MA933 - Stochastic Modelling and Random Processes

MSc in Mathematics of Systems

Stefan Grosskinsky

Warwick, 2019
These notes and other information about the course are available on www2.warwick.ac.uk/fac/sci/mathsys/courses/msc/ma933/

Contents

(1) Basic probability, simple random walk, discrete-time Markov processes
(2) Continuous time Markov chains
(3) Processes with continuous state space
(4) Stochastic Particle Systems
(5) Networks - basic definitions and characteristics
(6) Random graph models

References

- G. Grimmett, D. Stirzaker: Probability and Random Processes (3rd edition), Oxford 2001
- C.W. Gardiner: Handbook of Stochastic Methods (3rd edition), Springer 2004
- G. Grimmett: Probability on Graphs, CUP 2010 http://www.statslab.cam.ac.uk/~grg/books/pgs.html
- M.E.J. Newman: Networks: An Introduction, OUP 2010

1. Probability

- sample space $\Omega \quad$ (e.g. $\{H, T\},\{H, T\}^{N}$, $\{$ paths of a stoch. process $\}$)
- events $A \subseteq \Omega \quad$ (measurable) subsets (e.g. odd numbers on a die)
$\mathcal{F} \subseteq \mathcal{P}(\Omega)$ is the set of all events (subset of the powerset)

Definition 1.1

A probability distribution \mathbb{P} on (Ω, \mathcal{F}) is a function $\mathbb{P}: \mathcal{F} \rightarrow[0,1]$ which is
(i) normalized, i.e. $\mathbb{P}[\emptyset]=0$ and $\mathbb{P}[\Omega]=1$
(ii) additive, i.e. $\mathbb{P}\left[\cup_{i} A_{i}\right]=\sum_{i} \mathbb{P}\left[A_{i}\right]$, where A_{1}, A_{2}, \ldots is a collection of disjoint events, i.e. $A_{i} \cap A_{j}=\emptyset$ for all i, j. The triple $(\Omega, \mathcal{F}, \mathbb{P})$ is called a probability space.

- For discrete $\Omega: \quad \mathcal{F}=\mathcal{P}(\Omega)$ and $\mathbb{P}[A]=\sum_{\omega \in A} \mathbb{P}[\omega]$ e.g. $\quad \mathbb{P}[$ even number on a die $]=\mathbb{P}[2]+\mathbb{P}[4]+\mathbb{P}[6]=1 / 2$
- For continuous Ω (e.g. $[0,1]): \mathcal{F} \subsetneq \mathcal{P}(\Omega)$

1. Independence and conditional probability

- Two events $A, B \subseteq \Omega$ are called independent if $\mathbb{P}[A \cap B]=\mathbb{P}[A] \mathbb{P}[B]$. Example. rolling a die repeatedly
- If $\mathbb{P}[B]>0$ then the conditional probability of A given B is

$$
\mathbb{P}[A \mid B]:=\mathbb{P}[A \cap B] / \mathbb{P}[B] .
$$

If A and B are independent, then $\mathbb{P}[A \mid B]=\mathbb{P}[A]$.

Lemma 1.1 (Law of total probability)

Let B_{1}, \ldots, B_{n} be a partition of Ω such that $\mathbb{P}\left[B_{i}\right]>0$ for all i. Then

$$
\mathbb{P}[A]=\sum_{i=1}^{n} \mathbb{P}\left[A \cap B_{i}\right]=\sum_{i=1}^{n} \mathbb{P}\left[A \mid B_{i}\right] \mathbb{P}\left[B_{i}\right] .
$$

Note that also

$$
\mathbb{P}[A \mid C]=\sum_{i=1}^{n} \mathbb{P}\left[A \mid C \cap B_{i}\right] \mathbb{P}\left[B_{i} \mid C\right] \quad \text { provided } \mathbb{P}[C]>0 .
$$

1. Random variables

Definition 1.2

A random variable X is a (measurable) function $X: \Omega \rightarrow \mathbb{R}$. The distribution function of the random variable is

$$
F(x)=\mathbb{P}[X \leq x]=\mathbb{P}[\{\omega: X(\omega) \leq x\}] .
$$

X is called discrete, if it only takes values in a countable subset $\Delta=\left\{x_{1}, x_{2}, \ldots\right\} \subseteq \mathbb{R}$, and its distribution is characterized by the probability mass function

$$
\pi(x):=\mathbb{P}[X=x], \quad x \in \Delta .
$$

X is called continuous, if its distribution function is

$$
F(x)=\int_{-\infty}^{x} f(y) d y \quad \text { for all } x \in \mathbb{R}
$$

where $f: \mathbb{R} \rightarrow[0, \infty)$ is the probability density function (PDF) of X.

1. Random variables

- In general, $f=F^{\prime}$ is given by the derivative (exists for cont. rv's).

For discrete rv's, F is a step function with 'PDF'

$$
f(x)=F^{\prime}(x)=\sum_{y \in \Delta} \pi(y) \delta(x-y) .
$$

- The expected value of X is given by $\mathbb{E}[X]=\left\{\begin{array}{c}\sum_{x \in \Delta} x \pi(x) \\ \int_{\mathbb{R}} x f(x) d x\end{array}\right.$
- The variance is given by $\operatorname{Var}[X]=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}$, the covariance of two r.v.s by $\operatorname{Cov}[X, Y]:=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]$.
- Two random variables X, Y are independent if the events $\{X \leq x\}$ and $\{Y \leq y\}$ are independent for all $x, y \in \mathbb{R}$. This implies for joint distributions

$$
f(x, y)=f^{X}(x) f^{Y}(y) \quad \text { or } \quad \pi(x, y)=\pi^{X}(x) \pi^{Y}(y)
$$

with marginals $f^{X}(x)=\int_{\mathbb{R}} f(x, y) d y$ and $\pi^{X}(x)=\sum_{y \in \Delta_{y}} \pi(x, y)$.

- Independence implies $\operatorname{Cov}[X, Y]=0$, i.e. X and Y are uncorrelated. The inverse is in general false, but holds if X and Y are Gaussian.

1. Simple random walk

Definition 1.3

Let $X_{1}, X_{2}, \ldots \in\{-1,1\}$ be a sequence of independent, identically distributed random variables (iidry's) with

$$
p=\mathbb{P}\left[X_{i}=1\right] \quad \text { and } \quad q=\mathbb{P}\left[X_{i}=-1\right]=1-p .
$$

The sequence Y_{0}, Y_{1}, \ldots defined as $\quad Y_{0}=0 \quad$ and $\quad Y_{n}=\sum_{k=1}^{n} X_{k}$ is called the simple random walk (SRW) on \mathbb{Z}.

- for a single increment X_{k} we have

$$
\mathbb{E}\left[X_{k}\right]=p-q=2 p-1, \quad \operatorname{var}\left[X_{k}\right]=p+q-(p-q)^{2}=4 p(1-p)
$$

- $\mathbb{E}\left[Y_{n}\right]=\mathbb{E}\left[\sum_{k=1}^{n} X_{k}\right]=\sum_{k=1}^{n} \mathbb{E}\left[X_{k}\right]=n(2 p-1)$
(expectation is a linear operation)
- $\operatorname{var}\left[Y_{n}\right]=\operatorname{var}\left[\sum_{k=1}^{n} X_{k}\right]=\sum_{k=1}^{n} \operatorname{var}\left[X_{k}\right]=4 n p(1-p)$
(for a sum of independent rv's the variance is additive)

1. LLN and CLT

Theorem 1.2 (Weak law of large numbers (LLN))

Let $X_{1}, X_{2}, \ldots \in \mathbb{R}$ be a sequence of iidrv's with $\mu:=\mathbb{E}\left[X_{k}\right]<\infty$ and $\mathbb{E}\left[\left|X_{k}\right|\right]<\infty$. Then

$$
\frac{1}{n} Y_{n}=\frac{1}{n} \sum_{k=1}^{n} X_{k} \rightarrow \mu \quad \text { as } n \rightarrow \infty
$$

in distribution (i.e. the distr. fct. of Y_{n} converges to $\mathbb{1}_{[\mu, \infty)}(x)$ for $\left.x \neq \mu\right)$.

Theorem 1.3 (Central limit theorem (CLT))

Let $X_{1}, X_{2}, \ldots \in \mathbb{R}$ be a sequence of iidrv's with $\mu:=\mathbb{E}\left[X_{k}\right]<\infty$ and $\sigma^{2}:=\operatorname{var}\left[X_{k}\right]<\infty$. Then

$$
\frac{Y_{n}-n \mu}{\sigma \sqrt{n}}=\frac{1}{\sigma \sqrt{n}} \sum_{k=1}^{n}\left(X_{k}-\mu\right) \rightarrow \xi \quad \text { as } n \rightarrow \infty
$$

in distr., where $\xi \sim N(0,1)$ is a standard Gaussian with PDF $f(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}$.
Expansion. as $n \rightarrow \infty, \quad \sum_{k=1}^{n} X_{k}=n \mu+\sqrt{n} \sigma \xi+o(\sqrt{n}), \quad \xi \sim N(0,1)$

1. Discrete-time Markov processes

Definition 1.4

A discrete-time stochastic process with state space S is a sequence $Y_{0}, Y_{1}, \ldots=\left(Y_{n}: n \in \mathbb{N}_{0}\right)$ of random variables taking values in S. The process is called Markov, if for all $A \subseteq S, n \in \mathbb{N}_{0}$ and $s_{0}, \ldots, s_{n} \in S$

$$
\mathbb{P}\left(Y_{n+1} \in A \mid Y_{n}=s_{n}, \ldots, Y_{0}=s_{0}\right)=\mathbb{P}\left(Y_{n+1} \in A \mid Y_{n}=s_{n}\right) .
$$

A Markov process (MP) is called homogeneous if for all $A \subseteq S, n \in \mathbb{N}_{0}$ and $s \in S$

$$
\mathbb{P}\left(Y_{n+1} \in A \mid Y_{n}=s\right)=\mathbb{P}\left(Y_{1} \in A \mid Y_{0}=s\right) .
$$

If S is discrete, the MP is called a Markov chain (MC).
The generic probability space Ω is the path space

$$
\Omega=D\left(\mathbb{N}_{0}, S\right):=S^{\mathbb{N}_{0}}=S \times S \times \ldots
$$

which is uncountable even when S is finite. For a given $\omega \in \Omega$ the function $n \mapsto Y_{n}(\omega)$ is called a sample path.
Up to finite time N and with finite $S, \Omega_{N}=S^{N+1}$ is finite.

1. Discrete-time Markov processes

Examples.

- For the simple random walk we have state space $S=\mathbb{Z}$ and $Y_{0}=0$. Up to time N, \mathbb{P} is a distribution on the finite path space Ω_{N} with

$$
\mathbb{P}(\omega)=\left\{\begin{array}{cl}
p^{\#} \text { of up-steps } q^{\#} \text { of down-steps } & , \text { path } \omega \text { possible } \\
0 & , \text { path } \omega \text { not possible }
\end{array}\right.
$$

There are only 2^{N} paths in Ω_{N} with non-zero probability. For $p=q=1 / 2$ they all have the same probability $(1 / 2)^{N}$.

- For the generalized random walk with $Y_{0}=0$ and increments $Y_{n+1}-Y_{n} \in \mathbb{R}$, we have $S=\mathbb{R}$ and $\Omega_{N}=\mathbb{R}^{N}$ with an uncountable number of possible paths.
- A sequence $Y_{0}, Y_{1}, \ldots \in S$ of iidrv's is also a Markov process with state space S.
- Let $S=\{1, \ldots, 52\}$ be a deck of cards, and Y_{1}, \ldots, Y_{52} be the cards drawn at random without replacement. Is this a Markov process?

1. Discrete-time Markov chains

Proposition 1.4

Let $\left(X_{n}: n \in \mathbb{N}_{0}\right)$ by a homogeneous DTMC with discrete state space S. Then the transition function

$$
p_{n}(x, y):=\mathbb{P}\left[X_{n}=y \mid X_{0}=x\right]=\mathbb{P}\left[X_{k+n}=y \mid X_{k}=x\right] \quad \text { for all } k \geq 0
$$

is well defined and fulfills the Chapman Kolmogorov equations

$$
p_{k+n}(x, y)=\sum_{z \in S} p_{k}(x, z) p_{n}(z, y) \quad \text { for all } k, n \geq 0, x, y \in S
$$

Proof. We use the law of total probability, the Markov property and homogeneity

$$
\begin{aligned}
\mathbb{P}\left[X_{k+n}=y \mid X_{0}=x\right] & =\sum_{z \in S} \mathbb{P}\left[X_{k+n}=y \mid X_{k}=z, X_{0}=x\right] \mathbb{P}\left[X_{k}=z \mid X_{0}=x\right] \\
& =\sum_{z \in S} \mathbb{P}\left[X_{k+n}=y \mid X_{k}=z\right] \mathbb{P}\left[X_{k}=z \mid X_{0}=x\right] \\
& =\sum_{z \in S} \mathbb{P}\left[X_{n}=y \mid X_{0}=z\right] \mathbb{P}\left[X_{k}=z \mid X_{0}=x\right]
\end{aligned}
$$

1. Markov chains

- In matrix form with $P_{n}=\left(p_{n}(x, y): x, y \in S\right)$ the Chapman Kolmogorov equations read

$$
P_{n+k}=P_{n} P_{k} \quad \text { and in particular } \quad P_{n+1}=P_{n} P_{1} .
$$

With $P_{0}=\mathbb{I}$, the obvious solution to this recursion is

$$
P_{n}=P^{n} \quad \text { where we write } \quad P_{1}=P=(p(x, y): x, y \in S)
$$

- The transition matrix P and the initial condition $X_{0} \in S$ completely determine a homogeneous DTMC, since for all $k \geq 1$ and all events $A_{1}, \ldots, A_{k} \subseteq S$

$$
\mathbb{P}\left[X_{1} \in A_{1}, \ldots, X_{k} \in A_{k}\right]=\sum_{s_{1} \in A_{1}} \cdots \sum_{s_{k} \in A_{k}} p\left(X_{0}, s_{1}\right) p\left(s_{1}, s_{2}\right) \cdots p\left(s_{k-1}, s_{k}\right) .
$$

- Fixed X_{0} can be replaced by an initial distribution $\pi_{0}(x):=\mathbb{P}\left[X_{0}=x\right]$.

The distribution at time n is then

$$
\pi_{n}(x)=\sum_{y \in S} \sum_{s_{1} \in S} \cdots \sum_{s_{n-1} \in S} \pi_{0}(y) p\left(y, s_{1}\right) \cdots p\left(s_{n-1}, x\right) \quad \text { or } \quad\left\langle\pi_{n}\right|=\left\langle\pi_{0}\right| P^{n} .
$$

1. Transition matrices

The transition matrix P is stochastic, i.e.

$$
p(x, y) \in[0,1] \quad \text { and } \quad \sum_{y} p(x, y)=1
$$

or equivalently, the column vector $|1\rangle=(1, \ldots, 1)^{T}$ is eigenvector with eigenvalue $1: \quad P|1\rangle=|1\rangle$

Example 1 (Random walk with boundaries)

Let $\left(X_{n}: n \in \mathbb{N}_{0}\right)$ be a SRW on $S=\{1, \ldots, L\}$ with $p(x, y)=p \delta_{y, x+1}+q \delta_{y, x-1}$.
The boundary conditions are

- periodic if $p(L, 1)=p, \quad p(1, L)=q$,
- absorbing if $p(L, L)=1, \quad p(1,1)=1$,
- closed if $p(1,1)=q, \quad p(L, L)=p$,
- reflecting if $\quad p(1,2)=1, \quad p(L, L-1)=1$.

1. Stationary distributions

Definition 1.5

Let $\left(X_{n}: n \in \mathbb{N}_{0}\right)$ be a homogeneous DTMC with state space S. The distribution $\pi(x), x \in S$ is called stationary if for all $y \in S$

$$
\sum_{x \in S} \pi(x) p(x, y)=\pi(y) \quad \text { or } \quad\langle\boldsymbol{\pi}| P=\langle\boldsymbol{\pi}|
$$

π is called reversible if it fulfills the detailed balance conditions

$$
\pi(x) p(x, y)=\pi(y) p(y, x) \quad \text { for all } x, y \in S
$$

- reversibility implies stationarity, since

$$
\sum_{x \in S} \pi(x) p(x, y)=\sum_{x \in S} \pi(y) p(y, x)=\pi(y)
$$

- Stationary distributions as row vectors $\langle\pi|=(\pi(x): x \in S)$ are left eigenvectors with eigenvalue $1: \quad\langle\pi|=\langle\pi| P$.

1. Absorbing states

Definition 1.6

A state $s \in S$ is called absorbing for a DTMC with transition matrix $p(x, y)$, if

$$
p(s, y)=\delta_{s, y} \quad \text { for all } y \in S .
$$

RW with absorbing BC.

Let h_{k} be the absorption probability for $X_{0}=k \in S=\{1, \ldots, L\}$,

$$
h_{k}=\mathbb{P}\left[\text { absorption } \mid X_{0}=k\right]=\mathbb{P}\left[X_{n} \in\{1, L\} \text { for some } n \geq 0 \mid X_{0}=k\right] .
$$

Conditioning on the first jump and using Markov, we have the recursion

$$
h_{k}=p h_{k+1}+q h_{k-1} \quad \text { for } k=2, \ldots, L-1 ; \quad h_{1}=h_{L}=1
$$

Ansatz for solution $h_{k}=\lambda^{k}, \quad \lambda \in \mathbb{C}$:

$$
\lambda=p \lambda^{2}+q \quad \Rightarrow \quad \lambda_{1}=1, \quad \lambda_{2}=q / p
$$

General solution of 2nd order linear recursion

$$
h_{k}=a \lambda_{1}^{k}+b \lambda_{2}^{k}=a+b(q / p)^{k}, \quad a, b \in \mathbb{R} .
$$

Determine coefficients from boundary condition $\quad \Rightarrow \quad h_{k} \equiv 1$

1. Distribution at time n

Consider a DTMC on a finite state space with $|S|=L$, and let $\lambda_{1}, \ldots, \lambda_{L} \in \mathbb{C}$ be the eigenvalues of the transition matrix P with corresponding
left (row) eigenvectors $\left\langle u_{i}\right|$ and right (column) eigenvectors $\left|v_{i}\right\rangle$
in bra-ket notation. Assuming that all eigenvalues are distinct we have

$$
P=\sum_{i=1}^{L} \lambda_{i}\left|v_{i}\right\rangle\left\langle u_{i}\right| \quad \text { and } \quad P^{n}=\sum_{i=1}^{L} \lambda_{i}^{n}\left|v_{i}\right\rangle\left\langle u_{i}\right|
$$

since eigenvectors can be chosen orthonormal $\left\langle u_{i} \mid v_{j}\right\rangle=\delta_{i, j}$.
Since $\left\langle\boldsymbol{\pi}_{n}\right|=\left\langle\boldsymbol{\pi}_{0}\right| P^{n}$ we get

$$
\left\langle\boldsymbol{\pi}_{n}\right|=\left\langle\boldsymbol{\pi}_{0} \mid v_{1}\right\rangle \lambda_{1}{ }^{n}\left\langle u_{1}\right|+\ldots+\left\langle\boldsymbol{\pi}_{0} \mid v_{L}\right\rangle \lambda_{L}{ }^{n}\left\langle u_{L}\right| .
$$

- The Gershgorin theorem implies that $\left|\lambda_{i}\right| \leq 1$ and contributions with $\left|\lambda_{i}\right|<1$ decay exponentially (see hand-out 1).
- $\lambda_{1}=1$ corresponds to the stationary distribution $\langle\boldsymbol{\pi}|=\left\langle u_{1}\right|$ and $\left|v_{1}\right\rangle=|1\rangle$.
- Other $\mathbb{C} \ni \lambda_{i} \neq 1$ with $\left|\lambda_{i}\right|=1$ correspond to persistent oscillations.

1. Lazy Markov chains

Definition 1.7

Let $\left(X_{n}: n \in \mathbb{N}_{0}\right)$ be a DTMC with transition matrix $p(x, y)$. The DTMC with transition matrix

$$
p^{\epsilon}(x, y)=\epsilon \delta_{x, y}+(1-\epsilon) p(x, y), \quad \epsilon \in(0,1)
$$

is called a lazy version of the original chain.

- P^{ϵ} has the same eigenvectors as P with eigenvalues $\lambda_{i}^{\epsilon}=\lambda_{i}(1-\epsilon)+\epsilon$ since

$$
\left.\left\langle u_{i}\right| P^{\epsilon}=\epsilon\left\langle u_{i}\right|+\lambda_{i}(1-\epsilon)\left\langle u_{i}\right| \quad \quad \text { (analogously for }\left|v_{i}\right\rangle\right)
$$

- This implies $\left|\lambda_{i}^{\epsilon}\right|<\left|\lambda_{i}\right| \leq 1$ unless $\lambda_{i}=1$.

Such a matrix P^{ϵ} is called aperiodic, and there are no persistent oscillations.

- The stationary distribution is unique if and only if the eigenvalue $\lambda=1$ is unique (has multiplicity 1), which is independent of lazyness (discussed later).

2. Continuous-time Markov chains

Definition 2.1

A continuous-time stochastic process with state space S is a family $\left(X_{t}: t \geq 0\right)$ of random variables taking values in S. The process is called Markov, if for all $A \subseteq S$, $n \in \mathbb{N}, t_{1}<\ldots<t_{n+1} \in[0, \infty)$ and $s_{1}, \ldots, s_{n} \in S$

$$
\mathbb{P}\left(X_{t_{n+1}} \in A \mid X_{t_{n}}=s_{n}, \ldots, X_{t_{1}}=s_{1}\right)=\mathbb{P}\left(X_{t_{n+1}} \in A \mid X_{t_{n}}=s_{n}\right) .
$$

A Markov process (MP) is called homogeneous if for all $A \subseteq S, t, u>0$ and $s \in S$

$$
\mathbb{P}\left(X_{t+u} \in A \mid X_{u}=s\right)=\mathbb{P}\left(X_{t} \in A \mid X_{0}=s\right) .
$$

If S is discrete, the MP is called a continuous-time Markov chain (CTMC).
The generic probability space Ω of a CTMC is the space of right-continuous paths

$$
\Omega=D([0, \infty), S):=\left\{X:[0, \infty) \rightarrow S \mid X_{t}=\lim _{u \backslash t} X_{u}\right\}
$$

\mathbb{P} is a probability distribution on Ω, which by Kolmogorov's extension theorem is fully specified by its finite dimensional distributions (FDDs) of the form

$$
\mathbb{P}\left[X_{t_{1}} \in A_{1}, \ldots, X_{t_{n}} \in A_{n}\right], \quad n \in \mathbb{N}, t_{i} \in[0, \infty), A_{i} \subseteq S .
$$

2. Continuous-time Markov chains

Proposition 2.1

Let $\left(X_{t}: t \geq 0\right)$ by a homogeneous CTMC with state space S. Then for all $t \geq 0$ the transition function

$$
p_{t}(x, y):=\mathbb{P}\left[X_{t}=y \mid X_{0}=x\right]=\mathbb{P}\left[X_{t+u}=y \mid X_{u}=x\right] \quad \text { for all } u \geq 0
$$

is well defined and fulfills the Chapman Kolmogorov equations

$$
p_{t+u}(x, y)=\sum_{z \in S} p_{t}(x, z) p_{u}(z, y) \quad \text { for all } t, u \geq 0, x, y \in S .
$$

In matrix notation $P_{t}=\left(p_{t}(x, y): x, y \in S\right)$ we get

$$
P_{t+u}=P_{t} P_{u} \quad \text { with } \quad P_{0}=\mathbb{I} .
$$

In particular $\quad \frac{P_{t+\Delta_{t}}-P_{t}}{\Delta t}=P_{t} \frac{P_{\Delta_{t}}-\mathbb{I}}{\Delta t}=\frac{P_{\Delta_{t}}-\mathbb{I}}{\Delta t} P_{t}$, taking $\Delta t \searrow 0$ we get the so-called forward and backward equations

$$
\frac{d}{d t} P_{t}=P_{t} G=G P_{t}, \quad \text { where } \quad G=\left.\frac{d P_{t}}{d t}\right|_{t=0}
$$

is called the generator of the process (sometimes also Q-matrix).

2. Continuous-time Markov chains

- The solution is given by the matrix exponential

$$
\begin{equation*}
P_{t}=\exp (t G)=\sum_{k=0}^{\infty} \frac{t^{k}}{k!} G^{k}=\mathbb{I}+t G+\frac{t^{2}}{2} G^{2}+\ldots \tag{2.1}
\end{equation*}
$$

- The distribution π_{t} at time $t>0$ is then given by

$$
\begin{equation*}
\left\langle\boldsymbol{\pi}_{t}\right|=\left\langle\boldsymbol{\pi}_{0}\right| \exp (t G) \quad \text { which solves } \quad \frac{d}{d t}\left\langle\boldsymbol{\pi}_{t}\right|=\left\langle\boldsymbol{\pi}_{t}\right| G . \tag{2.2}
\end{equation*}
$$

- On a finite state space with $\lambda_{1}, \ldots, \lambda_{L} \in \mathbb{C}$ eigenvalues of G, P_{t} has eigenvalues $\exp \left(t \lambda_{i}\right)$ with the same eigenvectors $\left\langle v_{i}\right|,\left|u_{i}\right\rangle$.
If the λ_{i} are distinct, we can expand the initial condition in the eigenvector basis

$$
\left\langle\boldsymbol{\pi}_{0}\right|=\alpha_{1}\left\langle v_{1}\right|+\ldots+\alpha_{L}\left\langle v_{L}\right|,
$$

where $\alpha_{i}=\left\langle\boldsymbol{\pi}_{0} \mid u_{i}\right\rangle$. This leads to

$$
\begin{equation*}
\left\langle\boldsymbol{\pi}_{t}\right|=\alpha_{1}\left\langle v_{1}\right| e^{\lambda_{1} t}+\ldots+\alpha_{L}\left\langle v_{L}\right| e^{\lambda_{L} t} . \tag{2.3}
\end{equation*}
$$

2. Continuous-time Markov chains

- using (2.1) we have for $G=(g(x, y): x, y \in S)$

$$
p_{\Delta t}(x, y)=g(x, y) \Delta t+o(\Delta t) \quad \text { for all } x \neq y \in S .
$$

So $g(x, y) \geq 0$ can be interpreted as transition rates.

$$
p_{\Delta t}(x, x)=1+g(x, x) \Delta t+o(\Delta t) \quad \text { for all } x \in S,
$$

and since $\sum_{y} p_{\Delta t}(x, y)=1$ this implies that

$$
g(x, x)=-\sum_{y \neq x} g(x, y) \leq 0 \quad \text { for all } x \in S .
$$

- (2.2) can then be written intuitively as the Master equation

$$
\frac{d}{d t} \pi_{t}(x)=\underbrace{\sum_{y \neq x} \pi_{t}(y) g(y, x)}_{\text {gain term }}-\underbrace{\sum_{y \neq x} \pi_{t}(x) g(x, y)}_{\text {loss term }} \text { for all } x \in S
$$

- The Gershgorin theorem now implies that either $\lambda_{i}=0$ or $\operatorname{Re}\left(\lambda_{i}\right)<0$ for the eigenvalues of G, so there are no persistent oscillations for CTMCs.

2. Stationary distributions

Definition 2.2

Let $\left(X_{t}: t \geq 0\right)$ be a homogeneous CTMC with state space S. The distribution $\pi(x), x \in S$ is called stationary if $\langle\pi| G=\langle 0|$, or for all $y \in S$

$$
\begin{equation*}
\sum_{x \in S} \pi(x) g(x, y)=\sum_{x \neq y}(\pi(x) g(x, y)-\pi(y) g(y, x))=0 \tag{2.4}
\end{equation*}
$$

π is called reversible if it fulfills the detailed balance conditions

$$
\begin{equation*}
\pi(x) g(x, y)=\pi(y) g(y, x) \quad \text { for all } x, y \in S \tag{2.5}
\end{equation*}
$$

- again, reversibility implies stationarity, since with (2.5) every single term in the sum (2.4) vanishes
- Stationary distributions are left eigenvectors of G with eigenvalue 0 .
- $\langle\boldsymbol{\pi}| G=\langle 0| \quad$ implies $\quad\langle\boldsymbol{\pi}| P_{t}=\langle\boldsymbol{\pi}|\left(\mathbb{I}+\sum_{k \geq 1} t^{k} G^{k} / k!\right)=\langle\boldsymbol{\pi}| \quad$ for all $t \geq 0$

2. Stationary distributions

Proposition 2.2 (Existence)

A DTMC or CTMC with finite state space S has at least one stationary distribution.
Proof. Since P and G have row sum 1 and 0 we have $\quad P|\mathbf{1}\rangle=|\mathbf{1}\rangle \quad$ and $\quad G|\mathbf{1}\rangle=|\mathbf{0}\rangle$
So 1 and 0 are eigenvalues, and left eigenvectors can be shown to have non-negative entries and thus can be normalized to be stationary distributions $\langle\boldsymbol{\pi}|$.

Remark. If S is countably infinite, stationary distributions may not exist, as for example for the SRW on \mathbb{Z} or the Poisson process on \mathbb{N} (see later).

Definition 2.3

A CTMC (or DTMC) is called irreducible, if for all $x, y \in S$

$$
p_{t}(x, y)>0 \text { for some } t>0 \quad\left(p_{n}(x, y)>0 \text { for some } n \in \mathbb{N}\right) .
$$

Remark. For continuous time irreducibility implies $p_{t}(x, y)>0$ for all $t>0$.

2. Stationary distributions

Proposition 2.3 (Uniqueness)

An irreducible Markov chain has at most one stationary distribution.

Proof. Follows from the Perron Frobenius theorem:
Let P be a stochastic matrix ($P=P_{t}$ for any $t \geq 0$ for CTMCs). Then

- $\lambda_{1}=1$ is an eigenvalue of P, it is singular if and only if the chain is irreducible. Corresponding left and right eigenvectors have non-negative entries.
(3) if the chain is continuous-time or discrete-time aperiodic, all remaining eigenvalues $\lambda_{i} \in \mathbb{C}, i \neq 1$ satisfy $\operatorname{Re}\left(\lambda_{i}\right)<0$ or $\left|\lambda_{i}\right|<1$, respectively

The second part of the Perron Frobenius theorem also implies convergence of the transition functions to the stationary distribution, since

$$
p_{t}(x, y)=\sum_{i=1}^{|S|}\left\langle\delta_{x} \mid u_{i}\right\rangle\left\langle v_{i}\right| e^{\lambda_{i} t} \rightarrow\left\langle v_{1}\right|=\langle\boldsymbol{\pi}| \quad \text { as } t \rightarrow \infty .
$$

2. Sample paths

Sample paths $t \mapsto X_{t}(\omega)$ are piecewise constant and right-continuous by convention.
For $X_{0}=x$, define the holding time $W_{x}:=\inf \left\{t>0: X_{t} \neq x\right\}$.

Proposition 2.4

$W_{x} \sim \operatorname{Exp}(|g(x, x)|)$, i.e. it is exponentially distributed with mean $1 /|g(x, x)|$, and if $|g(x, x)|>0$ the chain jumps to $y \neq x$ after time W_{x} with probability $g(x, y) /|g(x, x)|$.

Proof. W_{x} has the memoryless property, i.e. for all $t, u>0$

$$
\mathbb{P}\left(W_{x}>t+u \mid W_{x}>t\right)=\mathbb{P}\left(W_{x}>t+u \mid X_{t}=x\right)=\mathbb{P}\left(W_{x}>u\right)
$$

where we used the Markov property and homogeneity. Therefore

$$
\mathbb{P}\left(W_{x}>t+u\right)=\mathbb{P}\left(W_{x}>u\right) \mathbb{P}\left(W_{x}>t\right) \quad \Rightarrow \quad \mathbb{P}\left(W_{x}>t\right)=e^{\gamma t}
$$

where $\quad \gamma=\left.\frac{d}{d t} \mathbb{P}\left(W_{x}>t\right)\right|_{t=0}=\lim _{\Delta t \backslash 0} \frac{p_{\Delta t}(x, x)+o(\Delta t)-1}{\Delta t}=g(x, x) \leq 0$.
Conditioned on leaving the current state shortly, the probability to jump to y is

$$
\lim _{\Delta t \searrow 0} \frac{p_{\Delta t}(x, y)}{1-p_{\Delta t}(x, x)}=\lim _{\Delta t \searrow 0} \frac{\Delta t g(x, y)}{1-1-\Delta t g(x, x)}=\frac{g(x, y)}{-g(x, x)} .
$$

2. Sample paths

- the jump times J_{0}, J_{1}, \ldots are defined recursively as

$$
J_{0}=0 \quad \text { and } \quad J_{n+1}=\inf \left\{t>J_{n}: X_{t} \neq X_{J_{n}}\right\} .
$$

- due to right-continuous paths, jump times are stopping times, i.e. for all $t \geq 0$, the event $\left\{J_{n} \leq t\right\}$ depends only on ($\left.X_{s}: 0 \leq s \leq t\right)$.
- By the strong Markov property (allows conditioning on state at stopping time), subsequent holding times and jump probabilities are all independent.
- The jump chain $\left(Y_{n}: n \in N_{0}\right)$ with $Y_{n}:=X_{J_{n}}$
is then a discrete-time Markov chain with transition matrix

$$
\begin{aligned}
& p^{Y}(x, y)=\left\{\begin{array}{cc}
0 & , x=y \\
g(x, y) /|g(x, x)|, & x \neq y
\end{array} \text { if } g(x, x)<0 \quad\right. \text { and } \\
& p^{Y}(x, y)=\delta_{x, y} \text { if } g(x, x)=0 \quad \text { (by convention) } .
\end{aligned}
$$

- A sample path is constructed by simulating the jump chain ($Y_{n}: n \in \mathbb{N}_{0}$) together with independent holding times ($W_{Y_{n}}: n \in \mathbb{N}_{0}$), so that $J_{n}=\sum_{k=0}^{n-1} W_{Y_{k}}$

2. Examples

- A Poisson process with rate λ (short $\operatorname{PP}(\lambda)$) is a CTMC with

$$
S=\mathbb{N}_{0}, X_{0}=0 \quad \text { and } \quad g(x, y)=\lambda \delta_{x+1, y}-\lambda \delta_{x, y} .
$$

The $\operatorname{PP}(\lambda)$ has stationary and independent increments with

$$
\mathbb{P}\left[X_{t+u}=n+k \mid X_{u}=n\right]=p_{t}(0, k)=\frac{(\lambda t)^{k}}{k!} e^{-\lambda t} \quad \text { for all } u, t>0, k, n \in \mathbb{N}_{0}
$$

since $\pi_{t}(k)=p_{t}(0, k)$ solves the Master equation $\quad \frac{d}{d t} \pi_{t}(k)=\left(\pi_{t} G\right)(k)$.

- A birth-death chain with birth rates α_{x} and death rates β_{x} is a CTMC with

$$
S=\mathbb{N}_{0} \quad \text { and } \quad g(x, y)=\alpha_{x} \delta_{x+1, y}+\beta_{x} \delta_{x-1, y}-\left(\alpha_{x}+\beta_{x}\right) \delta_{x, y},
$$

where $\beta_{0}=0$.
Special cases include

- $\mathbf{M} / \mathbf{M} / 1$ server queues: $\alpha_{x} \equiv \alpha>0, \beta_{x} \equiv \beta>0$ for $x>1$
- $\mathbf{M} / \mathbf{M} / \infty$ server queues: $\alpha_{x} \equiv \alpha>0, \beta_{x}=x \beta$
- population growth model: $\alpha_{x}=x \alpha, \beta_{x}=x \beta$

2. Ergodicity

Definition 2.4

A Markov process is called ergodic if it has a unique stationary distribution π and

$$
p_{t}(x, y)=\mathbb{P}\left[X_{t}=y \mid X_{0}=x\right] \rightarrow \pi(y) \quad \text { as } t \rightarrow \infty, \quad \text { for all } x, y \in S .
$$

Theorem 2.5

An irreducible (aperiodic) MC with finite state space is ergodic.

Theorem 2.6 (Ergodic Theorem)

Consider an ergodic Markov chain with unique stationary distribution $\boldsymbol{\pi}$. Then for every bounded function $f: S \rightarrow \mathbb{R}$ we have with probability 1

$$
\frac{1}{T} \int_{0}^{T} f\left(X_{t}\right) d t \quad \text { or } \quad \frac{1}{N} \sum_{n=1}^{N} f\left(X_{n}\right) \rightarrow \mathbb{E}_{\boldsymbol{\pi}}[f] \quad \text { as } T, N \rightarrow \infty
$$

- for a proof see e.g. [GS], chapter 9.5
- in practice, use relaxation/burn-in time before computing time averages

2. Markov Chain Monte Carlo (MCMC)

Typical problems related to sampling from π on a very large state space S

- Compute expectations $\mathbb{E}_{\boldsymbol{\pi}}[f]=\sum_{x \in S} f(x) \pi(x)$
- for Gibbs measures $\pi(x)=\frac{1}{Z(\beta)} e^{-\beta H(x)} \quad$ (stach. mech. problems), compute partition function $Z(\beta)=\sum_{x \in S} e^{-\beta H(x)}$
Use the ergodic theorem to estimate expectations by time averages
- assume $\pi(x)>0$ for all $x \in S$ (otherwise restrict S)
- invent CTMC/DTMC such that π is stationary, e.g. via detailed balance

$$
\pi(x) g(x, y)=\pi(y) g(y, x) \quad \text { or } \quad \pi(x) p(x, y)=\pi(y) p(y, x)
$$

for Gibbs measures

$$
e^{-\beta H(x)} g(x, y)=e^{-\beta H(y)} g(y, x)
$$

Typically $g(x, y)=q(x, y) a(x, y)$, i.e. propose move from x to y with rate $q(x, y)=q(y, x)$ (irreducible on S but 'local'), accept with probability $a(x, y)$

- Heat bath algorithm: $\quad a(x, y)=\frac{e^{-\beta H(y)}}{e^{-\beta H(x)}+e^{-\beta H(y)}}$
- Metropolis-Hastings: $\quad a(x, y)=\left\{\begin{array}{cl}1 & , \text { if } H(y) \leq H(x) \\ e^{\beta(H(x)-H(y))}, & \text { if } H(y)>H(x)\end{array}\right.$

2. Reversibility

Proposition 2.7 (Time reversal)

Let $\left(X_{t}: t \in[0, T]\right)$ be a finite state, irreducible CTMC with generator G^{X} on a compact time interval which is stationary, i.e. $X_{t} \sim \boldsymbol{\pi}$ for $t \in[0, T]$. Then the time reversed chain

$$
\left(Y_{t}: t \in[0, T]\right) \quad \text { with } \quad Y_{t}:=X_{T-t}
$$

is a stationary CTMC with generator $g^{Y}(x, y)=\frac{\pi(y)}{\pi(x)} g^{X}(y, x)$ and stat. prob. $\boldsymbol{\pi}$.

- An analogous statement holds for stationary, finite state, irreducible DTMCs with $\quad p^{Y}(x, y)=\frac{\pi(y)}{\pi(x)} p^{X}(y, x)$.
- Stationary chains with reversible $\boldsymbol{\pi}$ are time-reversible, $g^{Y}(x, y)=g^{X}(x, y)$.
- The definition of stationary chains can be extended to negative times, ($X_{t}: t \in \mathbb{R}$), with the time reversed chain given by $Y_{t}:=X_{-t}$.
- The time reversal of non-stationary MCs is in general not a homogeneous MC, for DTMCs using Bayes' Theorem we get $p^{Y}(x, y ; n)=\frac{\pi_{N-n-1}(y)}{\pi_{N-n}(x)} p^{X}(y, x)$

2. Countably infinite state space

For infinite state space, Markov chains can get 'lost at infinity' and have no stationary distribution. Let $T_{x}:=\inf \left\{t>J_{1}: X_{t}=x\right\} \quad$ be the first return time to a state x.
(For DTMCs return times are defined as $T_{x}:=\inf \left\{n \geq 1: X_{n}=x\right\}$)

Definition 2.5

A state $x \in S$ is called

- transient, if
- null recurrent, if
- positive recurrent, if

$$
\begin{aligned}
& \mathbb{P}\left[T_{x}=\infty \mid X_{0}=x\right]>0 \\
& \mathbb{P}\left[T_{x}<\infty \mid X_{0}=x\right]=1 \text { and } \mathbb{E}\left[T_{x} \mid X_{0}=x\right]=\infty \\
& \mathbb{P}\left[T_{x}<\infty \mid X_{0}=x\right]=1 \text { and } \mathbb{E}\left[T_{x} \mid X_{0}=x\right]<\infty
\end{aligned}
$$ and these properties partition S into communicating classes.

- For an irreducible MC all states are either transient, null or positive recurrent.
- A MC has a unique stationary distribution if and only if it is positive recurrent

$$
\text { and in this case } \quad \pi(x)=\frac{1}{\mathbb{E}\left[T_{x} \mid X_{0}=x\right]} \mathbb{E}\left[\int_{0}^{T_{x}} \mathbb{1}_{x}\left(X_{s}\right) d s \mid X_{0}=x\right] .
$$

2. Countably infinite state space

A CTMC with an infinite transient component in S can exhibit explosion.

Definition 2.6

For a CTMC define the explosion time

$$
J_{\infty}:=\lim _{n \rightarrow \infty} J_{n} \in(0, \infty] \quad \text { where } J_{n} \text { are the jump times of the chain } .
$$

The chain is called non-explosive if $\mathbb{P}\left[J_{\infty}=\infty\right]=1$, otherwise it is explosive.

- If the exit rates are uniformly bounded, i.e. $\sup _{x \in S}|g(x, x)|<\infty$, then the chain is non-explosive, which is always the case if S is finite.
- As an example, consider a pure birth chain with $X_{0}=1$ and rates

$$
g(x, y)=\alpha_{x} \delta_{y, x+1}-\alpha_{x} \delta_{y, x}, \quad x, y \in S=\mathbb{N}_{0}
$$

If $\alpha_{x} \rightarrow \infty$ fast enough (e.g. $\alpha_{x}=x^{2}$) we get

$$
\mathbb{E}\left[J_{\infty}\right]=\sum_{x=1}^{\infty} \mathbb{E}\left[W_{x}\right]=\sum_{x=1}^{\infty} \frac{1}{\alpha_{x}}<\infty
$$

since holding times $W_{x} \sim \operatorname{Exp}\left(\alpha_{x}\right)$. This implies $\mathbb{P}\left[J_{\infty}=\infty\right]=0<1$.

3. Markov processes with $S=\mathbb{R}$

Proposition 3.1

Let $\left(X_{t}: t \geq 0\right)$ by a homogeneous MP as in Definition 18 with state space $S=\mathbb{R}$. Then for all $t \geq 0$ and (measurable) $A \subseteq \mathbb{R}$ the transition kernel for all $x \in \mathbb{R}$

$$
P_{t}(x, A):=\mathbb{P}\left[X_{t} \in A \mid X_{0}=x\right]=\mathbb{P}\left[X_{t+u} \in A \mid X_{u}=x\right] \quad \text { for all } u \geq 0
$$

is well defined. If it is absolutely continuous the transition density p_{t} with

$$
P_{t}(x, A)=\int_{A} p_{t}(x, y) d y
$$

exists and fulfills the Chapman Kolmogorov equations

$$
p_{t+u}(x, y)=\int_{\mathbb{R}} p_{t}(x, z) p_{u}(z, y) d z \quad \text { for all } t, u \geq 0, x, y \in \mathbb{R}
$$

As for CTMCs, the transition densities and the initial distribution $p_{0}(x)$ describe all finite dimensional distributions (fdds)

$$
\mathbb{P}\left[X_{t_{1}} \leq x_{1}, \ldots, X_{t_{n}} \leq x_{n}\right]=\int_{R} d z_{0} p_{0}\left(z_{0}\right) \int_{-\infty}^{x_{1}} d z_{1} p_{t_{1}}\left(z_{0}, z_{1}\right) \cdots \int_{-\infty}^{x_{n}} d z_{n} p_{t_{n}-t_{n-1}}\left(z_{n-1}, z_{n}\right)
$$

3. Jump processes

$\left(X_{t}: t \geq 0\right)$ is a jump process with state space $S=\mathbb{R}$ characterized by a jump rate density $r(x, y) \geq 0$ with a uniformly bounded total exit rate $R(x)=\int_{\mathbb{R}} r(x, y) d y<\bar{R}<\infty \quad$ for all $x \in \mathbb{R}$.
Ansatz for transition function as $\Delta t \rightarrow 0$:

$$
p_{\Delta t}(z, y)=r(z, y) \Delta t+(1-R(z) \Delta t) \delta(y-z)
$$

Then use the Chapman Kolmogorov equations

$$
\begin{aligned}
& p_{t+\Delta t}(x, y)-p_{t}(x, y)=\int_{\mathbb{R}} p_{t}(x, z) p_{\Delta t}(z, y) d z-p_{t}(x, y)= \\
& =\int_{\mathbb{R}} p_{t}(x, z) r(z, y) \Delta t d z+\int_{\mathbb{R}}(1-R(z) \Delta t-1) p_{t}(x, z) \delta(y-z) d z
\end{aligned}
$$

to get the Kolmogorov-Feller equation (x is a fixed initial condition)

$$
\frac{\partial}{\partial t} p_{t}(x, y)=\int_{\mathbb{R}}\left(p_{t}(x, z) r(z, y)-p_{t}(x, y) r(y, z)\right) d z
$$

As for CTMC sample paths $t \mapsto X_{t}(\omega)$ are piecewise constant and right-continuous.

3. Gaussian processes

$\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right) \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma)$ is a multivariate Gaussian in \mathbb{R}^{n} if it has PDF

$$
f(\mathbf{x})=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det} \Sigma}} \exp \left(-\frac{1}{2}\langle\mathbf{x}-\boldsymbol{\mu}| \Sigma^{-1}|\mathbf{x}-\boldsymbol{\mu}\rangle\right),
$$

with mean $\boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathbb{R}^{n}$ and covariance matrix

$$
\Sigma=\left(\sigma_{i j}: i, j=1, \ldots, n\right), \quad \sigma_{i j}=\operatorname{Cov}\left[X_{i}, X_{j}\right]=\mathbb{E}\left[\left(X_{i}-\mu_{i}\right)\left(X_{j}-\mu_{j}\right)\right] .
$$

Definition 3.1

A stochastic process $\left(X_{t}: t \geq 0\right)$ with state space $S=\mathbb{R}$ is a Gaussian process if for all $n \in \mathbb{N}, 0 \leq t_{1}<\ldots<t_{n}$ the vector $\left(X_{t_{1}}, \ldots, X_{t_{n}}\right)$ is a multivariate Gaussian.

Proposition 3.2

All fdds of a Gaussian process $\left(X_{t}: t \geq 0\right)$ are fully characterized by the mean and the covariance function

$$
m(t):=\mathbb{E}\left[X_{t}\right] \quad \text { and } \quad \sigma(s, t):=\operatorname{Cov}\left[X_{s}, X_{t}\right] .
$$

3. Stationary independent increments

Definition 3.2

A stochastic process $\left(X_{t}: t \geq 0\right)$ has stationary increments if

$$
X_{t}-X_{s} \sim X_{t-s}-X_{0} \quad \text { for all } 0 \leq s \leq t .
$$

It has independent increments if for all $n \geq 1$ and $0 \leq t_{1}<\cdots<t_{n}$

$$
\left\{X_{t_{k+1}}-X_{t_{k}}: 1 \leq k<n\right\} \quad \text { are independent . }
$$

Example. The Poisson process $\left(N_{t}: t \geq 0\right) \sim P P(\lambda)$ has stationary independent increments with $N_{t}-N_{s} \sim \operatorname{Poi}(\lambda(t-s))$.

Proposition 3.3

The following two statements are equivalent for a stochastic process $\left(X_{t}: t \geq 0\right)$:

- X_{t} has stationary independent increments and $X_{t} \sim \mathcal{N}(0, t)$ for all $t \geq 0$.
- X_{t} is a Gaussian process with $m(t)=0$ and $\sigma(s, t)=\min \{s, t\}$.

Stationary independent incr. have stable distributions such as Gaussian or Poisson.

3. Brownian motion

Definition 3.3

Standard Brownian motion ($\left.B_{t}: t \geq 0\right)$ is a stochastic process that satisfies either of the two equivalent properties in Proposition 3.3 and has continuous paths, i.e.

$$
\mathbb{P}\left[\left\{\omega: t \mapsto B_{t}(\omega) \text { is continuous in } t \geq 0\right\}\right]=1 .
$$

Theorem 3.4 (Wiener 1923)

There exists a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ on which standard Brownian motion exists.
Proof idea.* Construction on $\Omega=\mathbb{R}^{[0, \infty)}$, using Kolmogorov's extension theorem: For every 'consistent' description of finite dimensional distributions (fdds) there exists a 'canonical' process $X_{t}[\omega]=\omega(t)$ characterized by a law \mathbb{P} on Ω. The main problem is to show that there exists a 'version' of the process that has continuous paths, i.e. \mathbb{P} can be chosen to concentrate on continuous paths ω.
Remark.* Construction of $\left(N_{t}: t \geq 0\right) \sim P P(\lambda)$ is

$$
N_{t}:=\max \left\{k \geq 1: \tau_{1}+\cdots+\tau_{k} \leq t\right\}, \quad \tau_{1}, \tau_{2}, \cdots \sim \operatorname{Exp}(\lambda) \text { iidrvs }
$$

3. Properties of Brownian motion

- SBM is a time-homogeneous MP with $B_{0}=0$.
- $\sigma B_{t}+x$ with $\sigma>0$ is a (general) BM with $B_{t} \sim \mathcal{N}\left(x, \sigma^{2} t\right)$. The transition density is given by a Gaussion PDF

$$
p_{t}(x, y)=\frac{1}{\sqrt{2 \pi \sigma^{2} t}} \exp \left(-\frac{(y-x)^{2}}{2 \sigma^{2} t}\right)
$$

This is also called the heat kernel, since it solves the heat/diffusion equation

$$
\frac{\partial}{\partial t} p_{t}(x, y)=\frac{\sigma^{2}}{2} \frac{\partial^{2}}{\partial y^{2}} p_{t}(x, y) \quad \text { with } \quad p_{0}(x, y)=\delta(y-x)
$$

- SBM is self-similar with Hurst exponent $H=1 / 2$, i.e.

$$
\left(B_{\lambda t}: t \geq 0\right) \sim \lambda^{H}\left(B_{t}: t \geq 0\right) \quad \text { for all } \lambda>0 .
$$

- $t \mapsto B_{t}$ is $\mathbb{P}-$ a.s. not differentiable at t for all $t \geq 0$. For fixed $h>0$ define $\xi_{t}^{h}:=\left(B_{t+h}-B_{t}\right) / h \sim \mathcal{N}(0,1 / h)$, which is a mean- 0 Gaussian process with covariance $\sigma(s, t)=\left\{\begin{array}{cc}0 \\ (h-|t-s|) / h^{2}, & ,|t-s|>h \\ |t-s|<h\end{array}\right.$. The (non-existent) derivative $\xi_{t}:=\lim _{h \rightarrow 0} \xi_{t}^{h}$ is called white noise and is formally a mean-0 Gaussian process with covariance $\sigma(s, t)=\delta(t-s)$.

3. Generators as operators

For a CTMC ($\left.X_{t}: t \geq 0\right)$ with discrete state space S we have for $f: S \rightarrow \mathbb{R}$

$$
\mathbb{E}\left[f\left(X_{t}\right)\right]=\sum_{x \in S} \pi_{t}(x) f(x)=\left\langle\pi_{t} \mid f\right\rangle \quad \text { and } \quad \underbrace{\frac{d}{d t}\left\langle\pi_{t}\right|=\left\langle\pi_{t}\right| G}_{\text {master equation }}
$$

Therefore $\frac{d}{d t} \mathbb{E}\left[f\left(X_{t}\right)\right]=\frac{d}{d t}\left\langle\pi_{t} \mid f\right\rangle=\left\langle\pi_{t}\right| G|f\rangle=\mathbb{E}\left[(G f)\left(X_{t}\right)\right]$.
The generator G can be defined as an operator G acting on functions $f: S \rightarrow \mathbb{R}$

$$
G|f\rangle(x)=(G f)(x)=\sum_{y \neq x} g(x, y)[f(y)-f(x)] .
$$

For Brownian motion use the heat eq. and integration by parts for $f \in C^{2}(\mathbb{R})$

$$
\frac{d}{d t} \mathbb{E}_{x}\left[f\left(X_{t}\right)\right]=\int_{\mathbb{R}} \partial_{t} p_{t}(x, y) f(y) d y=\frac{\sigma^{2}}{2} \int_{\mathbb{R}} \partial_{y}^{2} p_{t}(x, y) f(y) d y=\mathbb{E}_{x}\left[(\mathcal{L} f)\left(X_{t}\right)\right]
$$

where the generator of BM is $\quad(\mathcal{L} f)(x)=\frac{\sigma^{2}}{2} \Delta f(x) \quad\left(\right.$ or $\left.\frac{\sigma^{2}}{2} f^{\prime \prime}(x)\right)$.
For jump processes with $S=\mathbb{R}$ and rate density $r(x, y)$ the generator is

$$
(\mathcal{L} f)(x)=\int_{\mathbb{R}} r(x, y)[f(y)-f(x)] d y
$$

3. Brownian motion as scaling limit

Proposition 3.5

Let $\left(X_{t}: t \geq 0\right)$ be a jump process on \mathbb{R} with translation invariant rates $r(x, y)=q(y-x)$ which have

$$
\begin{aligned}
\text { mean zero } & \int_{\mathbb{R}} q(z) z d z=0 \text { and } \\
\text { finite second moment } & \sigma^{2}:=\int_{\mathbb{R}} q(z) z^{2} d z<\infty .
\end{aligned}
$$

Then for all $T>0$ the rescaled process

$$
\left(\epsilon \mathbf{X}_{\mathbf{t} / \epsilon^{2}}: \mathbf{t} \in[\mathbf{0}, \mathbf{T}]\right) \quad \Rightarrow \quad\left(\mathbf{B}_{\mathbf{t}}: \mathbf{t} \in[\mathbf{0}, \mathbf{T}]\right) \quad \text { as } \epsilon \rightarrow \mathbf{0}
$$

converges in distribution to a BM with generator $\mathcal{L}=\frac{1}{2} \sigma^{2} \Delta$ for all $T>0$.

Proof. Taylor expansion of the generator for test functions $f \in C^{3}(\mathbb{R})$, and tightness argument for continuity of paths (requires fixed interval $[0, T]$).

3. Diffusion processes

Definition 3.4

A diffusion process with drift $a(x, t) \in \mathbb{R}$ and diffusion $\sigma(x, t)>0$ is a real-valued process with continuous paths and generator

$$
(\mathcal{L} f)(x)=a(x, t) f^{\prime}(x)+\frac{1}{2} \sigma^{2}(x, t) f^{\prime \prime}(x) .
$$

Examples.

- The Ornstein-Uhlenbeck process is a diffusion process with generator

$$
(\mathcal{L} f)(x)=-\alpha x f^{\prime}(x)+\frac{1}{2} \sigma^{2} f^{\prime \prime}(x), \quad \alpha, \sigma^{2}>0
$$

It has a Gaussian stationary distribution $\mathcal{N}\left(0, \sigma^{2} /(2 \alpha)\right)$.
If the initial distribution π_{0} is Gaussian, this is a Gaussian process.

- The Brownian bridge is a Gaussian diffusion with $X_{0}=0$ and generator

$$
(\mathcal{L} f)(x)=-\frac{x}{1-t} f^{\prime}(x)+\frac{1}{2} f^{\prime \prime}(x) .
$$

Equivalently, it can be characterized as a SBM conditioned on $B_{1}=0$.

3. Diffusion processes

Time evolution of the mean. Use $\frac{d}{d t} \mathbb{E}\left[f\left(X_{t}\right)\right]=\mathbb{E}\left[(\mathcal{L} f)\left(x_{t}\right)\right]$ with $f(x)=x$

$$
\frac{d}{d t} \mathbb{E}\left[X_{t}\right]=\mathbb{E}\left[a\left(X_{t}, t\right)\right]
$$

Time evolution of the transition density. With $X_{0}=x$ we have for $p_{t}(x, y)$

$$
\int_{\mathbb{R}} \frac{\partial}{\partial t} p_{t}(x, y) f(y) d y=\frac{d}{d t} \mathbb{E}\left[f\left(X_{t}\right)\right]=\int_{\mathbb{R}} p_{t}(x, y) \mathcal{L} f(y) d y \quad \text { for any } f .
$$

Use integration by parts to get the Fokker-Planck equation

$$
\frac{\partial}{\partial t} p_{t}(x, y)=-\frac{\partial}{\partial y}\left(a(y, t) p_{t}(x, y)\right)+\frac{1}{2} \frac{\partial^{2}}{\partial y^{2}}\left(\sigma^{2}(y, t) p_{t}(x, y)\right) .
$$

Stationary distributions for time-independent $a(y) \in \mathbb{R}$ and $\sigma^{2}(y)>0$

$$
\frac{d}{d y}\left(a(y) p^{*}(y)\right)=\frac{1}{2} \frac{d^{2}}{d y^{2}}\left(\sigma^{2}(y) p^{*}(y)\right),
$$

leads to a stationary density (modulo normalization fixing $p^{*}(0)$)

$$
p^{*}(x)=p^{*}(0) \exp \left(\int_{0}^{x} \frac{2 a(y)-\left(\sigma^{2}\right)^{\prime}(y)}{\sigma^{2}(y)} d y\right) .
$$

3. Beyond diffusion

Definition 3.5

A Lévy process $\left(X_{t}: t \geq 0\right)$ is a real-valued process with right-continuous paths and stationary, independent increments.

The generator has a part with constant drift $a \in \mathbb{R}$ and diffusion $\sigma^{2} \geq 0$

$$
\mathcal{L} f(x)=a f^{\prime}(x)+\frac{\sigma^{2}}{2} f^{\prime \prime}(x)+\int_{\mathbb{R}}\left(f(x+z)-f(x)-z f^{\prime}(x) \mathbb{1}_{(0,1)}(|z|)\right) q(z) d z
$$

and a translation invariant jump part with density $q(z) \quad$ (or measure $\nu(d z)$) and fulfills $\int_{|z|>1} q(z) d z<\infty$ and $\int_{0<|z|<1} z^{2} q(z) d z<\infty$.

- Diffusion processes, in particular BM with $a=0, \sigma^{2}>0$ and $q(z) \equiv 0$, or jump processes, in particular Poisson with $a=\sigma=0$ and $q(z)=\lambda \delta(z-1)$.
- For $a=\sigma=0$ and heavy-tailed jump distribution

$$
q(z)=\frac{C}{|z|^{1+\alpha}} \quad \text { with } \quad C>0 \text { and } \alpha \in(0,2]
$$

the process is called α-stable symmetric Lévy process or Lévy flight. self-similar $\quad\left(X_{\lambda t}: t \geq 0\right) \sim \lambda^{H}\left(X_{t}: t \geq 0\right), \quad \lambda>0 \quad$ with $H=1 / \alpha$
\Rightarrow super-diffusive behaviour with $\mathbb{E}\left[X_{t}^{2}\right] \propto t^{2 / \alpha}$

3. Beyond diffusion

In general, a process $\left(X_{t}: t \geq 0\right)$ is said to exhibit anomalous diffusion if

$$
\operatorname{Var}\left[X_{t}\right] / t \rightarrow\left\{\begin{array}{cl}
0, & \text { sub-diffusive } \\
\infty, & \text { super-diffusive }
\end{array} \quad \text { as } t \rightarrow \infty\right.
$$

Definition 3.6

A fractional Brownian motion (fBM) $\left(B_{t}^{H}: t \geq 0\right)$ with Hurst index $H \in(0,1)$ is a mean-zero Gaussian process with continuous paths, $B_{0}^{H}=0$ and covariances

$$
\mathbb{E}\left[B_{t}^{H} B_{s}^{H}\right]=\frac{1}{2}\left(t^{2 H}+s^{2 H}-|t-s|^{2 H}\right) \quad \text { for all } s, t \geq 0
$$

- For $H=1 / 2$, fBM is standard Brownian motion.
- fBM has stationary Gaussian increments where for all $t>s \geq 0$

$$
B_{t}^{H}-B_{s}^{H} \sim B_{t-s}^{H} \sim \mathcal{N}\left(0,(t-s)^{2 H}\right)
$$

which for $H \neq 1 / 2$ are not independent and the process is non-Markov.

- fBM is self-similar, i.e. $\quad\left(B_{\lambda t}^{H}: t \geq 0\right) \sim \lambda^{H}\left(B_{t}^{H}: t \geq 0\right)$ for all $\lambda>0$.

3. Fractional BM and noise

- fBM exhibits anomalous diffusion with $\operatorname{Var}\left[B_{t}^{H}\right]=t^{2 H}$
- $\mathbf{H}>\mathbf{1} / \mathbf{2}$: super-diffusive with positively correlated increments
$\mathbf{H}<\mathbf{1} / \mathbf{2}$: sub-diffusive with negatively correlated increments

$$
\mathbb{E}\left[B_{1}^{H}\left(B_{t+1}^{H}-B_{t}^{H}\right)\right]=\frac{(t+1)^{2 H}-2 t^{2 H}+(t-1)^{2 H}}{2} \underset{t \rightarrow \infty}{\simeq} H(2 H-1) t^{2(H-1)}
$$

For a stationary process $\left(X_{t}: t \geq 0\right)$ on \mathbb{R} define the autocorrelation/covariance fct

$$
c(t):=\operatorname{Cov}\left[X_{s}, X_{s+t}\right] \quad \text { for all } s, t \in \mathbb{R} .
$$

Its Fourier transform is the spectral density $\quad S(\omega):=\int_{\mathbb{R}} c(t) e^{-i \omega t} d t$

- white noise ($\left.\xi_{t}: t \geq 0\right)$, stationary GP with mean zero and

$$
c(t)=\delta(t) \quad \Rightarrow \quad S(\omega) \equiv 1
$$

- fractional or $\mathbf{1 / f}$ noise $\left(\xi_{t}^{H}: t \geq 0\right)$, stationary GP with mean zero and

$$
c(t)=\frac{2 H(2 H-1)}{|t|^{2(1-H)}} \Rightarrow S(\omega) \propto|\omega|^{2(1-H)-1}=\frac{1}{\omega^{2 H-1}}
$$

3. SDEs and Itô's formula

Let $\left(B_{t}: t \geq 0\right)$ be a standard BM. Then a diffusion process with drift $a(x, t)$ and diffusion $\sigma(x, t)$ solves the Stochastic differential equation (SDE)

$$
d X_{t}=a\left(X_{t}, t\right) d t+\sigma\left(X_{t}, t\right) d B_{t}
$$

Here $d B_{t}$ is white noise, interpreted in integrated form as

$$
X_{t}-X_{0}=\int_{0}^{t} a\left(X_{s}, s\right) d s+\int_{0}^{t} \sigma\left(X_{s}, s\right) d B_{s}
$$

Theorem 3.6 (Itô's formula for diffusions)

Let $\left(X_{t}: t \geq 0\right)$ be a diffusion with generator \mathcal{L} and $f: \mathbb{R} \rightarrow \mathbb{R}$ a smooth. Then

$$
f\left(X_{t}\right)-f\left(X_{0}\right)=\int_{0}^{t}(\mathcal{L} f)\left(X_{s}\right) d s+\int_{0}^{t} \sigma\left(X_{s}, s\right) f^{\prime}\left(X_{s}\right) d B_{s}
$$

or, equivalently in terms of SDEs

$$
d f\left(X_{t}\right)=a\left(X_{t}, t\right) f^{\prime}\left(X_{t}\right) d t+\frac{1}{2} \sigma^{2}\left(X_{t}, t\right) f^{\prime \prime}\left(X_{t}\right) d t+\sigma\left(X_{t}, t\right) f^{\prime}\left(X_{t}\right) d B_{t}
$$

3. SDEs and Itô's formula

Itô's formula for diffusions implies the following.

Proposition 3.7

Let $\left(X_{t}: t \geq 0\right)$ be a diffusion process with drift $a(x, t)$ and diffusion $\sigma(x, t)$, and $f: \mathbb{R} \rightarrow \mathbb{R}$ a smooth invertible function. Then $\left(Y_{t}: t \geq 0\right)$ with $Y_{t}=f\left(X_{t}\right)$ is a diffusion process with ($x=f^{-1}(y)$)

$$
\text { drift } a(x, t) f^{\prime}(x)+\frac{1}{2} \sigma^{2}(x, t) f^{\prime \prime}(x) \text { and diffusion } \sigma(x, t) f^{\prime}(x) .
$$

Geometric BM. $Y_{t}:=e^{\theta B_{t}}$, so $f(x)=e^{\theta x}$ with $f^{\prime}(x)=\theta f(x)$ and $f^{\prime \prime}(x)=\theta^{2} f(x)$, where ($B_{t}: t \geq 0$) is standard BM with $a \equiv 0, \sigma^{2} \equiv 1$ and $\theta \in \mathbb{R}$. Then $\left(Y_{t}: t \geq 0\right)$ is a diffusion process with SDE $\quad d Y_{t}=\frac{\theta}{2} Y_{t} d t+\theta Y_{t} d B_{t}$.
Exponential martingale.
$Z_{t}:=e^{\theta B_{t}-\theta^{2} t / 2}$, so $f(x, t)=e^{\theta x-\theta^{2} t / 2}$ and $\partial_{t} f(x, t)=-\frac{\theta^{2}}{2} f(x, t)$
Then $\quad d Z_{t}=\frac{\theta}{2} Z_{t} d t-\frac{\theta}{2} Z_{t} d t-+\theta Z_{t} d B_{t}=\theta Z_{t} d B_{t}$
and $\left(Z_{t}: t \geq 0\right)$ is a martingale (see next slide) with $\mathbb{E}\left[Z_{t}\right] \equiv Z_{0}=1$.

3. Fluctuations and martingales

Definition 3.7

A real-valued stochastic process $\left(M_{t}: t \geq 0\right)$ is a martingale w.r.t. the process $\left(X_{t}: t \geq 0\right)$ if for all $t \geq 0$ we have $\mathbb{E}\left[\left|M_{t}\right|\right]<\infty$ and

$$
\mathbb{E}\left[M_{t} \mid\left\{X_{u}: 0 \leq u \leq s\right\}\right]=M_{s} \quad \text { a.s. for all } s \leq t .
$$

If in addition $\mathbb{E}\left[M_{t}^{2}\right]<\infty$, there exists a unique increasing process $\left([M]_{t}: t \geq 0\right)$ called the quadratic variation, with $[M]_{0}=0$ and such that $M_{t}^{2}-[M]_{t}$ is martingale.

Theorem 3.8 (Itô's formula)

Let $\left(X_{t}: t \geq 0\right)$ be a Markov process on state space S with generator \mathcal{L}. Then for any smooth enough $f: S \times[0, \infty) \rightarrow \mathbb{R}$

$$
f\left(X_{t}, t\right)-f\left(X_{0}, 0\right)=\int_{0}^{t}(\mathcal{L} f)\left(X_{s}, s\right) d s+\int_{0}^{t} \partial_{s} f\left(X_{s}, s\right) d s+M_{t}^{f}
$$

where $\left(M_{t}^{f}: t \geq 0\right)$ is a martingale w.r.t. $\left(X_{t}: t \geq 0\right)$ with $M_{0}^{f}=0$ and
quadratic variation $\left[M^{f}\right]_{t}=\int_{0}^{t}\left(\left(\mathcal{L} f^{2}\right)\left(X_{s}, s\right)-2(f \mathcal{L} f)\left(X_{s}, s\right)\right) d s$.

3. Fluctuations and martingales

- For a Poisson process $\left(N_{t}: t \geq 0\right)$ with rate $\lambda>0$ Itô's formula implies that

$$
M_{t}:=N_{t}-\lambda t \quad \text { is a martingale with quadr. variation } \quad[M]_{t}=\lambda t .
$$

- Watanabe's characterication of PP: Let $\left(N_{t}: t \geq 0\right)$ be a counting process, i.e. a jump process on $S=\mathbb{N}$ with jump size +1 only. If $M_{t}=N_{t}-\lambda t$ is a martingale, then $\left(N_{t}: t \geq 0\right) \sim P P(\lambda)$.
- For a diffusion process, choosing $f\left(X_{t}, t\right)=X_{t}$ in Itô's formula leads to

$$
X_{t}-X_{0}=\int_{0}^{t} a\left(X_{s}, s\right) d s+M_{t} \quad \text { with } \quad[M]_{t}=\int_{0}^{t} \sigma^{2}\left(X_{s}, s\right) d s
$$

In particular for BM with $a(x, t) \equiv 0$ and $\sigma^{2}(x, t) \equiv \sigma^{2}$ we have

$$
\left(B_{t}: t \geq 0\right) \text { is a martingale with quadratic variation }[B]_{t}=t .
$$

- Lévy's characterication of BM: Any continuous martingale ($\left.M_{t}: t \geq 0\right)$ on \mathbb{R} with $M_{0}=0$ and quadratic variation $[M]_{t}=t$ is standard Brownian motion.

Furthermore, any continuous martingale $\left(M_{t}: t \geq 0\right)$ on \mathbb{R} with $M_{0}=0$ is a continuous (random) time-change of a standard BM, i.e.

$$
\left(M_{t}: t \geq 0\right) \sim\left(B_{[M]_{t}}: t \geq 0\right) \quad \text { for SBM } \quad\left(B_{t}: t \geq 0\right) .
$$

3. Fluctuations and martingales

- For a diffusion process $\left(X_{t}: t \geq 0\right)$ we have

$$
X_{t}-X_{0}=\int_{0}^{t} a\left(X_{s}, s\right) d s+M_{t} \quad \text { with } \quad[M]_{t}=\int_{0}^{t} \sigma^{2}\left(X_{s}, s\right) d s
$$

with M_{t} a continuous martingale $\Rightarrow\left(M_{t}: t \geq 0\right) \sim\left(B_{[M]_{t}}: t \geq 0\right)$

- Related time-changed BMs can be written as stochastic Itô integrals

$$
M_{t}=\int_{0}^{t} \sigma\left(X_{s}, s\right) d B_{s}:=B_{[M]_{t}} .
$$

Therefore $\sigma \equiv 0$ implies deterministic dynamics with $M_{t} \equiv 0$, (also because $\mathcal{L} f^{2}=2 f f^{\prime} a=2 f \mathcal{L} f$ for all f, so $\left[M^{f}\right]_{t} \equiv 0$ in Itô's formula) and the corresponding SDE is an ODE $\quad d X_{t} / d t=a\left(X_{t}, t\right)$.

Vanishing drift $a \equiv 0$ implies $\quad X_{t}-X_{0}=M_{t} \quad$ or $\quad d X_{t}=\sigma\left(X_{t}, t\right) d B_{t}$ and the process $\left(X_{t}: t \geq 0\right)$ is a martingale.

- Recall the exponential martingale $e^{\theta B_{l}-\theta^{2} t / 2}$ as a non-trivial example.

3. Martingales and conservation laws

Consider a CTMP $\left(X_{t}: t \geq 0\right)$ on state space S with generator \mathcal{L}, and an observable $f: S \rightarrow \mathbb{R}$ such that $\mathcal{L} f: S \rightarrow \mathbb{R}$ is well defined (e.g. $f \in C^{2}(S, \mathbb{R})$ for diffusions).

Proposition 3.9

If $\mathcal{L} f(x)=0$ for all $x \in S$, then $f\left(X_{t}\right)$ is a martingale, and is conserved in expectation, i.e. (for any initial condition X_{0})

$$
E\left[f\left(X_{t}\right)\right]=\mathbb{E}\left[f\left(X_{0}\right)\right] \quad \text { for all } t \geq 0 .
$$

If in addition $\mathcal{L} f^{2}(x)=0$ for all $x \in S$, then $f\left(X_{t}\right)$ is conserved (or a conserved quantity), i.e. (for any initial condition X_{0})

$$
f\left(X_{t}\right)=f\left(X_{0}\right) \quad \text { almost surely for all } t \geq 0 .
$$

Proof. The first claim follows directly from Itô's formula (Theorem 3.8). For the second claim, we have $f\left(X_{t}\right)=f\left(X_{0}\right)+M_{t}^{f}$ and M_{t}^{f} has quadratic variation

$$
\left[M^{f}\right]_{t}=\int_{0}^{t}\left(\left(\mathcal{L} f^{2}\right)\left(X_{s}, s\right)-2(f \mathcal{L} f)\left(X_{s}, s\right)\right) d s=0
$$

for all $t \geq 0$, which implies $M_{t}^{f} \equiv 0$ almost surely.

4. Stochastic particle systems

- lattice/population: $\Lambda=\{1, \ldots, L\}$, finite set of points
- state space S is given by the set of all configurations

$$
\eta=(\eta(i): i \in \Lambda) \in S=\{0,1\}^{L} \quad\left(\text { often also written }\{0,1\}^{\Lambda}\right) .
$$

$\eta(i) \in\{0,1\}$ signifies the presence of a particle/infection at site/individual i.

- Only local transitions are allowed with rates

$$
\begin{array}{llll}
\eta \rightarrow \eta^{i} & \text { with rate } & c\left(\eta, \eta^{i}\right) & \text { (reaction) } \\
\eta \rightarrow \eta^{i j} & \text { with rate } & c\left(\eta, \eta^{i j}\right) & \text { (transport) }
\end{array}
$$

where $\quad \eta^{i}(k)=\left\{\begin{array}{c}\eta(k), k \neq i \\ 1-\eta(k), k=i\end{array}\right.$ and $\quad \eta^{i j}(k)=\left\{\begin{array}{c}\eta(k), k \neq i, j \\ \eta(j), k=i \\ \eta(i), k=j\end{array}\right.$

Definition 4.1

A stochastic particle system is a CTMC with state space $S=\{0,1\}^{\Lambda}$ and generator

$$
\mathcal{L} f(\eta)=\sum_{i \in \Lambda} c\left(\eta, \eta^{i}\right)\left[f\left(\eta^{i}\right)-f(\eta)\right] \quad \text { or } \quad \mathcal{L} f(\eta)=\sum_{i, j \in \Lambda} c\left(\eta, \eta^{i j}\right)\left[f\left(\eta^{i j}\right)-f(\eta)\right] .
$$

4. Contact process

The contact process is a simple stochastic model for the SI epidemic with infection rates $q(i, j) \geq 0$ and uniform recovery rate 1 .

Definition 4.2

The contact process (CP) $\left(\eta_{t}: t \geq 0\right)$ is an IPS with rates

$$
c\left(\eta, \eta^{i}\right)=\underbrace{1 \cdot \delta_{\eta(i), 1}}_{\text {recovery }}+\underbrace{\delta_{\eta(i), 0} \sum_{j \neq i} q(j, i) \delta_{\eta(j), 1}}_{\text {infection }} \quad \text { for all } i \in \Lambda .
$$

Usually, $q(i, j)=q(j, i) \in\{0, \lambda\}$, i.e. connected individuals infect each other with fixed rate $\lambda>0$.

- The CP has one absorbing state $\eta(i)=0$ for all $i \in \Lambda$, which can be reached from every initial configuration. Therefore the process is ergodic and the infection eventually gets extinct with probability 1.
- Let $T:=\inf \left\{t>0: \eta_{t} \equiv 0\right\}$ be the extinction time. Then there exists a critical value (epidemic threshold) $\lambda_{c}>0$ such that (for irreducible $q(i, j)$)

$$
\mathbb{E}\left[T \mid \eta_{0} \equiv 1\right] \propto \log L \quad \text { for } \lambda<\lambda_{c} \quad \text { and } \quad \mathbb{E}\left[T \mid \eta_{0} \equiv 1\right] \propto e^{C L} \quad \text { for } \lambda>\lambda_{c}
$$

4. Voter model

The voter model describes opinion dynamics with influence rates $q(i, j) \geq 0$ at which individual i persuades j to switch to her/his opinion.

Definition 4.3

The linear voter model (VM) $\left(\eta_{t}: t \geq 0\right)$ is an IPS with rates

$$
c\left(\eta, \eta^{i}\right)=\sum_{j \neq i} \underbrace{q(j, i)\left(\delta_{\eta(i), 1} \delta_{\eta(j), 0}+\delta_{\eta(i), 0} \delta_{\eta(j), 1}\right)}_{j \text { influences } i \text { if opinions differ }} \quad \text { for all } i \in \Lambda .
$$

In non-linear versions the rates can be replaced by general (symmetric) functions.

- The VM is symmetric under relabelling opinions $0 \leftrightarrow 1$.
- If $q(i, j)$ is irreducible there are two absorbing states, $\eta \equiv 0,1$, both of which can be reached from every initial condition. Therefore the VM is not ergodic, and stationary measures are

$$
\alpha \delta_{0}+(1-\alpha) \delta_{1} \quad \text { with } \alpha \in[0,1] \text { depending on the initial condition . }
$$

- Coexistence of both opinions can occur on infinite lattices (e.g. \mathbb{Z}^{d} for $d \geq 3$).

4. Exclusion process

The exclusion process describes transport of a conserved quantity (e.g. mass or energy) with transport rates $q(i, j) \geq 0$ site i to j.

Definition 4.4

The exclusion process (EP) $\left(\eta_{t}: t \geq 0\right)$ is an IPS with rates

$$
c\left(\eta, \eta^{i j}\right)=q(i, j) \delta_{\eta(i), 1} \delta_{\eta(j), 0} \quad \text { for all } i, j \in \Lambda .
$$

The EP is called simple (SEP) if jumps occur only between nearest neighbours on Λ. The SEP is symmetric (SSEP) if $q(i, j)=q(j, i)$, otherwise asymmetric (ASEP).

- The SEP is mostly studied in a 1 D geometry with periodic or open boundaries.
- For periodic boundary conditions the total number of particles $N=\sum_{i} \eta(i)$ is conserved. The process is ergodic on the sub-state space

$$
S_{N}=\left\{\eta \in\{0,1\}^{L}: \sum_{i} \eta(i)=N\right\}
$$

for each value $N=0, \ldots L$, and has a unique stationary distribution.

- For open boundaries particles can be created and destroyed at the boundary, the system is ergodic on S and has a unique stationary distribution.

4. Mean-field scaling limits

Consider the contact process $\left(\eta_{t}: t \geq 0\right)$ on a complete graph, using $\eta(i) \in\{0,1\}$ we can write the generator as

$$
\mathcal{L} f(\eta)=\sum_{i \in \Lambda}\left(\eta(i)+\lambda(1-\eta(i)) \sum_{j \in \Lambda} \eta(j)\right)\left[f\left(\eta^{i}\right)-f(\eta)\right] .
$$

For mean-field observables such as $N(\eta):=\sum_{i \in \Lambda} \eta(i)$ one can compute for $f: \mathbb{N}_{0} \rightarrow \mathbb{R}$ (see problem sheet 3)

$$
\mathcal{L}(f \circ N)(\eta)=\lambda(L-N) N[f(N+1)-f(N)]+N[f(N-1)-f(N)],
$$

which shows that $t \mapsto N_{t}:=N\left(\eta_{t}\right)$ is a Markov process with above generator for all L.
Mean-field scaling limit. $L \rightarrow \infty$ with $\lambda L \rightarrow \hat{\lambda}$
then $N_{t} / L \rightarrow X_{t}$, which is a diffusion process on $[0,1]$ with generator

$$
\mathcal{L} f(x)=(\hat{\lambda} x(1-x)-x) f^{\prime}(x)+\frac{1}{2 L}(\hat{\lambda} x(1-x)+x) f^{\prime \prime}(x)
$$

In the limit the diffusion coefficient vanishes and the process is deterministic (blue) with leading order diffusive correction (red) and corresponding SDE

$$
d X_{t}=\left(\hat{\lambda} X_{t}\left(1-X_{t}\right)-X_{t}\right) d t+\sqrt{\frac{1}{L}\left(\hat{\lambda} X_{t}\left(1-X_{t}\right)+X_{t}\right)} d B_{t}
$$

5. Graphs - definition

Definition 5.1

A graph (or network) $G=(V, E)$ consists of a finite set $V=\{1, \ldots, N\}$ of vertices (or nodes, points), and a set $E \subseteq V \times V$ of edges (or links, lines).
The graph is called undirected if $(i, j) \in E$ implies $(j, i) \in E$, otherwise directed. The structure of the graph is encoded in the adjacency (or connectivity) matrix

$$
A=\left(a_{i j}: i, j \in V\right) \quad \text { where } \quad a_{i j}=\left\{\begin{array}{l}
1,(i, j) \in E \\
0,(i, j) \notin E
\end{array} .\right.
$$

We denote the number of edges by $K=|E|$ for directed, or $K=|E| / 2$ for undirected graphs.

- Graphs we consider do not have self edges, i.e. $(i, i) \notin E$ for all $i \in V$, or multiple edges, since edges (i, j) are unique elements of E.
- Weighted graphs with edge weights $w_{i j} \in \mathbb{R}$ can be used to represent continuous- or discrete-time Markov chains.
- In general graphs can also be infinite, but we will focus on finite graphs. Many of the following graph characteristics only make sense in the finite case.

5. Graphs - paths and connectivity

Definition 5.2

A path $\gamma_{i j}$ of length $l=\left|\gamma_{i j}\right|$ from vertex i to j is sequence of vertices

$$
\gamma_{i j}=\left(v_{1}=i, v_{2}, \ldots, v_{l+1}=j\right) \quad \text { with } \quad\left(v_{k}, v_{k+1}\right) \in E \text { for all } k=1, \ldots, l,
$$

and $v_{k} \neq v_{k^{\prime}}$ for all $k \neq k^{\prime} \in\{1, \ldots, l\}$ (i.e. each vertex is visited only once).
If such a path exists, we say that vertex i is connected to j (write $i \rightarrow j$).
Shortest paths between vertices i, j are called geodesics (not necessarily unique) and their length $d_{i j}$ is called the distance from i to j. If $i \nrightarrow j$ we set $d_{i j}=\infty$. A graph is connected if $d_{i j}<\infty$ for all $i, j \in V$.
The diameter and the characteristic path length of the graph G are given by

$$
\begin{aligned}
\operatorname{diam}(G) & :=\max \left\{d_{i j}: i, j \in V\right\} \in \mathbb{N}_{0} \cup\{\infty\}, \\
L=L(G) & :=\frac{1}{N(N-1)} \sum_{i, j \in V} d_{i j} \in[0, \infty]
\end{aligned}
$$

For undirected graphs we have $d_{i j}=d_{j i}$ which is finite if $i \leftrightarrow j$, and they can be decomposed into connected components, where we write

$$
C_{i}=\{j \in V: j \leftrightarrow i\} \quad \text { for the component containing vertex } i
$$

5. Graphs - degrees

Definition 5.3

The in- and out-degree of a node $i \in V$ is defined as

$$
k_{i}^{\text {in }}=\sum_{j \in V} a_{j i} \quad \text { and } \quad k_{i}^{\text {out }}=\sum_{j \in V} a_{i j}
$$

$k_{1}^{\text {in }}, \ldots k_{N}^{\text {in }}$ is called the in-degree sequence and the in-degree distribution is

$$
\left(p^{\text {in }}(k): k \in\{0, \ldots, K\}\right) \quad \text { with } \quad p^{\text {in }}(k)=\frac{1}{N} \sum_{i \in V} \delta_{k, k_{i}^{\text {in }}}
$$

giving the fraction of vertices with in-degree k. The same holds for out-degrees, and in undirected networks we simply write $k_{i}=k_{i}^{\text {in }}=k_{i}^{\text {out }}$ and $p(k)$.

- Note that $\sum_{i \in V} k_{i}=\sum_{i, j \in V} a_{i j}=|E|$ (also for directed), average and variance are

$$
\langle k\rangle=\frac{1}{N} \sum_{i \in V} k_{i}=|E| / N=\sum_{k} k p(k), \quad \sigma^{2}=\left\langle k^{2}\right\rangle-\langle k\rangle^{2} .
$$

- In a regular graph (usually undirected) all vertices have equal degree $k_{i} \equiv k$.
- Graphs where the degree distribution shows a power law decay, i.e. $p(k) \propto k^{-\alpha}$ for large k, are often called scale-free.
Real-world networks are often scale-free with exponent around $\alpha \approx 3$.

5. Graphs - first examples

Example 2 (Some graphs)

The complete graph K_{N} with N vertices is an undirected graph where all $N(N-1) / 2$ vertices $E=((i, j): i \neq j \in V)$ are present.
Regular lattices \mathbb{Z}^{d} with edges between nearest neighbours are examples of regular graphs with degree $k=2 d$.

Definition 5.4

A tree is an undirected graph where any two vertices are connected by exactly one path. Vertices with degree 1 are called leaves.
In a rooted tree one vertex $i \in V$ is the designated root, and the graph can be directed, where all vertices point towards or away from the root.

A cycle is a closed path $\gamma_{i i}$ of length $\left|\gamma_{i i}\right|>2 . G$ is a tree if and only if

- it is connected and has no cycles;
- it is connected but is not connected if a single edge is removed;
- it has no cycles but a cycle is formed if any edge is added.

5. Graphs - degree correlations

Definition 5.5

For undirected graphs, the joint degree distribution of nodes linked by an edge is

$$
q\left(k, k^{\prime}\right)=\frac{1}{|E|} \sum_{(i, j) \in E} \delta_{k_{i}, k} \delta_{k_{j}, k^{\prime}}=\frac{\sum_{i, j \in V} a_{i j} \delta_{k_{i}, k} \delta_{k, k^{\prime}}}{\sum_{i, j \in V} a_{i j}}=q\left(k^{\prime}, k\right) .
$$

With the marginal $q\left(k^{\prime}\right)=\sum_{k} q\left(k, k^{\prime}\right)$ we have the conditional degree distribution

$$
q\left(k \mid k^{\prime}\right)=q\left(k, k^{\prime}\right) / q\left(k^{\prime}\right) \quad \text { with average } \quad k_{n n}\left(k^{\prime}\right):=\sum_{k} k q\left(k \mid k^{\prime}\right) .
$$

The network is called uncorrelated if $k_{n n}\left(k^{\prime}\right)$ is independent of k^{\prime}, assortative if $k_{n n}\left(k^{\prime}\right) \nearrow$ in k^{\prime} and disassortative if $k_{n n}\left(k^{\prime}\right) \searrow$ in k^{\prime}.

- The marginal $q(k)$ corresponds to edge biased degree sampling, i.e.

$$
q(k)=\sum_{k^{\prime}} q\left(k, k^{\prime}\right)=\frac{1}{|E|} \sum_{i, j \in V} a_{i j} \delta_{k_{i}, k}=\frac{N}{|E|} \frac{1}{N} \sum_{i \in V} k_{i} \delta_{k_{i}, k}=\frac{k p(k)}{\langle k\rangle} .
$$

For uncorrelated networks $q\left(k \mid k^{\prime}\right)=q(k)$ and thus $k_{n n}\left(k^{\prime}\right)=\left\langle k^{2}\right\rangle /\langle k\rangle$.

5. Subgraphs

- The degree of correlation can be quantified by the correlation coefficient

$$
\chi:=\frac{\left\langle k k^{\prime}\right\rangle_{q}-\langle k\rangle_{q}^{2}}{\left\langle k^{2}\right\rangle_{q}-\langle k\rangle_{q}^{2}}=\frac{\sum_{k, k^{\prime}} k k^{\prime}\left(q\left(k, k^{\prime}\right)-q(k) q\left(k^{\prime}\right)\right)}{\sum_{k} k^{2} q(k)-\left(\sum_{k} k q(k)\right)^{2}} \in[-1,1] .
$$

Definition 5.6

A subgraph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ of $G=(V, E)$ is a graph such that $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$.

- Small connected subgraphs are also called motifs, the simplest non-trivial examples in undirected graphs are connected triples and triangles.
- Fully connected (complete) subgraphs which are maximal with respect to connectedness are called cliques.
- A spanning tree is a tree subgraph that contains all vertices of the graph.
- A subgraph G^{\prime} is called a community, if (for example)

$$
\sum_{i, j \in V^{\prime}} a_{i j}>\sum_{i \in V^{\prime}, j \notin V^{\prime}} a_{i j} \quad \text { (there are also other definitions) . }
$$

5. Clustering

Clustering aims to quantify the probability that two neighbours of a given vertex are themselves neighbours. Two different definitions are used in the literature.

Definition 5.7

The global clustering coefficient for an undirected graph is defined as

$$
C=\frac{3 \times \# \text { of (connected) triangles }}{\# \text { of }(\text { connected) triples }}=\frac{3 \sum_{i<j<l} a_{i j} a_{j l} a_{l i}}{\sum_{i<j<l}\left(a_{i j} a_{i l}+a_{j i} a_{j l}+a_{l i} a_{l j}\right)} \in[0,1] .
$$

Alternatively, one can define a local clustering coefficient

$$
C_{i}=\frac{\# \text { of triangles containing vertex } i}{\# \text { of triples centered on vertex } i}=\frac{\sum_{j<l} a_{i j} a_{j l} a_{l i}}{\sum_{j<l} a_{i j} a_{i l}} \in[0,1],
$$

and use the average $\left\langle C_{i}\right\rangle=\frac{1}{N} \sum_{i} C_{i}$ to quantify clustering.

- For a tree we have $C=\left\langle C_{i}\right\rangle=0$ and for the complete graph $C=\left\langle C_{i}\right\rangle=1$.
- Higher-order clustering coefficients can be defined similarly, using different subgraphs as basis.

5. Graph spectra

Definition 5.8

The spectral density of a graph $G=(V, E)$ is

$$
\rho(\lambda):=\frac{1}{N} \sum_{i \in V} \delta\left(\lambda-\lambda_{i}\right) \quad \text { where } \quad \lambda_{1}, \ldots, \lambda_{N} \in \mathbb{C}
$$

are the eigenvalues of the adjacency matrix A.

- Perron-Frobenius: A has a real eigenvalue $\lambda_{1}>0$ with maximal modulus and real, non-negative eigenvector(s). If the graph is connected, it has multiplicity 1 and $\left|\lambda_{j}\right|<\lambda_{1}$ for all other eigenvalues with $j \neq 1$.
- For undirected graphs, $\left(A^{n}\right)_{i j}$ is equal to the number of walks (paths which allow repeated vertices) from i to j of length n. We also have

$$
\operatorname{Tr}\left(A^{n}\right)=\sum_{i=1}^{N} \lambda_{i}^{n} \quad \text { and } \quad(\operatorname{Tr}(A))^{n}=0,
$$

which can be used to derive statements like:

$$
\sum_{i<j} \lambda_{i} \lambda_{j}=-|E|, \quad \sum_{i<j<l} \lambda_{i} \lambda_{j} \lambda_{l}=2 \cdot \# \text { of triangles in } G
$$

5. Graph Laplacian

Definition 5.9

The Graph Laplacian for a graph (V, E) with adjacency matrix A is defined as

$$
Q:=A-D \quad \text { where } \quad D=\left(\delta_{i j} \sum_{l \neq i} a_{i l}: i, j \in V\right) .
$$

- Q has eigenvalues in \mathbb{C} with real part $\operatorname{Re}(\lambda)<0$ except for $\lambda_{1}=0$, which follows directly from the Gershgorin theorem and vanishing row sums. The multiplicity of λ_{1} equals the number of connected components in undirected graphs. Properly chosen orthogonal eigenvectors to λ_{1} have non-zero entries on the individual connected components.
The smaller the second largest real part of an eigenvalue, the harder it is to cut G into separated components by removing edges.
- Q defines a generator matrix of a continuous-time random walk on V with transition rates $a_{i j}$. Using weighted graphs, any finite state CTMC can be represented in this way.
- The Laplacian determines the first order linearized dynamics of many complex processes on graphs and is therefore of particular importance.

5. The Wigner semi-circle law

Theorem 5.1 (Wigner semi-circle law)

Let $A=\left(a_{i j}: i, j=1, \ldots, N\right)$ be a real, symmetric matrix with iid entries $a_{i j}$ for $i \leq j$ with finite moments, and $\mathbb{E}\left[a_{i j}\right]=0, \operatorname{var}\left[a_{i j}\right]=\sigma^{2}$ (called a Wigner matrix). Then the spectral density ρ_{N} of the matrix A / \sqrt{N} converges in distribution to

$$
\rho_{N}(\lambda) \rightarrow \rho_{s c}(\lambda):=\left\{\begin{array}{cl}
\left(2 \pi \sigma^{2}\right)^{-1} \sqrt{4 \sigma^{2}-\lambda^{2}} & , \text { if }|\lambda|<2 \sigma \\
0 & \text { otherwise }
\end{array} .\right.
$$

- The bulk of eigenvalues of unscaled Wigner matrices typically lies in the interval $[-2 \sqrt{N} \sigma, 2 \sqrt{N} \sigma]$.
- Adjacency matrices A of $\mathcal{G}_{N, p}$ random graphs are symmetric with iid $\operatorname{Be}(p)$ entries with $\mathbb{E}\left[a_{i j}\right]=p$ and var $\left[a_{i j}\right]=p(1-p)$, so are not Wigner matrices. A has a maximal Perron-Frobenius eigenvalue of order $p N$, but all other eigenvalues have modulus of order \sqrt{N}.
For fixed $p>0$ or scaled $p=p_{N} \gg p_{c}=1 / N$ the Wigner semi-cirlce law holds for $N \rightarrow \infty$ with support width $4 \sqrt{N} \sigma_{N}$.
For $p=p_{N} \ll p_{c}=1 / N$ the asymptotic spectral density deviates from $\rho_{s c}$.
- There is a related circular law for non-symmetric Wigner matrices.

5. More general graphs and networks

- For multigraphs, multiple edges between nodes and loops $\left(a_{i i}>0\right)$ are allowed.
- Hypergraphs (V, E) are generalizations in which an edge can connect any number of vertices. Formally, the set of hyperedges $E \subseteq \mathcal{P}(V)$ is a set of non-empty subsets of V.
- In bipartite graphs the edge set can be partitioned into two sets $V_{1}, V_{2} \subseteq V$ each non-empty, with no connections within themselves, i.e. $a_{i j}=a_{j i}=0$ for all $i, j \in V_{1}$ and also for all $i, j \in V_{2}$.
Simple undirected examples include regular lattices \mathbb{Z}^{d} for $d \geq 1$ which are partitioned into sites with even and odd parity. Feed-forward neural networks are examples of directed graphs with bipartite or multi-partite structure.
- Multilayer networks $M=(\mathbf{G}, \mathbf{C})$ consist of a family of m (weighted or unweighted) graphs $G_{\alpha}=\left(V_{\alpha}, E_{\alpha}\right)$ (called layers of M), and the set of interconnections between nodes of different layers

$$
\mathbf{C}=\left\{c_{\alpha, \beta} \subseteq V_{\alpha} \times V_{\beta}: \alpha, \beta \in\{1, \ldots, m\}, \alpha \neq \beta\right\} .
$$

Real examples include transportation networks or social networks with different types of connections.

6. E-R Random graphs

Definition 6.1

An (Erdős-Rényi, short E-R) random graph $G \sim \mathcal{G}_{N, K}$ has uniform distribution on the set of all undirected graphs with N vertices and $K=|E| / 2$ edges, i.e.

$$
\mathbb{P}_{N, k}[G=(V, E)]=1 /\binom{N(N-1) / 2}{K} .
$$

An (E-R) random graph $G \sim \mathcal{G}_{N, p}$ has N vertices and each (undirected) edge is present independently with probability $p \in[0,1]$, i.e.

$$
\mathbb{P}_{N, p}[G=(V, E)]=p^{|E| / 2}(1-p)^{N(N-1) / 2-|E| / 2} .
$$

- The ensemble $\mathcal{G}_{N, p}$ is easier to work with and is mostly used in practice, and for N, K large, $\mathcal{G}_{N, K}$ is largely equivalent to $\mathcal{G}_{N, p}$ with $p=2 K /(N(N-1))$.
- Since edges are present independently, graphs $G \in \mathcal{G}_{N, p}$ should typically be uncorrelated. Indeed, one can show that $\chi(G), \mathbb{E}[\chi] \rightarrow 0$ as $N \rightarrow \infty$.

6. E-R Random graphs - properties

- The number of undirected edges for $G \sim \mathcal{G}_{N, p}$ is random, $K \sim \operatorname{Bi}\left(\frac{N(N-1)}{2}, p\right)$. For all i by homogeneity, $k_{i} \sim \operatorname{Bi}(N-1, p)$ and $\mathbb{E}[\langle k\rangle]=\mathbb{E}\left[k_{i}\right]=(N-1) p$.
- The expected number of triangles in a $\mathcal{G}_{N, p}$ graph is $\binom{N}{3} p^{3}$,
and the number of triples is $\binom{N}{3} 3 p^{2}$.
Since fluctuations are of lower order, this implies for all $G_{N} \sim \mathcal{G}_{N, p}$

$$
C\left(G_{N}\right)=\frac{3\binom{N}{3} p^{3}(1+o(1))}{\binom{N}{3} 3 p^{2}(1+o(1))} \rightarrow p \quad \text { as } N \rightarrow \infty .
$$

- The expected degree distribution for $G_{N} \sim \mathcal{G}_{N, p}$ is $\operatorname{Bi}(N-1, p)$. In the limit $N \rightarrow \infty$ with $p=p_{N}=z /(N-1)$ keeping $z=\mathbb{E}[\langle k\rangle]$ fixed we have

$$
\mathbb{E}[p(k)]=\mathbb{P}\left[k_{i}=k\right]=\binom{N-1}{k} p_{N}^{k}\left(1-p_{N}\right)^{N-1-k} \rightarrow \frac{z^{k}}{k!} e^{-z} .
$$

Therefore, E-R $\mathcal{G}_{N, p}$ graphs are sometimes called Poisson random graphs.

- In this scaling limit E-R graphs are locally tree-like, i.e. connected components

$$
C_{i}^{n}:=\left\{j \in V: j \leftrightarrow i, d_{i j} \leq n\right\}, \quad n \text { fixed }
$$

are tree subgraphs as $N \rightarrow \infty$ with probability 1 .
Vertex degrees are $k_{i} \sim \operatorname{Poi}(z)$ and $\operatorname{iid} k_{j} \sim \operatorname{Poi}(z)+1$.

6. Percolation

Percolation studies robustness of connectivity properties of graphs under deletion of edges or vertices (e.g. random attacks or immunization).

Definition 6.2

Consider a connected, undirected graph $G=(V, E)$. Bond percolation is a static probabilistic model with state space

$$
S=\Omega=\{0,1\}^{E}=\left\{e_{i j} \in\{0,1\}:(i, j) \in E\right\}
$$

and distribution $p=\mathbb{P}\left[e_{i j}=1\right]=1-\mathbb{P}\left[e_{i j}=0\right]$, i.e. $e_{i j} \sim \operatorname{Be}(p)$ iid with $p \in[0,1]$. Edges $(i, j) \in E$ are called open if $e_{i j}=1$ and closed if $e_{i j}=0$, and we denote by

$$
G^{o}=\left(V, E^{o}\right) \quad \text { with } \quad E^{o}=\left\{(i, j) \in E: e_{i j}=1\right\} \subseteq E
$$

the (random) subgraph containing only open edges. A sequence of connected graphs G_{N} of increasing size $\left|V_{N}\right|=N$ exhibits percolation with parameter p if

$$
\left|\bar{C}_{N}^{o}\right| / N \geq c>0 \quad \text { as } N \rightarrow \infty \quad \text { with probability } 1
$$

where $\left|\bar{C}_{N}^{o}\right|=\max _{i \in V_{N}}\left|C_{i}^{o}\right|$ is the size of the largest connected component \bar{C}_{N}^{o} of G_{N}^{o}.

6. Percolation and E-R graphs

- Alternatively, percolation can be defined on an infinite graph G (e.g. $\left.\mathbb{Z}^{d}\right)$ with percolation probability $\theta(p)=\mathbb{P}\left[\left|C_{0}\right|=\infty\right]\left\{\begin{array}{l}=0, \text { for } p<p_{c} \\ >0, \text { for } p>p_{c}\end{array}\right.$, changing behaviour at a critical value $p_{c} \in[0,1]$.
- In site percolation vertices and their adjacent edges are deleted.
- E-R random graphs $\mathcal{G}_{N, p}$ have the same distribution as open subgraphs $\left(G^{o}, E^{o}\right) \subseteq K_{N}$ under percolation on the complete graph K_{N} with parameter p.

Theorem 6.1 (Giant component for E-R graphs)

Consider $G_{N, p} \sim \mathcal{G}_{N, p}$ with $p=z / N$ and maximal connected component $\bar{C}_{N, p}$. Then

$$
\left|\bar{C}_{N, p}\right|=\left\{\begin{array}{c}
O(\log N), \text { for } z<1 \\
O\left(N^{2 / 3}\right), \text { for } z=1 \\
O(N),, \text { for } z>1
\end{array} \quad \text { and } \quad \theta(z)=\left\{\begin{array}{c}
0, \text { for } z \leq 1 \\
>0, \text { for } z>1 \\
\rightarrow 1, \text { for } z \rightarrow \infty
\end{array}\right.\right.
$$

where $\theta(z):=\lim _{N \rightarrow \infty}\left|\bar{C}_{N, p}\right| / N$ is a continuous, monotone increasing function of z. For $z>1, \bar{C}_{N, p}$ is the only giant component, and the second largest is $O(\log N)$.

Local trees with $1+\operatorname{Poi}(z)$ degrees die out with probability 1 if and only if $z \leq 1$.

6. Preferential attachment

The prevalence of power-law degree distributions in real complex networks can be attributed to growth mechanisms subject to preferential attachment.

Definition 6.3

Starting with a complete graph $\left(V_{0}, E_{0}\right)$ of $\left|V_{0}\right|=m_{0}$ nodes, at each time step $t=1, \ldots, N-m_{0}$ a new node $j=t+m_{0}$ is added. It forms $m \leq m_{0}$ undirected edges with existing nodes $i \in V_{t-1}$ with a probability proportional to their degree $\pi_{j \leftrightarrow i}=k_{i} / \sum_{l \in V_{t}} k_{l}$ (preferential attachment).
The resulting, undirected graph with N nodes and $K=m_{0}\left(m_{0}-1\right) / 2+m\left(N-m_{0}\right)$ is called a Barabási-Albert random graph, denoted by $\mathcal{G}_{N, K}^{\mathrm{BA}}$.

- As $N \rightarrow \infty$, the average degree is $\langle k\rangle=2 m$ and the degree distribution $p_{N}(k)$ converges to a distribution $p(k)$ with power law tail, i.e. $p(k)=C k^{-\alpha}$ for large k where $\alpha=\mathbf{3}$, which is close to exponents observed for real-world networks. This is independent of the parameters m_{0} and m.
- Characteristic path length and clustering coefficient typically behave like $L=O(\log N)$ and $C=O\left(N^{-0.75}\right)$ for $\mathcal{G}_{N, K}^{\mathrm{BA}}$ graphs, and they are uncorrelated.
- They are not homogeneous, the expected degree of nodes increases with age.

6. Preferential attachment

(A) power law for $\gamma=1, m_{0}=m=5, N=200 K$, (B) exponential tail for $\gamma=0, m_{0}=m=1,3,5,7$,
(C) degree increasing with time for $t_{1}=5, t_{2}=95$
taken from [A.-L. Barabási, R. Albert, Science 286(5439), 509-512 (1999)]

- Variations of the model connecting to vertices i with probability proportional to $k_{i}+k_{0}$ lead to power law degree distributions with $\alpha=3+k_{0} / m$.
- For non-linear preferentail attachment proportional to k_{i}^{γ} we get
$\gamma \in[0,1): p(k)$ has a stretched exponential tail $\exp \left(-C k^{1-\gamma}\right)$ and the graph is assortative
$\gamma>1$: all vertices connect to m super vertices and the graph is disassortative

6. Small-world networks

Definition 6.4

A sequence of connected graphs G_{N} with increasing size $\left|V_{N}\right|=N$ exhibits the small-world property, if the characteristic path length $L\left(G_{N}\right)=O(\log N)$.

Examples include trees with degrees $k_{i} \geq 3$ and also the giant or largest component in E-R random graphs. In most graph models small-worldness is paired with low clustering coefficients, e.g. 0 for trees and p for $\mathcal{G}_{N, p}$ graphs. However, many real examples of small world networks exhibit also large clustering coefficients, such as networks of social contacts.

Definition 6.5

Consider a $2 m$-regular ring graph with adjacency matrix $\quad a_{i j}=\left\{\begin{array}{l}1,|i-j| \leq m \\ 0, \text { otherwise }\end{array}\right.$ of size N with a total number of $K=m N$ undirected edges. For all i, each edge (i, j) with a clockwise neighbour with $j>i$ is rewired with probability $p \in[0,1]$, i.e. replaced by an edge (i, l) where l is chosen uniformly among vertices not adjacent to i. The resulting graph is a Watts-Strogatz random graph, denoted by $\mathcal{G}_{N, K}^{\mathrm{WS}}$.

6. Watts-Strogatz model

- W-S random graphs interpolate between a regular lattice for $p=0$ and a $\mathcal{G}_{N, K}$ E-R random graph conditioned on the event that all vertices have degree $k_{i} \geq m$.
- Expected clustering coefficient $\mathbb{E}[C(p)]$ and characteristic path length $\mathbb{E}[L(p)]$ are monotone decreasing functions of p and show the following behaviour.

$N=1000$ and $m=5$, taken from [D.J. Watts, S.H. Strogatz, Nature 393, 440-442 (1998)]

6. Configuration model

Definition 6.6

The configuration model $\mathcal{G}_{N, D}^{\text {conf }}$ is defined as the uniform distribution among all undirected graphs with N vertices with a given degree sequence $D=\left(k_{1}, \ldots, k_{N}\right)$, such that $\sum_{i \in V} k_{i}=2 K$.

- Not all sequences D that sum to an even number are graphical.
- Sampling is usually done by attaching k_{i} half edges to each vertex i and matching them randomly. This can lead to self loops and rejections.
- General randomized graphs with given degree distribution $p(k)$ can be sampled in the same way. If $k_{\max }=\max _{i} k_{i}$ is bounded, one can show that these graphs exhibit a giant (connected) component of size $O(N)$ if

$$
Q:=\sum_{k \geq 0} k(k-2) p(k)>0,
$$

and if $Q<0$ the largest component is of size $O\left(k_{\max }^{2} \log N\right)$.

- For directed versions with $D^{\text {in }}$ and $D^{\text {out }}$ we need $\sum_{i \in V} k_{i}^{\text {in }}=\sum_{i \in V} k_{i}^{\text {out }}$.

6. Planar graphs and spatial point processes

Definition 6.7

A planar graph is an undirected graph that can be embedded in the plane, i.e. it can be drawn in such a way that no edges cross each other. The edges of a particular embedding partition the plane into faces. A connected planar graph G has a dual graph G^{*}, which has one vertex in each face of G, and a unique edge crossing each edge of G. G^{*} may be a multigraph with self-loops.
A maximal planar graph is called a triangulation.

- Every planar graph is 4-partite or 4-colourable.
- In a triangulation each face is bounded by three edges. By induction, every triangulation with $N>2$ nodes has $K=3 N-6$ undirected edges and $2 N-4$ faces.

Definition 6.8

A random countable set $\Pi \subseteq \mathbb{R}^{d}$ is called a spatial point process.
$\Pi \subseteq \mathbb{R}^{d}$ is called a homogeneous Poisson point process $\operatorname{PPP}(\lambda)$ with rate $\lambda>0$ if

- for all $A \subseteq \mathbb{R}^{d}$ we have $N(A):=|\Pi \cap A| \sim \operatorname{Poi}(\lambda|A|)$,
- for all disjoint $A_{1}, \ldots, A_{n} \subseteq \mathbb{R}^{d}, N\left(A_{1}\right), \ldots, N\left(A_{n}\right)$ are independent.

6. Planar graphs and spatial point processes

- To sample from a $\operatorname{PPP}(\lambda)$ e.g. in a box $A=[0, L]^{d}$, pick $N(A) \sim \operatorname{Poi}\left(\lambda L^{d}\right)$, then place $N(A)$ particles independently in A each with uniform distribution, i.e. pick the d coordinates uniformly in $[0, L]$.
- A Poisson process $\operatorname{PP}(\lambda)$ is equivalent to a $\operatorname{PPP}(\lambda)$ on $[0, \infty)$.

Definition 6.9

Let $\Pi=\left\{x_{1}, x_{2}, \ldots\right\}$ be a countable subset of \mathbb{R}^{d}, endowed with a distance function $d(x, y)$. A Voronoi tesselation (or diagram) is given by the family of Voronoi cells $\left\{A_{1}, A_{2}, \ldots\right\} \subseteq \mathbb{R}^{d}$ where

$$
A_{i}=\left\{x \in \mathbb{R}^{d}: d\left(x, x_{i}\right) \leq d\left(x, x_{j}\right) \text { for all } j \neq i\right\}
$$

is the set of points closest to x_{i}.

Properties in 2 dimensions.

- The shape of Voronoi cells depends on the distance function, for Euclidean distance $d(x, y)=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}}$ they are convex polygons, and boundaries between adjacent cells are straight lines.
- The dual graph of a Voronoi diagram of a set Π is called Delaunay triangulation, which is not unique if 4 or more cells intersect in a point.

