Stochastic Modelling and Random Processes

Hand-out 6

Heavy tails, extreme value statistics

A positive random variable X with CDF F is said to have a power-law tail with power $\alpha>0$, if

$$
\bar{F}(x):=\mathbb{P}[X>x] \simeq C x^{-\alpha} \quad \text { as } x \rightarrow \infty .
$$

The simplest example is the Pareto distribution with scale parameter $x_{m}>0$ and power $\alpha>0$,

$$
\text { where } \quad X \sim \operatorname{Pareto}\left(x_{m}, \alpha\right) \quad \text { and } \quad \bar{F}(x)=\left(x_{m} / x\right)^{\alpha} \quad \text { for } x \geq x_{m}
$$

We have $\mathbb{E}(X)=\alpha x_{m} /(\alpha-1)$ if $\alpha>1$ and $\operatorname{Var}(X)=\frac{x_{m}^{2} \alpha}{(\alpha-1)^{2}(\alpha-2)}$ if $\alpha>2$, otherwise ∞.
More generally, X is said to have a heavy tail if $\frac{1}{x} \log \bar{F}(x) \rightarrow 0$ as $x \rightarrow \infty$, which includes also Log-Normal or stretched exponential tails (and many more).
Power-laws are also called scale-free distributions since the power does not change under scaling, e.g. for Pareto distributions we have

$$
X \sim \operatorname{Pareto}\left(x_{m}, \alpha\right) \quad \text { then } \quad \lambda X \sim \operatorname{Pareto}\left(\lambda x_{m}, \alpha\right) \quad \text { for } \lambda>0
$$

In contrast, for $X \sim \operatorname{Exp}(\alpha)$ has scale $\mathbb{E}[X]=1 / \alpha$ and we have $\lambda X \sim \operatorname{Exp}(\alpha / \lambda)$.
This property is relevant in critical phenomena in statistical mechanics, where systems exhibit scale free distributions at points of phase transitions. Power law degree distributions in complex networks can emerge from preferential attachment-type dynamics, which is often used as an explanation for the abundance of power-law distributed observables in social or other types of networks.

A second important example are α-stable Lévy distributions $L_{\alpha}, \alpha \in(0,2]$, which in the symmetric case have characteristic functions

$$
\chi_{\alpha}(t)=e^{-|c t|^{\alpha}} \quad \text { where the scale } \quad c>0 \quad \text { determines the width } .
$$

Note that for $\alpha=2$ this corresponds to the centred Gaussian, and for $\alpha=1$ it is known as the Cauchy distribution with PDF $\quad f_{1}(x)=\frac{1}{\pi} \frac{c}{c^{2}+x^{2}}$.
In general, symmetric L_{α} distributions have power-law tails $\quad \bar{F}_{\alpha}(x) \propto c /|x|^{\alpha}$ as $|x| \rightarrow \infty$.
They are the limit laws for general heavy-tailed distributions with diverging mean and/or variance.

Theorem. Generalized LLN and CLT

Let $X_{1}, X_{2} \ldots$ be iid random variables with symmetric power-law tail $\mathbb{P}\left(\left|X_{i}\right| \geq x\right) \propto x^{-\alpha}$ with $\alpha \in(0,2)$. For $S_{n}=\sum_{i=1}^{n} X_{i}$ we have for $\alpha \in(0,1)$

$$
\frac{1}{n} S_{n} \quad \text { does not converge, but } \quad \frac{1}{n^{1 / \alpha}} S_{n} \quad \text { converges to a r.v. } \quad \text { (modified LLN) . }
$$

If $\alpha \in(1,2), \mathbb{E}\left(\left|X_{i}\right|\right)<\infty$ and we have convergence in distribution

$$
\begin{aligned}
\frac{1}{n} S_{n} \xrightarrow{D} \mu=\mathbb{E}\left(X_{i}\right) & \text { (usual LLN) }, \\
\frac{1}{n^{1 / \alpha}}\left(S_{n}-n \mu\right) \xrightarrow{D} L_{\alpha} & \text { (generalized CLT) . }
\end{aligned}
$$

The proof follows the same idea as the usual CLT with $|t|^{\alpha}$ being the leading order term in the expansion of the characteristic function.

Extreme value statistics

Consider a sequence of iid random variables X_{1}, X_{2}, \ldots in \mathbb{R} with $\operatorname{CDF} F$, and let

$$
M_{n}=\max \left\{X_{1}, \ldots, X_{n}\right\} \quad \text { be the maximum of the first } n \text { variables . }
$$

Similarly to the CLT, the distribution of M_{n} converges to a (rather) universal limit distribution.

Extreme value theorem - EVT (Fisher-Tippet Gnedenko)

If there exist normalizing sequences $a_{n}, b_{n} \in \mathbb{R}$ such that $\mathbb{P}\left(\frac{M_{n}-b_{n}}{a_{n}} \leq x\right)$ converges to a nondegenerate $\operatorname{CDF} G(x)$ as $n \rightarrow \infty$, then G is a generalized extreme value distribution

$$
\begin{equation*}
G(x)=\exp \left(-\left(1+k\left(\frac{x-\mu}{\sigma}\right)\right)^{-1 / k}\right) \tag{1}
\end{equation*}
$$

with parameters for location $\mu \in \mathbb{R}$, scale $\sigma>0$ and shape $k \in \mathbb{R}$.
The sequences and parameter values of G are related to the tail \bar{F} (see e.g. ${ }^{1}$ for details). Depending on the shape parameter k, one typically distinguishes the following three standardized classes:

- Gumbel (Type I): $k=0$ and $G_{\mathrm{I}}(x)=\exp \left(-e^{-x}\right)$
limit if \bar{F} has exponential tail (including actual exponential or Gaussian rv's)
- Fréchet (Type II): $k=1 / \alpha>0$ and $G_{\mathrm{II}}(x)=\left\{\begin{array}{cl}0 & , x \leq 0 \\ \exp \left(-x^{-\alpha}\right) & , x>0\end{array}\right.$
limit if \bar{F} has heavy tail (including e.g. power laws)
- Weibull (Type III): $k=-1 / \alpha<0 \quad$ and $\quad G_{\mathrm{III}}(x)=\left\{\begin{array}{cl}\exp \left(-(-x)^{\alpha}\right) & , x<0 \\ 1 & , x \geq 0\end{array}\right.$
limit if \bar{F} has light tail (including bounded support such as uniform rv's)
Asymptotic tails as $x \rightarrow \infty$ of Gumbel and Fréchet are given as

$$
\bar{G}_{\mathrm{I}}(x) \simeq e^{-x} \quad \text { and } \quad \bar{G}_{\mathrm{II}}(x) \simeq x^{-\alpha}
$$

The typical scaling (location) s_{n} of $\mathbb{E}\left(M_{n}\right)$ as a function of n can be determined relatively easily. Note that for iid random variables we have

$$
\mathbb{P}\left(M_{n} \leq x\right)=\mathbb{P}\left(X_{1} \leq x, \ldots, X_{n} \leq x\right)=\mathbb{P}\left(X_{1} \leq x\right)^{n}=(F(x))^{n} .
$$

Now s_{n} is determined by requiring that $\left(F\left(s_{n}\right)\right)^{n}$ has a non-degenerate limit in $(0,1)$ as $n \rightarrow \infty$, so
$\left(F\left(s_{n}\right)\right)^{n}=\left(1-\bar{F}\left(s_{n}\right)\right)^{n} \rightarrow e^{-c}, c>0 \quad$ which implies $\bar{F}\left(s_{n}\right) \simeq c / n$.

- For exponential $X_{i} \sim \operatorname{Exp}(\lambda)$ iid random variables with tail $\bar{F}\left(s_{n}\right)=e^{-\lambda s_{n}}$ this leads to

$$
s_{n} \simeq(\log n-\log c) / \lambda \quad \text { which implies } \quad M_{n}=\left(\log n+\xi_{n}\right) / \lambda
$$

where ξ_{n} is a random variable that converges as $n \rightarrow \infty$. This implies that we may choose $b_{n}=\log n$ and $a_{n}=\lambda$ in EVT with convergence to Gumbel.

- For $X_{i} \sim \operatorname{Pareto}\left(x_{m}, \alpha\right)$ iid we get $s_{n} \simeq x_{m}(n / c)^{1 / \alpha}$, so that $M_{n}=x_{m} n^{1 / \alpha} \xi_{n}$ with multiplicative randomness, implying $b_{n}=0$ and $a_{n}=x_{m} n^{1 / \alpha}$ as a valid normalization with convergence to Fréchet with parameter α.
Note that for $\alpha \in(0,1)$ with infinite mean, this implies $M_{n} \propto X_{n} \gg n$ so the sum is dominated by the largest contributions, whereas for $\alpha>1$ we have $M_{n} \ll S_{n} \propto n$.
- For uniform $X_{i} \sim U([0,1))$ iid we expect $M_{n} \rightarrow 1$ as $n \rightarrow \infty$, and with $\bar{F}(x)=1-x$ we get $s_{n} \simeq 1-c / n$ so that we can choose $b_{n}=1$ and $a_{n}=1 / n$ with convergence to Weibull.

[^0]
Statistics of records

Consider iid continuous random variables X_{1}, X_{2}, \ldots taking values in a connected set $S \subseteq \mathbb{R}$ (e.g. $S=[0,1)$ or $S=\mathbb{R}$) with distribution function F. Define the indicators of record events

$$
I_{n}:=\mathbb{1}\left(X_{n} \text { is a record }\right)= \begin{cases}1, & \text { if } M_{n}=X_{n}, M_{n-1}<X_{n} \\ 0, & \text { otherwise }\end{cases}
$$

- Since the rank order of iidrv's is uniform independently of F, the record probability is

$$
\mathbb{P}\left[X_{n} \text { record }\right]=\mathbb{E}\left[I_{n}\right]=\frac{(n-1)!}{n!}=\frac{1}{n} \quad \text { and } \quad I_{n} \sim \operatorname{Be}(1 / n) \quad \text { with } I_{1}=1
$$

This implies that the number of records up to time n,

$$
R_{n}:=\sum_{k=1}^{n} I_{n} \in\{1, \ldots, n\} \quad \text { has expectation } \quad \mathbb{E}\left[R_{n}\right]=\sum_{k=1}^{n} \frac{1}{k} \simeq \log n+\gamma+O(1 / n)
$$

as $n \rightarrow \infty$ with Euler constant $\gamma=0.57721 \ldots$

- $\quad I_{n+1}$ and M_{n+1} depend only on M_{n} and X_{n+1}, and are independent of the rank order of X_{1}, \ldots, X_{n} and therefore of I_{1}, \ldots, I_{n}. Therefore

$$
\operatorname{Var}\left[R_{n}\right]=\sum_{k=1}^{n} \operatorname{Var}\left[I_{k}\right]=\sum_{k=1}^{n} \frac{1}{k}\left(1-\frac{1}{k}\right) \simeq \log n+\gamma-\pi^{2} / 6+O(1 / n)
$$

$\operatorname{So~} \operatorname{STD}\left[R_{n}\right] / \mathbb{E}\left[R_{n}\right] \simeq 1 / \sqrt{\log n} \rightarrow 0$ and $R_{n} \rightarrow \infty$ with probability 1 as $n \rightarrow \infty$.

- We can compute the probability generating function for $s \in[0,1]$

$$
\mathbb{E}\left[s^{R_{n}}\right]=\mathbb{E}\left[s^{\sum_{k} I_{k}}\right]=\prod_{k=1}^{n} \mathbb{E}\left[s^{I_{k}}\right]=\prod_{k=1}^{n}\left(s \frac{1}{k}+\frac{k-1}{k}\right)=\frac{1}{n!} \prod_{k=0}^{n-1}(k+s)=\frac{\Gamma(s+n)}{\Gamma(s) \Gamma(n+1)} .
$$

Then we can use Stirling's formula for asymptotics of the Gamma function to get as $n \rightarrow \infty$

$$
G(s):=\mathbb{E}\left[s^{R_{n}-1}\right] \simeq \frac{1}{s \Gamma(s)} n^{s-1}=\frac{1}{\Gamma(s+1)} n^{s-1} \approx e^{\log n(s-1)}
$$

since $\Gamma(1)=\Gamma(2)=1$ and $\Gamma(s+1)$ is close to 1 for $s \in[0,1]$. Recall that the generating function of $Y \sim \operatorname{Poi}(\lambda)$ is $\quad G_{Y}(s)=\mathbb{E}\left[s^{Y}\right]=\sum_{k=0}^{n}(\lambda s)^{k} e^{-\lambda} / k!=e^{\lambda(s-1)}$.
So for large n, $R_{n}-1 \in \mathbb{N}_{0}$ is approximately Poisson distributed with mean $\log n$. In particular, with probability $G(0)=1 / n$ we have $R_{n}=1$ with no further record except $R_{1}=1$ until time n.

- Set $T_{1}=1$ and let $T_{i+1}=\min \left\{m>T_{i}: X_{m}\right.$ is record $\} \in \mathbb{N}$, defining the sequence of record times where $T_{i} \uparrow \infty$ as $i \rightarrow \infty$ by definition. Since

$$
\left\{R_{n}<i\right\}=\left\{T_{i}>n\right\} \quad \text { we have } \quad \mathbb{P}\left[T_{i}>n\right] \geq \mathbb{P}\left[R_{n}=1\right]=1 / n
$$

for all $i>1$, so record times are heavy-tailed with $\mathbb{E}\left[T_{i}\right]=\infty$.
The time to the next record $T_{i+1}-T_{i}$ only depends on the record value $X_{T_{i}}$, and since $X_{T_{1}}<$ $X_{T_{2}}<\ldots$ we have

$$
\mathbb{P}\left[T_{i+1}-T_{i}>n \mid T_{i}=m\right] \geq \mathbb{P}\left[T_{2}-1>n\right] \geq 1 / n
$$

for all $i \geq 1$ and $m \geq i$. In particular $\mathbb{E}\left[T_{i+1}-T_{i} \mid T_{i}=m\right]=\infty$.
On the other hand, given $T_{i}=m$ the previous record time T_{i-1} is uniformly distributed in $\{i-$ $1, \ldots, m-1\}$ (modulo boundary effects close to $i-1$). In general, one can show that ratios of record times converge in distribution to a uniform random variable

$$
T_{i-1} / T_{i} \xrightarrow{D} U([0,1)) \quad \text { as } i \rightarrow \infty .
$$

[^0]: ${ }^{1}$ J-P. Bouchaud, M. Potters, Theory of Financial Risk and Derivative Pricing: From Statistical Physics to Risk Management, CUP 2003 2nd edition, Chapter 2

