathbb{E}(X) = \alpha x_m / (\alpha - 1)$ if $\alpha > 1$ and $\operatorname{Var}(X) = \frac{x_m^2 \alpha}{(\alpha - 1)^2 (\alpha - 2)}$ if $\alpha > 2$, otherwise ∞ .

More generally, X is said to have a heavy tail if $\frac{1}{x}\log \overline{F}(x) \to 0$ as $x \to \infty$,

which includes also Log-Normal or stretched exponential tails (and many more).

Power-laws are also called **scale-free distributions** since the power does not change under scaling, e.g. for Pareto distributions we have

$$X \sim \operatorname{Pareto}(x_m, \alpha)$$
 then $\lambda X \sim \operatorname{Pareto}(\lambda x_m, \alpha)$ for $\lambda > 0$.

In contrast, for $X \sim \text{Exp}(\alpha)$ has scale $\mathbb{E}[X] = 1/\alpha$ and we have $\lambda X \sim \text{Exp}(\alpha/\lambda)$. This property is relevant in **critical phenomena in statistical mechanics**, where systems exhibit scale free distributions at points of phase transitions. Power law degree distributions in complex networks can emerge from preferential attachment-type dynamics, which is often used as an explanation for the abundance of power-law distributed observables in social or other types of networks.

A second important example are α -stable Lévy distributions L_{α} , $\alpha \in (0, 2]$, which in the symmetric case have characteristic functions

$$\chi_{\alpha}(t) = e^{-|ct|^{\alpha}}$$
 where the scale $c > 0$ determines the width.

Note that for $\alpha = 2$ this corresponds to the centred Gaussian, and for $\alpha = 1$ it is known as the **Cauchy** distribution with PDF $f_1(x) = \frac{1}{\pi} \frac{c}{c^2 + x^2}$.

In general, symmetric L_{α} distributions have power-law tails $\overline{F}_{\alpha}(x) \propto c/|x|^{\alpha}$ as $|x| \to \infty$.

They are the limit laws for general heavy-tailed distributions with diverging mean and/or variance.

Theorem. Generalized LLN and CLT

Let $X_1, X_2...$ be iid random variables with symmetric power-law tail $\mathbb{P}(|X_i| \ge x) \propto x^{-\alpha}$ with $\alpha \in (0, 2)$. For $S_n = \sum_{i=1}^n X_i$ we have for $\alpha \in (0, 1)$

$$\frac{1}{n}S_n$$
 does not converge, but $\frac{1}{n^{1/\alpha}}S_n$ converges to a r.v. (modified LLN).

If $\alpha \in (1,2)$, $\mathbb{E}(|X_i|) < \infty$ and we have convergence in distribution

$$\frac{1}{n}S_n \xrightarrow{D} \mu = \mathbb{E}(X_i) \qquad \text{(usual LLN)},$$
$$\frac{1}{n^{1/\alpha}}(S_n - n\mu) \xrightarrow{D} L_\alpha \qquad \text{(generalized CLT)}.$$

The proof follows the same idea as the usual CLT with $|t|^{\alpha}$ being the leading order term in the expansion of the characteristic function.

Extreme value statistics

Consider a sequence of iid random variables X_1, X_2, \ldots in \mathbb{R} with CDF F, and let

 $M_n = \max\{X_1, \dots, X_n\}$ be the maximum of the first *n* variables.

Similarly to the CLT, the distribution of M_n converges to a (rather) universal limit distribution.

Extreme value theorem - EVT (Fisher-Tippet Gnedenko)

If there exist normalizing sequences $a_n, b_n \in \mathbb{R}$ such that $\mathbb{P}(\frac{M_n - b_n}{a_n} \leq x)$ converges to a nondegenerate CDF G(x) as $n \to \infty$, then G is a generalized extreme value distribution

$$G(x) = \exp\left(-\left(1 + k\left(\frac{x-\mu}{\sigma}\right)\right)^{-1/k}\right)$$
(1)

with parameters for location $\mu \in \mathbb{R}$, scale $\sigma > 0$ and shape $k \in \mathbb{R}$.

The sequences and parameter values of G are related to the tail \overline{F} (see e.g. ¹ for details). Depending on the shape parameter k, one typically distinguishes the following three **standardized classes**:

- Gumbel (Type I): k = 0 and $G_{I}(x) = \exp(-e^{-x})$ limit if \overline{F} has exponential tail (including actual exponential or Gaussian rv's)
- Fréchet (Type II): $k = 1/\alpha > 0$ and $G_{\text{II}}(x) = \begin{cases} 0 & , x \le 0 \\ \exp(-x^{-\alpha}) & , x > 0 \end{cases}$

limit if \overline{F} has heavy tail (including e.g. power laws)

• Weibull (Type III): $k = -1/\alpha < 0$ and $G_{\text{III}}(x) = \begin{cases} \exp(-(-x)^{\alpha}) &, x < 0 \\ 1 &, x \ge 0 \end{cases}$

limit if \overline{F} has light tail (including bounded support such as uniform rv's)

Asymptotic tails as $x \to \infty$ of Gumbel and Fréchet are given as

 $\overline{G}_{\mathrm{I}}(x) \simeq e^{-x} \quad \text{and} \quad \overline{G}_{\mathrm{II}}(x) \simeq x^{-\alpha} \; .$

The typical scaling (location) s_n of $\mathbb{E}(M_n)$ as a function of n can be determined relatively easily. Note that for iid random variables we have

 $\mathbb{P}(M_n \le x) = \mathbb{P}(X_1 \le x, \dots, X_n \le x) = \mathbb{P}(X_1 \le x)^n = (F(x))^n.$

Now s_n is determined by requiring that $(F(s_n))^n$ has a non-degenerate limit in (0,1) as $n \to \infty$, so

 $(F(s_n))^n = \left(1 - \overline{F}(s_n)\right)^n \to e^{-c}, \ c > 0 \quad \text{which implies} \quad \overline{F}(s_n) \simeq c/n \ .$

• For exponential $X_i \sim \text{Exp}(\lambda)$ iid random variables with tail $\overline{F}(s_n) = e^{-\lambda s_n}$ this leads to

 $s_n \simeq (\log n - \log c)/\lambda$ which implies $M_n = (\log n + \xi_n)/\lambda$

where ξ_n is a random variable that converges as $n \to \infty$. This implies that we may choose $b_n = \log n$ and $a_n = \lambda$ in EVT with convergence to **Gumbel**.

• For $X_i \sim \mathbf{Pareto}(x_m, \alpha)$ iid we get $s_n \simeq x_m (n/c)^{1/\alpha}$, so that $M_n = x_m n^{1/\alpha} \xi_n$ with multiplicative randomness, implying $b_n = 0$ and $a_n = x_m n^{1/\alpha}$ as a valid normalization with convergence to **Fréchet** with parameter α .

Note that for $\alpha \in (0, 1)$ with infinite mean, this implies $M_n \propto X_n \gg n$ so the sum is dominated by the largest contributions, whereas for $\alpha > 1$ we have $M_n \ll S_n \propto n$.

• For uniform $X_i \sim U([0,1))$ iid we expect $M_n \to 1$ as $n \to \infty$, and with $\overline{F}(x) = 1 - x$ we get $s_n \simeq 1 - c/n$ so that we can choose $b_n = 1$ and $a_n = 1/n$ with convergence to Weibull.

¹J-P. Bouchaud, M. Potters, Theory of Financial Risk and Derivative Pricing: From Statistical Physics to Risk Management, CUP 2003 2nd edition, Chapter 2

Statistics of records

Consider iid continuous random variables X_1, X_2, \ldots taking values in a connected set $S \subseteq \mathbb{R}$ (e.g. S = [0, 1) or $S = \mathbb{R}$) with distribution function F. Define the indicators of **record events**

$$I_n := \mathbb{1}(X_n \text{ is a record}) = \begin{cases} 1 & \text{, if } M_n = X_n, \ M_{n-1} < X_n \\ 0 & \text{, otherwise} \end{cases}$$

• Since the rank order of iidrv's is uniform independently of F, the record probability is

$$\mathbb{P}[X_n \text{ record}] = \mathbb{E}[I_n] = \frac{(n-1)!}{n!} = \frac{1}{n} \text{ and } I_n \sim \text{Be}(1/n) \text{ with } I_1 = 1.$$

This implies that the **number of records up to time** *n*,

$$R_n := \sum_{k=1}^n I_n \in \{1, \dots, n\} \quad \text{has expectation} \quad \mathbb{E}[R_n] = \sum_{k=1}^n \frac{1}{k} \simeq \log n + \gamma + O(1/n)$$

as $n \to \infty$ with Euler constant $\gamma = 0.57721 \dots$

• I_{n+1} and M_{n+1} depend only on M_n and X_{n+1} , and are independent of the rank order of X_1, \ldots, X_n and therefore of I_1, \ldots, I_n . Therefore

$$\operatorname{Var}[R_n] = \sum_{k=1}^n \operatorname{Var}[I_k] = \sum_{k=1}^n \frac{1}{k} \left(1 - \frac{1}{k} \right) \simeq \log n + \gamma - \pi^2 / 6 + O(1/n) \; .$$

So $\operatorname{STD}[R_n]/\mathbb{E}[R_n] \simeq 1/\sqrt{\log n} \to 0$ and $R_n \to \infty$ with probability 1 as $n \to \infty$.

• We can compute the **probability generating function** for $s \in [0, 1]$

$$\mathbb{E}[s^{R_n}] = \mathbb{E}[s^{\sum_k I_k}] = \prod_{k=1}^n \mathbb{E}[s^{I_k}] = \prod_{k=1}^n \left(s\frac{1}{k} + \frac{k-1}{k}\right) = \frac{1}{n!}\prod_{k=0}^{n-1}(k+s) = \frac{\Gamma(s+n)}{\Gamma(s)\Gamma(n+1)}$$

Then we can use Stirling's formula for asymptotics of the Gamma function to get as $n
ightarrow \infty$

$$G(s) := \mathbb{E}[s^{R_n - 1}] \simeq \frac{1}{s\Gamma(s)} n^{s - 1} = \frac{1}{\Gamma(s + 1)} n^{s - 1} \approx e^{\log n(s - 1)}$$

since $\Gamma(1) = \Gamma(2) = 1$ and $\Gamma(s+1)$ is close to 1 for $s \in [0,1]$. Recall that the generating function of $Y \sim \operatorname{Poi}(\lambda)$ is $G_Y(s) = \mathbb{E}[s^Y] = \sum_{k=0}^n (\lambda s)^k e^{-\lambda} / k! = e^{\lambda(s-1)}$.

So for large $n, R_n - 1 \in \mathbb{N}_0$ is approximately **Poisson distributed with mean** $\log n$. In particular, with probability G(0) = 1/n we have $R_n = 1$ with no further record except $R_1 = 1$ until time n.

• Set $T_1 = 1$ and let $T_{i+1} = \min \{m > T_i : X_m \text{ is record}\} \in \mathbb{N}$, defining the sequence of **record** times where $T_i \uparrow \infty$ as $i \to \infty$ by definition. Since

$$\{R_n < i\} = \{T_i > n\}$$
 we have $\mathbb{P}[T_i > n] \ge \mathbb{P}[R_n = 1] = 1/n$

for all i > 1, so record times are heavy-tailed with $\mathbb{E}[T_i] = \infty$. The **time to the next record** $T_{i+1} - T_i$ only depends on the record value X_{T_i} , and since $X_{T_1} < X_{T_2} < \ldots$ we have

$$\mathbb{P}[T_{i+1} - T_i > n | T_i = m] \ge \mathbb{P}[T_2 - 1 > n] \ge 1/n$$

for all $i \ge 1$ and $m \ge i$. In particular $\mathbb{E}[T_{i+1} - T_i | T_i = m] = \infty$.

On the other hand, given $T_i = m$ the **previous record time** T_{i-1} is uniformly distributed in $\{i - 1, \ldots, m-1\}$ (modulo boundary effects close to i-1). In general, one can show that ratios of record times converge in distribution to a uniform random variable

$$T_{i-1}/T_i \xrightarrow{D} U([0,1))$$
 as $i \to \infty$.

Note that NONE of the above depends on the actual distribution F of the X_i !