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1. Probability

sample space Ω
(

e.g. {H,T}, {H,T}N , {paths of a stoch. process}
)

events A ⊆ Ω (measurable) subsets (e.g. odd numbers on a die)
F ⊆ P(Ω) is the set of all events (subset of the powerset)

Definition 1.1

A probability distribution P on (Ω,F) is a function P : F → [0, 1] which is
(i) normalized, i.e. P[∅] = 0 and P[Ω] = 1

(ii) additive, i.e. P
[
∪i Ai

]
=
∑

i P[Ai] ,
where A1,A2, . . . is a collection of disjoint events, i.e. Ai ∩ Aj = ∅ for all i, j.

The triple (Ω,F ,P) is called a probability space.

For discrete Ω: F = P(Ω) and P[A] =
∑
ω∈A P[ω]

e.g. P[even number on a die] = P[2] + P[4] + P[6] = 1/2
For continuous Ω (e.g. [0, 1]): F ( P(Ω)
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1. Independence and conditional probability

Two events A,B ⊆ Ω are called independent if P[A ∩ B] = P[A]P[B] .
Example. rolling a die repeatedly
If P[B] > 0 then the conditional probability of A given B is

P[A|B] := P[A ∩ B]/P[B] .

If A and B are independent, then P[A|B] = P[A].

Lemma 1.1 (Law of total probability)

Let B1, . . . ,Bn be a partition of Ω such that P[Bi] > 0 for all i. Then

P[A] =

n∑
i=1

P[A ∩ Bi] =

n∑
i=1

P[A|Bi]P[Bi] .

Note that also P[A|C] =
∑n

i=1 P[A|C ∩ Bi]P[Bi|C] provided P[C] > 0.
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1. Random variables

Definition 1.2

A random variable X is a (measurable) function X : Ω→ R.
The distribution function of the random variable is

F(x) = P[X ≤ x] = P
[
{ω : X(ω) ≤ x}

]
.

X is called discrete, if it only takes values in a countable subset {x1, x2, . . .} of R, and
its distribution is characterized by the probability mass function

π(xk) := P[X = xk] , k = 1, 2, . . . .

X is called continuous, if its distribution function is

F(x) =

∫ x

−∞
f (y) dy for all x ∈ R ,

where f : R→ [0,∞) is the probability density function (PDF) of X.
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1. Random variables
In general, f = F′ is given by the derivative (exists for cont. rv’s).
For discrete rv’s, F is a step function with ’PDF’

f (x) = F′(x) =
∑

k

π(xk)δ(x− xk) .

The expected value of X is given by E[X] =

{∑
k xkπ(xk)∫

R x f (x) dx

The variance is given by Var[X] = E[X2]− E[X]2 ,
the covariance of two r.v.s by Cov[X,Y] := E[XY]− E[X]E[Y] .
Two random variables X,Y are independent if the events {X ≤ x} and {Y ≤ y}
are independent for all x, y ∈ R. This implies for joint distributions

f (x, y) = f X(x) f Y(y) or π(xk, xl) = πX(xk)π
Y(xl)

with marginals f X(x) =
∫
R f (x, y) dy and πX(xk) =

∑
l π(xk, xl) .

Independence implies Cov[X,Y] = 0, i.e. X and Y are uncorrelated.
The inverse is in general false, but holds if X and Y are Gaussian.
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1. Simple random walk
Definition 1.3

Let X1,X2, . . . ∈ {−1, 1} be a sequence of independent, identically distributed
random variables (iidrv’s) with

p = P[Xi = 1] and q = P[Xi = −1] = 1− p .

The sequence Y0,Y1, . . . defined as Y0 = 0 and Yn =
∑n

k=1 Xk

is called the simple random walk (SRW) on Z.

for a single increment Xk we have

E[Xk] = p− q = 2p− 1 , var[Xk] = p + q− (p− q)2 = 4p(1− p)

E[Yn] = E
[∑n

k=1 Xk

]
=
∑n

k=1 E[Xk] = n(2p− 1)

(expectation is a linear operation)

var[Yn] = var
[∑n

k=1 Xk

]
=
∑n

k=1 var[Xk] = 4np(1− p)

(for a sum of independent rv’s the variance is additive)
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1. LLN and CLT
Theorem 1.2 (Weak law of large numbers (LLN))

Let X1,X2, . . . ∈ R be a sequence of iidrv’s with µ := E[Xk] <∞ and E[|Xk|] <∞.
Then

1
n

Yn =
1
n

n∑
k=1

Xk → µ as n→∞

in distribution (i.e. the distr. fct. of Yn converges to 1[µ,∞)(x) for x 6= µ) .

Theorem 1.3 (Central limit theorem (CLT))

Let X1,X2, . . . ∈ R be a sequence of iidrv’s with µ := E[Xk] <∞ and
σ2 := var[Xk] <∞. Then

Yn − nµ
σ
√

n
=

1
σ
√

n

n∑
k=1

(Xk − µ)→ ξ as n→∞

in distr., where ξ ∼ N(0, 1) is a standard Gaussian with PDF f (x) = 1√
2π

e−x2/2 .

Expansion. as n→∞,
∑n

k=1 Xk = nµ+
√

nσξ + o(
√

n) , ξ ∼ N(0, 1)
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1. Discrete-time Markov processes
Definition 1.4

A discrete-time stochastic process with state space S is a sequence
Y0,Y1, . . . = (Yn : n ∈ N0) of random variables taking values in S.
The process is called Markov, if for all A ⊆ S, n ∈ N0 and s0, . . . , sn ∈ S

P(Yn+1 ∈ A|Yn = sn, . . . ,Y0 = s0) = P(Yn+1 ∈ A|Yn = sn) .

A Markov process (MP) is called homogeneous if for all A ⊆ S, n ∈ N0 and s ∈ S

P(Yn+1 ∈ A|Yn = s) = P(Y1 ∈ A|Y0 = s) .

If S is discrete, the MP is called a Markov chain (MC).

The generic probability space Ω is the path space

Ω = D(N0, S) := SN0 = S× S× . . .

which is uncountable even when S is finite. For a given ω ∈ Ω the function
n 7→ Yn(ω) is called a sample path.
Up to finite time N and with finite S, ΩN = SN+1 is finite.
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1. Discrete-time Markov processes

Examples.
For the simple random walk we have state space S = Z and Y0 = 0. Up to time
N, P is a distribution on the finite path space ΩN with

P(ω) =

{
p# of up-steps q# of down-steps , path ω possible

0 , path ω not possible

There are only 2N paths in ΩN with non-zero probability.
For p = q = 1/2 they all have the same probability (1/2)N .

For the generalized random walk with Y0 = 0 and increments Yn+1 − Yn ∈ R, we
have S = R and ΩN = RN with an uncountable number of possible paths.

A sequence Y0,Y1, . . . ∈ S of iidrv’s is also a Markov process with state space S.

Let S = {1, . . . , 52} be a deck of cards, and Y1, . . . ,Y52 be the cards drawn at
random without replacement. Is this a Markov process?

10 / 64



1. Discrete-time Markov chains
Proposition 1.4

Let (Xn : n ∈ N0) by a homogeneous DTMC with state space S. Then the transition
function

pn(x, y) := P[Xn = y|X0 = x] = P[Xk+n = y|Xk = x] for all k ≥ 0

is well defined and fulfills the Chapman Kolmogorov equations

pk+n(x, y) =
∑
z∈S

pk(x, z) pn(z, y) for all k, n ≥ 0, x, y ∈ S .

Proof. We use the law of total probability, the Markov property and homogeneity

P[Xk+n = y|X0 = x] =
∑
z∈S

P[Xk+n = y|Xk = z, X0 = x]P[Xk = z|X0 = x]

=
∑
z∈S

P[Xk+n = y|Xk = z]P[Xk = z|X0 = x]

=
∑
z∈S

P[Xn = y|X0 = z]P[Xk = z|X0 = x]
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1. Markov chains
In matrix form with Pn =

(
pn(x, y) : x, y ∈ S

)
the Chapman Kolmogorov

equations read

Pn+k = Pn Pk and in particular Pn+1 = Pn P1 .

With P0 = I, the obvious solution to this recursion is

Pn = Pn where we write P1 = P =
(
p(x, y) : x, y ∈ S

)
.

The transition matrix P and the initial condition X0 ∈ S completely determine a
homogeneous DTMC, since for all k ≥ 1 and all events A1, . . . ,Ak ⊆ S

P[X1 ∈ A1, . . . ,Xk ∈ Ak] =
∑

s1∈A1

· · ·
∑

sk∈Ak

p(X0, s1)p(s1, s2) · · · p(sk−1, sk) .

Fixed X0 can be replaced by an initial distribution π0(x) := P[X0 = x] .
The distribution at time n is then

πn(x) =
∑
y∈S

∑
s1∈S

· · ·
∑

sn−1∈S

π0(y)p(y, s1) · · · p(sn−1, x) or πn = π0Pn .
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1. Transition matrices
The transition matrix P is stochastic, i.e.

p(x, y) ∈ [0, 1] and
∑

y

p(x, y) = 1 ,

or equivalently, the column vector |1〉 = (1, . . . , 1)T

is eigenvector with eigenvalue 1: P|1〉 = |1〉

Example 1 (Random walk with boundaries)
Let (Xn : n ∈ N0) be a SRW on S = {1, . . . ,L} with p(x, y) = pδy,x+1 + qδy,x−1.
The boundary conditions are

periodic if p(L, 1) = p , p(1,L) = q ,
absorbing if p(L,L) = 1 , p(1, 1) = 1 ,
closed if p(1, 1) = q , p(L,L) = p ,
reflecting if p(1, 2) = 1 , p(L,L− 1) = 1 .

13 / 64



1. Stationary distributions

Definition 1.5

Let (Xn : n ∈ N0) be a homogeneous DTMC with state space S. The distribution
π(x), x ∈ S is called stationary if for all y ∈ S∑

x∈S

π(x)p(x, y) = π(y) or πP = π .

π is called reversible if it fulfills the detailed balance conditions

π(x)p(x, y) = π(y)p(y, x) for all x, y ∈ S .

reversibility implies stationarity, since∑
x∈S

π(x)p(x, y) =
∑
x∈S

π(y)p(y, x) = π(y) .

Stationary distributions as row vectors 〈π| = (π(x) : x ∈ S)

are left eigenvectors with eigenvalue 1: 〈π| = 〈π|P .
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1. Absorbing states
Definition 1.6

A state s ∈ S is called absorbing for a DTMC with transition matrix p(x, y), if

p(s, y) = δs,y for all y ∈ S .

RW with absorbing BC.
Let hk be the absorption probability for X0 = k ∈ S = {1, . . . ,L},

hk = P[absorption|X0 = k] = P[Xn ∈ {1,L} for some n ≥ 0|X0 = k] .

Conditioning on the first jump and using Markov, we have the recursion

hk = phk+1 + qhk−1 for k = 2, . . . ,L− 1 ; h1 = hL = 1 .

Ansatz for solution hk = λk , λ ∈ C:

λ = pλ2 + q ⇒ λ1 = 1 , λ2 = q/p

General solution of 2nd order linear recursion

hk = aλk
1 + bλk

2 = a + b(q/p)k , a, b ∈ R .

Determine coefficients from boundary condition ⇒ hk ≡ 1
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1. Distribution at time n*
Consider a DTMC on a finite state space with |S| = L, and let λ1, . . . , λL ∈ C be the
eigenvalues of the transition matrix P with corresponding

left (row) eigenvectors 〈ui| and right (column) eigenvectors |vi〉

in bra-ket notation. Assuming that all eigenvalues are distinct we have

P =

L∑
i=1

λi|vi〉〈ui| and Pn =

L∑
i=1

λi
n|vi〉〈ui|

since eigenvectors can be chosen orthonormal 〈ui|vj〉 = δi,j.
Since πn = π0Pn we get

〈πn| = 〈π0|v1〉λ1
n〈u1|+ . . .+ 〈π0|vL〉λL

n〈uL| .

The Gershgorin theorem implies that |λi| ≤ 1 and contributions with |λi| < 1
decay exponentially (see hand-out 1).
λ1 = 1 corresponds to the stationary distribution and |v1〉 = |1〉 = (1, . . . , 1)T .
Other eigenvalues with |λi| = 1 and λi 6= 1 correspond to persistent oscillations.
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1. Lazy Markov chains*

Definition 1.7

Let (Xn : n ∈ N0) be a DTMC with transition matrix p(x, y). The DTMC with
transition matrix

pε(x, y) = εδx,y + (1− ε) p(x, y) , ε ∈ (0, 1)

is called a lazy version of the original chain.

Since all diagonal elements are bounded below by ε > 0, the Gershgorin
theorem now implies for the eigenvalues of Pε

|λi| = 1 ⇒ λi = 1 .

Such a matrix Pε is called aperiodic, and there are no persistent oscillations.
The stationary distribution is unique if and only if the eigenvalue λ = 1 has
multiplicity 1, which is independent of lazyness and is discussed later.
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2. Continuous-time Markov chains
Definition 2.1

A continuous-time stochastic process with state space S is a family (Xt : t ≥ 0) of
random variables taking values in S. The process is called Markov, if for all A ⊆ S,
n ∈ N, t1 < . . . < tn+1 ∈ [0,∞) and s1, . . . , sn ∈ S

P(Xtn+1 ∈ A|Xtn = sn, . . . ,Xt1 = s1) = P(Xtn+1 ∈ A|Xtn = sn) .

A Markov process (MP) is called homogeneous if for all A ⊆ S, t, u > 0 and s ∈ S

P(Xt+u ∈ A|Xu = s) = P(Xt ∈ A|X0 = s) .

If S is discrete, the MP is called a continuous-time Markov chain (CTMC).

The generic probability space Ω of a CTMC is the space of right-continuous paths

Ω = D([0,∞), S) :=
{

X : [0,∞)→ S
∣∣Xt = lim

u↘t
Xu
}

P is a probability distribution on Ω, which by Kolmogorov’s extension theorem is
fully specified by its finite dimensional distributions (FDDs) of the form

P[Xt1 ∈ A1, . . . ,Xtn ∈ An] , n ∈ N, ti ∈ [0,∞), Ai ⊆ S .
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2. Continuous-time Markov chains
Proposition 2.1

Let (Xt : t ≥ 0) by a homogeneous CTMC with state space S. Then for all t ≥ 0 the
transition function

pt(x, y) := P[Xt = y|X0 = x] = P[Xt+u = y|Xu = x] for all u ≥ 0

is well defined and fulfills the Chapman Kolmogorov equations

pt+u(x, y) =
∑
z∈S

pt(x, z) pu(z, y) for all t, u ≥ 0, x, y ∈ S .

In matrix notation Pt =
(
pt(x, y) : x, y ∈ S

)
we get

Pt+u = Pt Pu with P0 = I .

In particular Pt+∆t−Pt
∆t = Pt

P∆t−I
∆t = P∆t−I

∆t Pt ,
taking ∆t↘ 0 we get the so-called forward and backward equations

d
dt

Pt = PtG = GPt , where G =
dPt

dt

∣∣∣
t=0

is called the generator of the process (sometimes also Q-matrix).
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2. Continuous-time Markov chains
The solution is given by the matrix exponential

Pt = exp(tG) =

∞∑
k=0

tk

k!
Gk = I + tG +

t2

2
G2 + . . . (2.1)

The distribution πt at time time t > 0 is then given by

πt = π0 exp(tG) which solves
d
dt
πt = πtG . (2.2)

* On a finite state space with λ1, . . . , λL ∈ C being eigenvalues of G, Pt has
eigenvalues exp(tλi) with the same eigenvectors 〈vi|, |ui〉.
If the λi are distinct, we can expand the initial condition in the eigenvector basis

〈π0| = α1〈v1|+ . . .+ αL〈vL|

where αi = 〈π0|ui〉. This leads to

〈πt| = α1〈v1|eλ1t + . . .+ αL〈vL|eλLt (2.3)
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2. Continuous-time Markov chains
using (2.1) we have for G =

(
g(x, y) : x, y ∈ S

)
p∆t(x, y) = g(x, y)∆t + o(∆t) for all x 6= y ∈ S .

So g(x, y) ≥ 0 can be interpreted as transition rates.

p∆t(x, x) = 1 + g(x, x)∆t + o(∆t) for all x ∈ S ,

and since
∑

y p∆t(x, y) = 1 this implies that

g(x, x) = −
∑
y 6=x

g(x, y) ≤ 0 for all x ∈ S .

(2.2) can then be written intuitively as the Master equation

d
dt
πt(x) =

∑
y 6=x

πt(y)g(y, x)

︸ ︷︷ ︸
gain term

−
∑
y 6=x

πt(x)g(x, y)

︸ ︷︷ ︸
loss term

for all x ∈ S .

* The Gershgorin theorem now implies that either λi = 0 or Re(λi) < 0 for the
eigenvalues of G, so there are no persistent oscillations.
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2. Stationary distributions

Definition 2.2

Let (Xt : t ≥ 0) be a homogeneous CTMC with state space S. The distribution
π(x), x ∈ S is called stationary if 〈π|G = 〈0|, or for all y ∈ S∑

x∈S

π(x)g(x, y) =
∑
x 6=y

(
π(x)g(x, y)− π(y)g(y, x)

)
= 0 . (2.4)

π is called reversible if it fulfills the detailed balance conditions

π(x)g(x, y) = π(y)g(y, x) for all x, y ∈ S . (2.5)

again, reversibility implies stationarity, since with (2.5) every single summand in
(2.4) vanishes
Stationary distributions are left eigenvectors of G with eigenvalue 0 .
〈π|G = 〈0| implies 〈π|Pt = 〈π|

(
I +

∑
k≥1

tkGk/k!
)

= 〈π| for all t ≥ 0

22 / 64



2. Stationary distributions

Proposition 2.2 (Existence)

A DTMC or CTMC with finite state space S has at least one stationary distribution.

Proof. Since P and G have row sum 1 and 0 we have P|1〉 = |1〉 and G|1〉 = |0〉
So 1 and 0 are eigenvalues, and left eigenvectors can be shown to have non-negative
entries and thus can be normalized to be stationary distributions 〈π|. 2

Remark. If S is countably infinite, stationary distributions may not exist, as for
example for the SRW on Z or the PP on N.

Definition 2.3

A CTMC (or DTMC) is called irreducible, if for all x, y ∈ S

pt(x, y) > 0 for some t > 0 (pn(x, y) > 0 for some n ∈ N) .

Remark. For continuous time irreducibility implies pt(x, y) > 0 for all t > 0.
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2. Stationary distributions

Proposition 2.3 (Uniqueness)

An irreducible Markov chain has at most one stationary distribution.

Proof. Follows from the Perron Frobenius theorem:
Let P be a stochastic matrix (P = Pt for any t ≥ 0 for CTMCs). Then

1 λ1 = 1 is an eigenvalue of P, it is singular if and only if the chain is irreducible.
Corresponding left and right eigenvectors have non-negative entries.

2 if the chain is continuous-time or discrete-time aperiodic, all remaining
eigenvalues λi ∈ C satisfy Re(λi) < 0 or |λi| < 1, respectively

The second part of the Perron Frobenius theorem also implies convergence of the
transition functions to the stationary distribution, which is usually called ergodicity.
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2. Sample paths
Sample paths t 7→ Xt(ω) are piecewise constant and right-continuous by convention.
For X0 = x, define the holding time Wx := inf{t > 0 : Xt 6= x} .

Proposition 2.4

Wx ∼ Exp(|g(x, x)|), i.e. it is exponentially distributed with mean 1/|g(x, x)|, and if
|g(x, x)| > 0 the chain jumps to y 6= x after time Wx with probability g(x, y)/|g(x, x)|.

Proof. Wx has the memoryless property, i.e. for all t, u > 0

P(Wx > t + u|Wx > t) = P(Wx > t + u|Xt = x) = P(Wx > u)

where we used the Markov property and homogeneity. Therefore

P(Wx > t + u) = P(Wx > u)P(Wx > t) ⇒ P(Wx > t) = eγt

where γ =
d
dt
P(Wx > t)

∣∣∣
t=0

= lim
∆t↘0

p∆t(x, x) + o(∆t)− 1
∆t

= g(x, x) ≤ 0 .

Conditioned on leaving the current state shortly, the probability to jump to y is

lim
∆t↘0

p∆t(x, y)

1− p∆t(x, x)
= lim

∆t↘0

∆t g(x, y)

1− 1−∆t g(x, x)
=

g(x, y)

−g(x, x)
.
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2. Sample paths

the jump times J0, J1, . . . are defined recursively as

J0 = 0 and Jn+1 = inf{t > Jn : Xt 6= XJn} .

due to right-continuous paths, jump times are stopping times, i.e. for all t ≥ 0,
the event {Jn ≤ t} depends only on (Xs : 0 ≤ s ≤ t).
By the strong Markov property (allows conditioning on state at stopping time),
subsequent holding times and jump probabilities are all independent.
The jump chain (Yn : n ∈ N0) with Yn := XJn

is then a discrete-time Markov chain with transition matrix

pY(x, y) =

{
0 , x = y

g(x, y)/|g(x, x)| , x 6= y if g(x, x) < 0 and

pY(x, y) = δx,y if g(x, x) = 0 (by convention) .

A sample path is constructed by simulating the jump chain (Yn : n ∈ N0)

together with independent holding times (WYn : n ∈ N0), so that Jn =
∑n−1

k=0 WYk
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2. Examples

A Poisson process with rate λ (short PP(λ)) is a CTMC with

S = N0, X0 = 0 and g(x, y) = λδx+1,y − λδx,y .

The PP(λ) has stationary and independent increments with

P[Xt+u = n + k|Xu = n] = pt(0, k) =
(λt)k

k!
e−λt for all u, t > 0, k, n ∈ N0

since πt(k) = pt(0, k) solves the Master equation d
dtπt(k) = (πtG)(k) .

A birth-death chain with birth rates αx and death rates βx is a CTMC with

S = N0 and g(x, y) = αxδx+1,y + βxδx−1,y − (αx + βx)δx,y ,

where β0 = 0.
Special cases include

I M/M/1 server queues: αx ≡ α > 0, βx ≡ β > 0 for x > 1
I M/M/∞ server queues: αx ≡ α > 0, βx = xβ
I population growth model: αx = xα, βx = xβ
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2. Ergodicity
Definition 2.4

A Markov process is called ergodic if it has a unique stationary distribution π and

pt(x, y) = P[Xt = y|X0 = x]→ π(y) as t→∞ , for all x, y ∈ S .

Theorem 2.5

An irreducible (aperiodic) MC with finite state space is ergodic.

Theorem 2.6 (Ergodic Theorem)

Consider an ergodic Markov chain with unique stationary distribution π. Then for
every bounded function f : S→ R we have with probability 1

1
T

∫ T

0
f (Xt) dt or

1
N

N∑
n=1

f (Xn) → Eπ[f ] as T,N →∞ .

for a proof see e.g. [GS], chapter 9.5
for example, choosing the indicator function f = 1x we get Eπ[f ] = π(x)
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2. Reversibility

Proposition 2.7 (Time reversal)

Let (Xt : t ∈ [0,T]) be a finite state, irreducible CTMC with generator GX on a
compact time interval which is stationary, i.e. Xt ∼ π for t ∈ [0,T]. Then the time
reversed chain

(Yt : t ∈ [0,T]) with Yt := XT−t

is a stationary CTMC with generator gY(x, y) =
π(y)

π(x)
gX(y, x) and stat. prob. π .

An analogous statement holds for stationary, finite state, irreducible DTMCs

with pY(x, y) =
π(y)

π(x)
pX(y, x) .

Stationary chains with reversible π are time-reversible, gY(x, y) = gX(x, y) .
The definition of stationary chains can be extended to negative times,
(Xt : t ∈ R), with the time reversed chain given by Yt := X−t.
The time reversal of non-stationary chains is in general not a homogeneous MP.

Example. SRW on finite state space
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2. Countably infinite state space*
For infinite state space, Markov chains can get ’lost at infinity’ and have no stationary
distribution. Let Tx := inf{t > J1 : Xt = x} be the first return time to a state x.(

For DTMCs return times are defined as Tx := inf{n ≥ 1 : Xn = x}
)

Definition 2.5

A state x ∈ S is called
transient, if P[Tx =∞|X0 = x] > 0
null recurrent, if P[Tx <∞|X0 = x] = 1 and E[Tx|X0 = x] =∞
positive recurrent, if P[Tx <∞|X0 = x] = 1 and E[Tx|X0 = x] <∞

For an irreducible MC all states are either transient, null or positive recurrent.
The MC has a unique stationary distribution if and only if it is positive recurrent.
A transient CTMC can exhibit explosion. Define the explosion time

J∞ := lim
n→∞

Jn ∈ (0,∞] where Jn are the jump times of the chain .

The chain is called non-explosive if P[J∞ =∞] = 1 .
This is always the case if S is finite or supx∈S |g(x, x)| <∞ .
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3. Markov processes with S = R
Proposition 3.1

Let (Xt : t ≥ 0) by a homogeneous MP as in Definition 18 with state space S = R.
Then for all t ≥ 0 the transition kernel for all x, y ∈ R

Pt(x, dy) := P[Xt ∈ dy|X0 = x] = P[Xt+u ∈ dy|Xu = x] for all u ≥ 0

is well defined. If it is absolutely continuous the transition density pt with

Pt(x, dy) = pt(x, y) dy

exists and fulfills the Chapman Kolmogorov equations

pt+u(x, y) =

∫
R

pt(x, z) pu(z, y) dz for all t, u ≥ 0, x, y ∈ R .

As for CTMCs, the transition densities and the initial distribution p0(x) describe all
finite dimensional distributions (fdds)

P[Xt1 ≤ x1, . . . ,Xtn ≤ xn] =

∫
R

dz0p0(z0)

∫ x1

−∞
dz1pt1(z0, z1) · · ·

∫ xn

−∞
dznptn−tn−1(zn−1, zn)

for all n ∈ N, 0 < t1 < . . . < tn and x1, . . . xn ∈ R. 31 / 64



3. Jump processes
(Xt : t ≥ 0) is a jump process with state space S = R characterized by a
jump rate density r(x, y) ≥ 0 with a uniformly bounded
total exit rate R(x) =

∫
R r(x, y) dy < R̄ <∞ for all x ∈ R .

Ansatz for transition function as ∆t→ 0:

p∆t(z, y) = r(z, y)∆t +
(
1− R(z)∆t

)
δ(y− z)

Then use the Chapman Kolmogorov equations

pt+∆t(x, y)− pt(x, y) =

∫
R

pt(x, z) p∆t(z, y) dz− pt(x, y) =

=

∫
R

pt(x, z)r(z, y)∆t dz +

∫
R

(
1− R(z)∆t − 1

)
pt(x, z)δ(y− z)dz

to get the Kolmogorov-Feller equation (x is a fixed initial condition)

∂tpt(x, y) =

∫
R

(
pt(x, z)r(z, y)− pt(x, y)r(y, z)

)
dz .

As for CTMC sample paths t 7→ Xt(ω) are piecewise constant and right-continuous.
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3. Gaussian processes
X = (X1, . . . ,Xn) ∼ N (µ,Σ) is a multivariate Gaussian in Rn if it has PDF

f (x) =
1√

(2π)n det Σ
exp

(
− 1

2
〈x− µ|Σ−1 |x− µ〉

)
,

with mean µ = (µ1, . . . , µn) ∈ Rn and covariance matrix

Σ = (σij : i, j = 1, . . . , n) , σij = Cov[Xi,Xj] = E
[
(Xi − µi)(Xj − µj)

]
.

Definition 3.1

A stochastic process (Xt : t ≥ 0) with state space S = R is a Gaussian process if for
all n ∈ N, and all t1, . . . , tn ≥ 0 the vector (Xt1 , . . . ,Xtn) has a multivariate Gaussian
distribution.

Proposition 3.2

All fdds of a Gaussian process (Xt : t ≥ 0) are fully characterized by the mean and
the covariance function

m(t) := E[Xt] and σ(s, t) := Cov[Xs,Xt] .
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3. Stationary independent increments
Definition 3.2

A stochastic process (Xt : t ≥ 0) has stationary increments if

Xt − Xs ∼ Xt−s − X0 for all 0 ≤ s ≤ t .

It has independent increments if for all n ≥ 1 and 0 ≤ t1 < · · · < tn{
Xtk+1 − Xtk : 1 ≤ k < n

}
are independent .

Example. The Poisson process (Nt : t ≥ 0) ∼ PP(λ) has stationary independent
increments with Nt − Ns ∼ Poi

(
λ(t − s)

)
.

Proposition 3.3

The following two statements are equivalent for a stochastic process (Xt : t ≥ 0):
Xt has stationary independent increments and Xt ∼ N (0, t) for all t ≥ 0.
Xt is a Gaussian process with m(t) = 0 and σ(s, t) = min{s, t}.

Stationary independent increments have stable distributions such as Gaussian or
Poisson.
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3. Brownian motion
Definition 3.3

Standard Brownian motion (Bt : t ≥ 0) is a stochastic process that satisfies either of
the two equivalent properties in Proposition 3.3 and has continuous paths, i.e.

P
[
{ω : t 7→ Bt(ω) is continuous in t ≥ 0}

]
= 1 .

Theorem 3.4 (Wiener 1923)

There exists a probability space (Ω,F ,P) on which standard Brownian motion exists.

Proof idea.* Construction on Ω = R[0,∞), using Kolmogorov’s extension theorem:
For every ’consistent’ description of finite dimensional distributions (fdds) there
exists a ’canonical’ process Xt[ω] = ω(t) characterized by a law P on Ω.
The main problem is to show that there exists a ’version’ of the process that has
continuous paths, i.e. P can be chosen to concentrate on continuous paths ω.
Remark. Construction of (Nt : t ≥ 0) ∼ PP(λ) is

Nt := max
{

k ≥ 1 : τ1 + · · ·+ τk ≤ t
}
, τ1, τ2, · · · ∼ Exp(λ) iidrvs
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3. Properties of Brownian motion
SBM is a time-homogeneous MP with B0 = 0.
σBt + x with σ > 0 is a (general) BM with Bt ∼ N (x, σ2t).
The transition density is given by a Gaussion PDF

pt(x, y) =
1√

2πσ2t
exp

(
− (y− x)2

2σ2t

)
This is also called the heat kernel, since it solves the heat/diffusion equation

∂

∂t
pt(x, y) =

σ2

2
∂2

∂y2 pt(x, y) with p0(x, y) = δ(y− x) .

SBM is self-similar with Hurst exponent H = 1/2, i.e.

(Bλt : t ≥ 0) ∼ λH(Bt : t ≥ 0) for all λ > 0 .

t 7→ Bt is P− a.s. not differentiable at t for all t ≥ 0.
For fixed h > 0 define ξh

t := (Bt+h − Bt)/h ∼ N (0, 1/h), which is a mean-0

Gaussian process with covariance σ(s, t) =

{
0 , |t − s| > h

(h− |t − s|)/h2 , |t − s| < h .

The (non-existent) derivative ξt := lim
h→0

ξh
t is called white noise and is formally a

mean-0 Gaussian process with covariance σ(s, t) = δ(t − s).
36 / 64



3. Generators as operators
For a CTMC (Xt : t ≥ 0) with state space S we have for f : S→ R

d
dt
E
[
f (Xt)

]
=

d
dt
〈πt|f 〉 =

d
dt
〈π0|Pt|f 〉 = 〈π0|PtG|f 〉 = 〈πt|G|f 〉 = E

[
(Gf )(Xt)

]
.

The generator G can be defined as an operator G : C(S)→ C(S)

G|f 〉(x) = (G f )(x) =
∑
y∈S
y 6=x

g(x, y)
[
f (y)− f (x)

]
.

For Brownian motion we have
d
dt
〈πt|f 〉 = 〈πt|L|f 〉 , where for f ∈ C2(R)

the generator of BM is (Lf )(x) =
σ2

2
∆f (x)

(
or
σ2

2
f ′′(x)

)
.

For jump processes with S = R and rate density r(x, y) the generator is

(Lf )(x) =

∫
R

r(x, y)
[
f (y)− f (x)

]
dy .
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3. Brownian motion as scaling limit

Proposition 3.5

Let (Xt : t ≥ 0) be a jump process with translation invariant rates r(x, y) = q(y− x)
which have

mean zero
∫
R

q(z) z dz = 0 and

finite second moment σ2 :=

∫
R

q(z) z2 dz <∞ .

Then for all T > 0 the rescaled process(
εXt/ε2 : t ∈ [0,T]

)
⇒

(
Bt : t ∈ [0,T]

)
as ε→ 0

converges in distribution to a BM with generator L = 1
2σ

2∆ for all T > 0.

Proof. Taylor expansion of the generator for test functions f ∈ C3(R), and tightness
argument for continuity of paths (requires fixed interval [0,T]).
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3. Diffusion processes
Definition 3.4

A diffusion process with drift a(x, t) ∈ R and diffusion σ(x, t) > 0 is a real-valued
process with continuous paths and generator

(Lf )(x) = a(x, t) f ′(x) +
1
2
σ2(x, t) f ′′(x) .

Examples.
The Ornstein-Uhlenbeck process is a diffusion process with generator

(Lf )(x) = −α x f ′(x) +
1
2
σ2 f ′′(x) , α, σ2 > 0 .

It has a Gaussian stationary distribution N (0, σ2/(2α)).
If the initial distribution π0 is Gaussian, this is a Gaussian process.
The Brownian bridge is a Gaussian diffusion with X0 = 0 and generator

(Lf )(x) = − x
1− t

f ′(x) +
1
2

f ′′(x) .

Equivalently, it can be characterized as a SBM conditioned on B1 = 0.
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3. Diffusion processes
Time evolution of the mean. Use d

dtE[f (Xt)] = E[(Lf )(xt)] with f (x) = x

d
dt
E[Xt] = E[a(Xt, t)]

Time evolution of the transition density. With X0 = x we have for pt(x, y)∫
R

∂

∂t
pt(x, y)f (y)dy =

d
dt
E[f (Xt)] =

∫
R

pt(x, y)Lf (y)dy for any f .

Use integration by parts to get the Fokker-Planck equation

∂

∂t
pt(x, y) = − ∂

∂y

(
a(y, t)pt(x, y)

)
+

1
2
∂2

∂y2

(
σ2(y, t)pt(x, y)

)
.

Stationary distributions for time-independent a(y) ∈ R and σ2(y) > 0

d
dy

(
a(y)p∗(y)

)
=

1
2

d2

dy2

(
σ2(y)p∗(y)

)
,

leads to a stationary density (modulo normalization fixing p∗(0))

p∗(x) = p∗(0) exp
(∫ x

0

2a(y)− (σ2)′(y)

σ2(y)
dy
)
.
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3. SDEs and Itô’s formula
Let (Bt : t ≥ 0) be a standard BM. Then a diffusion process with drift a(x, t) and
diffusion σ(x, t) solves the Stochastic differential equation (SDE)

dXt = a(Xt, t)dt + σ(Xt, t)dBt .

Here dBt is white noise, interpreted in integrated form as

Xt − X0 =

∫ t

0
a(Xs, s)ds +

∫ t

0
σ(Xs, s)dBs .

Theorem 3.6 (Itô’s formula)

Let (Xt : t ≥ 0) be a diffusion process with generator L and f : R→ R a smooth
function. Then

f (Xt)− f (X0) =

∫ t

0
(Lf )(Xs)ds +

∫ t

0
σ(Xs, s)f ′(Xs)dBs .

or, equivalently in terms of SDEs

df (Xt) = a(Xt, t)f ′(Xt)dt +
1
2
σ2(Xt, t)f ′′(Xt)dt + σ(Xt, t)f ′(Xt)dBt .
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3. Beyond diffusion*
Definition 3.5

A Lévy process (Xt : t ≥ 0) is a real-valued process with right-continuous paths and
stationary, independent increments.

The generator has a part with constant drift a ∈ R and diffusion σ2 ≥ 0

Lf (x) = af ′(x) +
σ2

2
f ′′(x) +

∫
R

(
f (x + z)− f (x)− zf ′(x)1(0,1)(|z|)

)
ν(dz) ,

and a jump part with positive measure ν which may have a density ν(dz) = r(z)dz,
and fulfills

∫
|z|>1 ν(dz) <∞ and

∫
0<|z|<1 z2ν(dz) <∞ .

Examples.
Diffusion processes, in particular BM with a = 0, σ2 > 0 and ν ≡ 0, or jump
processes, in particular Poisson with a = σ = 0 and ν(dz) = λδ(z− 1)dz.
For a = σ = 0 and heavy-tailed jump distribution

ν(dz) =
Cdz
|z|1+α

with C > 0 and α ∈ (0, 2]

the process is called α-stable symmetric Lévy process or Lévy flight;
super-diffusive behaviour due to long jumps with infinite mean or variance
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3. Beyond diffusion*
In general, a process (Xt : t ≥ 0) is said to exhibit anomalous diffusion if

Var[Xt]/t→
{

0 , sub-diffusive
∞ , super-diffusive as t→∞ .

Definition 3.6

A fractional Brownian motion (fBM) (BH
t : t ≥ 0) with Hurst index H ∈ (0, 1) is a

mean-zero Gaussian process with continuous paths, BH
0 = 0 and covariances

E[BH
t BH

s ] =
1
2

(
t2H + s2H − |t − s|2H

)
for all s, t ≥ 0 .

For H = 1/2, fBM is standard Brownian motion.
fBM has stationary Gaussian increments where for all t > s ≥ 0

BH
t − BH

s ∼ BH
t−s ∼ N

(
0, (t − s)2H) ,

which for H 6= 1/2 are not independent and the process is non-Markov.
fBM exhibits anomalous diffusion with Var[BH

t ] = t2H .
fBM is self-similar, i.e. (BH

λt : t ≥ 0) ∼ λH(BH
t : t ≥ 0) for all λ > 0 .
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3. Fluctuations and martingales*
Definition 3.7

A real-valued stochastic process (Mt : t ≥ 0) is a martingale w.r.t. the process
(Xt : t ≥ 0) if for all t ≥ 0 we have E[|Mt|] <∞ and

E
[
Mt
∣∣{Xu : 0 ≤ u ≤ s}

]
= Ms a.s. for all s ≤ t .

If in addition E[M2
t ] <∞, there exists a unique increasing process ([M]t : t ≥ 0)

called the quadratic variation, with [M]0 = 0 and such that M2
t − [M]t is martingale.

Theorem 3.7 (Itô’s formula)

Let (Xt : t ≥ 0) be a Markov process on state space S with generator L. Then for any
smooth enough f : S× [0,∞)→ R

f (Xt, t)− f (X0, 0) =

∫ t

0
(Lf )(Xs, s)ds +

∫ t

0
∂sf (Xs, s)ds + Mf

t ,

where (Mf
t : t ≥ 0) is a martingale w.r.t. (Xt : t ≥ 0) with Mf

0 = 0 and

quadratic variation [Mf ]t =

∫ t

0

(
(Lf 2)(Xs, s)− 2(fLf )(Xs, s)

)
ds .
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3. Fluctuations and martingales*
For a Poisson process (Nt : t ≥ 0) with rate λ > 0 Itô’s formula implies that

Mt := Nt − λt is a martingale with quadr. variation [M]t = λt .

Lévy’s characterication of BM: A continuous martingale (Mt : t ≥ 0) on R
with M0 = 0 and quadratic variation [M]t = t is standard Brownian motion.
Furthermore, any continuous martingale (Mt : t ≥ 0) on R with M0 = 0 is a
continuous time-change of a standard Brownian motion, i.e.

Mt = B[M]t for ’some’ SBM (Bt : t ≥ 0) .

For a diffusion process, choosing f (Xt, t) = Xt in Itô’s formula leads to

Xt − X0 =

∫ t

0
a(Xs, s)ds + Mt with [M]t =

∫ t

0
σ2(Xs, s)ds .

Related time-changed BMs can be written as stochastic Itô integrals

Mt =

∫ t

0
σ(Xs, s)dBs := B[M]t .

Therefore σ ≡ 0 implies deterministic dynamics with Mt ≡ 0.
Stochastic differential equation (SDE) dXt = a(Xt, t)dt + σ(Xt, t)dBt .
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4. Graphs - definition
Definition 4.1

A graph (or network) G = (V,E) consists of a finite set V = {1, . . . ,N} of vertices
(or nodes, points), and a set E ⊆ V × V of edges (or links, lines).
The graph is called undirected if (i, j) ∈ E implies (j, i) ∈ E, otherwise directed.
The structure of the graph is encoded in the adjacency (or connectivity) matrix

A = (aij : i, j ∈ V) where aij =

{
1 , (i, j) ∈ E
0 , (i, j) 6∈ E .

We denote the number of edges by K = |E| for directed, or K = |E|/2 for undirected
graphs.

Graphs we consider do not have self edges, i.e. (i, i) 6∈ E for all i ∈ V , or
multiple edges, since edges (i, j) are unique elements of E.
Weighted graphs with edge weights wij ∈ R can be used to represent
continuous- or discrete-time Markov chains.
In general graphs can also be infinite, but we will focus on finite graphs. Many of
the following graph characteristics only make sense in the finite case.
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4. Graphs - paths and connectivity
Definition 4.2

A path γij of length l = |γij| from vertex i to j is sequence of vertices

γij = (v1 = i, v2, . . . , vl+1 = j) with (vk, vk+1) ∈ E for all k = 1, . . . , l ,

and vk 6= vk′ for all k 6= k′ ∈ {1, . . . , l} (i.e. each vertex is visited only once).
If such a path exists, we say that vertex i is connected to j (write i→ j).
Shortest paths between vertices i, j are called geodesics (not necessarily unique) and
their length dij is called the distance from i to j. If i 6→ j we set dij =∞.
A graph is connected if dij <∞ for all i, j ∈ V .
The diameter and the characteristic path length of the graph G are given by

diam(G) := max{dij : i, j ∈ V} ∈ N0 ∪ {∞} ,

L = L(G) :=
1

N(N − 1)

∑
i,j∈V

dij ∈ [0,∞] .

For undirected graphs we have dij = dji which is finite if i↔ j, and they can be
decomposed into connected components, where we write

Ci = {j ∈ V : j↔ i} for the component containing vertex i .
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4. Graphs - degrees
Definition 4.3

The in- and out-degree of a node i ∈ V is defined as

kin
i =

∑
j∈V aji and kout

i =
∑

j∈V aij .

kin
1 , . . . k

in
N is called the in-degree sequence and the in-degree distribution is(

pin(k) : k ∈ {0, . . . ,K}
)

with pin(k) = 1
N

∑
i∈V δk,kin

i

giving the fraction of vertices with in-degree k. The same holds for out-degrees, and
in undirected networks we simply write ki = kin

i = kout
i and p(k).

Note that
∑
i∈V

ki =
∑

i,j∈V
aij = |E| (also for directed), average and variance are

〈k〉 = 1
N

∑
i∈V ki = |E|/N =

∑
k kp(k) , σ2 = 〈k2〉 − 〈k〉2 .

In a regular graph (usually undirected) all vertices have equal degree ki ≡ k.
Graphs where the degree distribution shows a power law decay, i.e. p(k) ∝ k−α

for large k, are often called scale-free.
Real-world networks are often scale-free with exponent around α ≈ 3.
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4. Graphs - first examples

Example 2 (Some graphs)
The complete graph KN with N vertices is an undirected graph where all N(N − 1)/2
vertices E = ((i, j) : i 6= j ∈ V) are present.
Regular lattices Zd with edges between nearest neighbours are examples of regular
graphs with degree k = 2d.

Definition 4.4

A tree is an undirected graph where any two vertices are connected by exactly one
path. Vertices with degree 1 are called leaves.
In a rooted tree one vertex i ∈ V is the designated root, and the graph can be
directed, where all vertices point towards or away from the root.

A cycle is a closed path γii of length |γii| > 2. G is a tree if and only if
it is connected and has no cycles;
it is connected but is not connected if a single edge is removed;
it has no cycles but a cycle is formed if any edge is added.
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4. Graphs - degree correlations
Definition 4.5

For undirected graphs, the joint degree distribution of nodes linked by an edge is

q(k, k′) =
1
|E|

∑
(i,j)∈E

δki,kδkj,k′ =

∑
i,j∈V aijδki,kδkj,k′∑

i,j∈V aij
= q(k′, k) .

With the marginal q(k′) =
∑

k q(k, k′) we have the conditional degree distribution

q(k|k′) = q(k, k′)/q(k′) with average knn(k′) :=
∑

k

kq(k|k′) .

The network is called uncorrelated if knn(k′) is independent of k′, assortative if
knn(k′)↗ in k′ and disassortative if knn(k′)↘ in k′.

The marginal q(k) corresponds to edge biased degree sampling, i.e.

q(k) =
∑

k′
q(k, k′) =

1
|E|
∑
i,j∈V

aijδki,k =
N
|E|

1
N

∑
i∈V

kiδki,k =
kp(k)

〈k〉
.

For uncorrelated networks q(k|k′) = q(k) and thus knn(k′) = 〈k2〉/〈k〉 .
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4. Subgraphs
The degree of correlation can be quantified by the correlation coefficient

χ :=
〈kk′〉q − 〈k〉2q
〈k2〉q − 〈k〉2q

=

∑
k,k′ kk′

(
q(k, k′)− q(k)q(k′)

)∑
k k2q(k)− (

∑
k kq(k))2 ∈ [−1, 1] .

Definition 4.6

A subgraph G′ = (V ′,E′) of G = (V,E) is a graph such that V ′ ⊆ V and E′ ⊆ E.

Small connected subgraphs are also called motifs, the simplest non-trivial
examples in undirected graphs are connected triples and triangles.
Fully connected (complete) subgraphs which are maximal with respect to
connectedness are called cliques.
A spanning tree is a tree subgraph that contains all vertices of the graph.
A subgraph G′ is called a community, if (for example)∑

i,j∈V′
aij >

∑
i∈V′,j 6∈V′

aij (there are also other definitions) .
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4. Clustering
Clustering aims to quantify the probability that two neighbours of a given vertex are
themselves neighbours. Two different definitions are used in the literature.

Definition 4.7

The global clustering coefficient for an undirected graph is defined as

C =
3× # of (connected) triangles

# of (connected) triples
=

3
∑

i<j<l aijajlali∑
i<j<l(aijail + ajiajl + alialj)

∈ [0, 1] .

Alternatively, one can define a local clustering coefficient

Ci =
# of triangles containing vertex i
# of triples centered on vertex i

=

∑
j<l aijajlali∑

j<l aijail
∈ [0, 1] ,

and use the average 〈Ci〉 = 1
N

∑
i Ci to quantify clustering.

For a tree we have C = 〈Ci〉 = 0 and for the complete graph C = 〈Ci〉 = 1 .
Higher-order clustering coefficients can be defined similarly, using different
subgraphs as basis.
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5. E-R Random graphs

Definition 5.1

An (Erdős-Rényi, short E-R) random graph G ∼ GN,K has uniform distribution on
the set of all undirected graphs with N vertices and K = |E|/2 edges, i.e.

PN,k[G = (V,E)] = 1
/(N(N − 1)/2

K

)
.

An (E-R) random graph G ∼ GN,p has N vertices and each (undirected) edge is
present independently with probability p ∈ [0, 1], i.e.

PN,p[G = (V,E)] = p|E|/2(1− p)N(N−1)/2−|E|/2 .

The ensemble GN,p is easier to work with and is mostly used in practice, and for
N,K large, GN,K is largely equivalent to GN,p with p = 2K/(N(N − 1)).
Since edges are present independently, graphs G ∈ GN,p should typically be
uncorrelated. Indeed, one can show that χ(G), E[χ]→ 0 as N →∞.
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5. E-R Random graphs - properties
The number of undirected edges for G ∼ GN,p is random, K ∼ Bi

(N(N−1)
2 , p

)
.

For all i by homogeneity, ki ∼ Bi(N − 1, p) and E[〈k〉] = E[ki] = (N−1)p.
The expected number of triangles in a GN,p graph is

(N
3

)
p3 ,

and the number of triples is
(N

3

)
3p2 .

Since fluctuations are of lower order, this implies for all GN ∼ GN,p

C(GN) =
3
(N

3

)
p3(1 + o(1))(N

3

)
3p2(1 + o(1))

→ p as N →∞ .

The expected degree distribution for GN ∼ GN,p is Bi(N − 1, p). In the limit
N →∞ with p = pN = z/(N − 1) keeping z = E[〈k〉] fixed we have

E[p(k)] = P[ki = k] =

(
N − 1

k

)
pk

N(1− pN)N−1−k → zk

k!
e−z .

Therefore, E-R GN,p graphs are sometimes called Poisson random graphs.
In this scaling limit E-R graphs are locally tree-like, i.e. connected components

Cn
i := {j ∈ V : j↔ i, dij ≤ n} , n fixed

are tree subgraphs as N →∞ with probability 1.
Vertex degrees are ki ∼ Poi(z) and iid kj ∼ Poi(z) + 1.
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5. Percolation and E-R graphs
Percolation studies robustness of connectivity properties of graphs under deletion of
edges or vertices (e.g. random attacks or immunization).

For a given graph (G,E) delete edges (or vertices) independently with
probability 1− p. We write (Go,Eo) for the remaining ’open’ subgraph of
(G,E)

E-R random graphs GN,p have the same distribution as open subgraphs
(Go,Eo) ⊆ KN under percolation on the complete graph KN with parameter p.

Theorem 5.1 (Giant component for E-R graphs)

Consider GN,p ∼ GN,p with p = z/N and maximal connected component C̄N,p. Then

|C̄N,p| =


O(log N) , for z < 1
O(N2/3) , for z = 1

O(N) , for z > 1
.

c(z) := limN→∞ |C̄N,p|/N is a continuous function of z. For z > 1, C̄N,p is the only
giant component of size O(N), and the second largest is of order O(log N).

Local trees with 1 + Poi(z) degrees die out with probability 1 if and only if z ≤ 1.
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5. Preferential attachment
The prevalence of power-law degree distributions in real complex networks can be
attributed to growth mechanisms subject to preferential attachment.

Definition 5.2

Starting with a complete graph (V0,E0) of |V0| = m0 nodes, at each time step
t = 1, . . . ,N − m0 a new node j = t + m0 is added. It forms m ≤ m0 undirected edges
with existing nodes i ∈ Vt−1 with a probability proportional to their degree
πj↔i = ki/

∑
l∈Vt

kl (preferential attachment).
The resulting, undirected graph with N nodes and K = m0(m0 − 1)/2 + m(N −m0) is
called a Barabási-Albert random graph, denoted by GBA

N,K .

As N →∞, the average degree is 〈k〉 = 2m and the degree distribution pN(k)
converges to a distribution p(k) with power law tail, i.e. p(k) = Ck−α for large
k where α = 3, which is close to exponents observed for real-world networks.
This is independent of the parameters m0 and m.
Characteristic path length and clustering coefficient typically behave like
L = O(log N) and C = O(N−0.75) for GBA

N,K graphs, and they are uncorrelated.
They are not homogeneous, the expected degree of nodes increases with age.
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5. Preferential attachment

(A) power law for γ = 1, m0 = m = 5, N = 200K, (B) exponential tail for γ = 0, m0 = m = 1, 3, 5, 7,

(C) degree increasing with time for t1 = 5, t2 = 95

taken from [A.-L. Barabási, R. Albert, Science 286(5439), 509-512 (1999)]

Variations of the model connecting to vertices i with probability proportional to
ki + k0 lead to power law degree distributions with α = 3 + k0/m.

For non-linear preferentail attachment proportional to kγi we get

γ ∈ [0, 1): p(k) has a stretched exponential tail exp(−Ck1−γ)
and the graph is assortative

γ > 1: all vertices connect to m super vertices and the graph is disassortative
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5. Small-world networks
Definition 5.3

A sequence of connected graphs GN with increasing size |VN | = N exhibits the
small-world property, if the characteristic path length L(GN) = O(log N).

Examples include trees with degrees ki ≥ 3 and also the giant or largest component in
E-R random graphs. In most graph models small-worldness is paired with low
clustering coefficients, e.g. 0 for trees and p for GN,p graphs. However, many real
examples of small world networks exhibit also large clustering coefficients, such as
networks of social contacts.

Definition 5.4

Consider a 2m-regular ring graph with adjacency matrix aij =

{
1 , |i− j| ≤ m
0 , otherwise

of size N with a total number of K = mN undirected edges.
For all i, each edge (i, j) with a clockwise neighbour with j > i is rewired with
probability p ∈ [0, 1], i.e. replaced by an edge (i, l) where l is chosen uniformly
among vertices not adjacent to i. The resulting graph is a Watts-Strogatz random
graph, denoted by GWS

N,K .
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5. Watts-Strogatz model
W-S random graphs interpolate between a regular lattice for p = 0 and a GN,K

E-R random graph conditioned on the event that all vertices have degree ki ≥ m.
Expected clustering coefficient E[C(p)] and characteristic path length E[L(p)]
are monotone decreasing functions of p and show the following behaviour.

N = 1000 and m = 5, taken from [D.J. Watts, S.H. Strogatz, Nature 393, 440-442 (1998)]
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5. Configuration model

Definition 5.5

The configuration model Gconf
N,D is defined as the uniform distribution among all

undirected graphs with N vertices with a given degree sequence D = (k1, . . . , kN),
such that

∑
i∈V ki = 2K.

Not all sequences D that sum to an even number are graphical.
Sampling is usually done by attaching ki half edges to each vertex i and matching
them randomly. This can lead to self loops and rejections.
General randomized graphs with given degree distribution p(k) can be sampled
in the same way. If kmax = maxi ki is bounded, one can show that these graphs
exhibit a giant (connected) component of size O(N) if

Q :=
∑

k≥0 k(k − 2)p(k) > 0 ,

and if Q < 0 the largest component is of size O(k2
max log N).

For directed versions with Din and Dout we need
∑

i∈V kin
i =

∑
i∈V kout

i .
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6. Graph spectra*
Definition 6.1

The spectral density of a graph G = (V,E) is

ρ(λ) := 1
N

∑
i∈V δ(λ− λi) where λ1, . . . , λN ∈ C

are the eigenvalues of the adjacency matrix A.

Perron-Frobenius: A has a real eigenvalue λ1 > 0 with maximal modulus and
real, non-negative eigenvector(s). If the graph is connected, it has multiplicity 1
and |λj| < λ1 for all other eigenvalues with j 6= 1.
For undirected graphs, (An)ij is equal to the number of walks (paths which
allow repeated vertices) from i to j of length n. We also have

Tr(An) =
∑N

i=1 λ
n
i and

(
Tr(A)

)n
= 0 ,

which can be used to derive statements like:∑
i<j

λiλj = −|E| ,
∑

i<j<l

λiλjλl = 2 ·# of triangles in G .
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6. Graph Laplacian*
Definition 6.2

The Graph Laplacian for a graph (V,E) with adjacency matrix A is defined as

Q := A− D where D =
(
δij

∑
l 6=i

ail : i, j ∈ V
)
.

Q has eigenvalues in C with real part Re(λ) < 0 except for λ1 = 0, which
follows directly from the Gershgorin theorem and vanishing row sums.
The multiplicity of λ1 equals the number of connected components in
undirected graphs. Properly chosen orthogonal eigenvectors to λ1 have non-zero
entries on the individual connected components.
The smaller the second largest real part of an eigenvalue, the harder it is to cut G
into separated components by removing edges.
Q defines a generator matrix of a continuous-time random walk on V with
transition rates aij. Using weighted graphs, any finite state CTMC can be
represented in this way.
The Laplacian determines the first order linearized dynamics of many complex
processes on graphs and is therefore of particular importance.
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6. The Wigner semi-circle law*
Theorem 6.1 (Wigner semi-circle law)

Let A = (aij : i, j = 1, . . . ,N) be a real, symmetric matrix with iid entries aij for i ≤ j
with finite moments, and E[aij] = 0, var[aij] = σ2 (called a Wigner matrix). Then the
spectral density ρN of the matrix A/

√
N converges in distribution to

ρN(λ)→ ρsc(λ) :=

{
(2πσ2)−1

√
4σ2 − λ2 , if |λ| < 2σ

0 , otherwise
.

The bulk of eigenvalues of unscaled Wigner matrices typically lies in the interval
[−2
√

Nσ, 2
√

Nσ].
Adjacency matrices A of GN,p random graphs are symmetric with iid Be(p)
entries with E[aij] = p and var[aij] = p(1− p), so are not Wigner matrices.
A has a maximal Perron-Frobenius eigenvalue of order pN, but all other
eigenvalues have modulus of order

√
N.

For fixed p > 0 the Wigner semi-cirlce law holds for N →∞ as stated above.
For scaled p = pN � pc = 1/N the width of the support reduces to 4

√
NσN with

σN =
√

pN and a modified version holds.
For p = pN � pc = 1/N the asymptotic spectral density deviates from ρsc.
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6. More general graphs and networks*

For multigraphs, multiple edges between nodes and loops (aii > 0) are allowed.
Hypergraphs (V,E) are generalizations in which an edge can connect any
number of vertices. Formally, the set of hyperedges E ⊆ P(V) is a set of
non-empty subsets of V .
In bipartite graphs the edge set can be partitioned into two sets V1,V2 ⊆ V each
non-empty, with no connections within themselves, i.e. aij = aji = 0 for all
i, j ∈ V1 and also for all i, j ∈ V2.
Simple undirected examples include regular lattices Zd for d ≥ 1 which are
partitioned into sites with even and odd parity. Feed-forward neural networks are
examples of directed graphs with bipartite or multi-partite structure.
Multilayer networks M = (G,C) consist of a family of m (weighted or
unweighted) graphs Gα = (Vα,Eα) (called layers of M), and the set of
interconnections between nodes of different layers

C =
{

cα,β ⊆ Vα × Vβ : α, β ∈ {1, . . . ,m}, α 6= β
}
.

Real examples include transportation networks or social networks with different
types of connections.
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