
Notes 4: Root finding algorithms

4.1 Root-finding in one dimension
Given a function, f(x), of a single scalar variable root-finding in one dimension is the task of finding
the value or values of x which satisfy the equation

f(x) = 0. (4.1)

Since most equations cannot be solved analytically, numerical approaches are essential. It is impor-
tant to remember however that since "most" real numbers do not have exact floating-point represen-
tations, we are really interested in finding values of x for which Eq. (4.1) is satisfied approximately in
the sense that

|f(x)| < �tol (4.2)

for some pre-specified error tolerance, �tol. All root-finding methods rely on making successive im-
provements to a reasonable initial guess, x0, for the position, x∗, of the root. After all, R is a big place.
A root is said to be bracketed by the interval [a, b] if f(a)f(b) < 0, that is to say, f(x) has different
sign at the two ends of the interval. For continuous functions (and as far as floating-point arithmetic
is concerned all functions are continuous), the Intermediate Value Theorem assures the existence of
a root somewhere in the interval [a, b]. The first step is always to find an interval which brackets the
root you are seeking to find. 1 Any reasonable initial guess for the position of the root should be in
this interval. Therefore you should always start by plotting your function. This is true for most analytic
tasks but especially so for root finding.

There are many algorithms for root finding (and for the related task of finding extremal values
fo functions) although we shall only consider a few of them in this module. These algorithms can
be usefully divided into two classes: those which use the derivative of the function f(x) and those
which do not. Algorithms which use derivatives tend to converge faster but those which do not tend
to be more robust. Convergence time is rarely an issue for one-dimensional root finding on modern
computers (not necessarily so for higher dimensions) so the increased speed of derivative methods
often does not outweigh the sure-footedness of their less sophisticated non-derivative cousins. In
any case, it is common to need to analyse functions for which no analytic form for the derivative is
known, for example functions which are defined as the outputs of some numerical or combinatorial
function.

4.1.1 Derivative-free methods: bracket and bisection method, Brent’s method

We start with methods which do not require any knowledge of the derivative. The bracketing-and-
bisection algorithm is the most basic root finding method. It involves making successive refinements
of the bracketing interval by testing the sign of f(x) at the midpoint of the current interval and then
defining a new bracketing interval in the obvious way. At each step, the "best guess" of the position
of the root is the midpoint, x:

1Note that not every root can be bracketed - a simple counter example is f(x) = x2 which has a root at 0 but no bracketing interval
can be chosen. For this reason, the task of finding all roots of a nonlinear equation is a-priori a very difficult task.
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If we start from a bracketing interval [a0, b0], the algorithm consists of the following:
while bi − ai > �tol do

x = (ai + bi)/2.0;
if f(ai) ∗ f(x) > 0 then

ai+1 = x;
bi+1 = b;

else
ai+1 = a;
bi+1 = x;

end
end
What is a reasonable value for �tol? A general rule of thumb is to stop when the width of the

bracketing interval has decreased to about (|ai| + |bi|) εm/2 where εm is the machine precision. You
should think about why that is so.

At each step of the algorithm the width, �i, of the bracketing interval decreases by a factor of
two: �i+1 = �i/2. Hence, �n = �0/2

n. The number of steps needed to reach accuracy �tol is thus
n = log2(�0/�tol). While the bracketing-and-bisection method is often said to be "slow" it actually
converges exponentially fast! Furthermore it cannot fail.

One could try to improve on simple bracketing-and-bisection with a smarter "best guess" of the
position of the root at each step. One way to do this is to fit a quadratic, P (x), through the points
(ai, f(ai)), (xi, f(xi)) and (bi, f(bi)) where the current interval is [ai, bi] and xi is the current best
guess of the position of the root. This quadratic is used to make the next guess, xi+1, of the position
of the root by calculating where it crosses zero. That is, we solve P (x) = 0. For a quadratic function
this can be done analytically. The quadratic formula involves the calculation of (expensive) square
roots and generally produces two roots. For these reasons, it is much better in practice to fit x as a
function of y and then evaluate the resulting quadratic at y = 0 since this results in a unique value of
x and does not require the computation of square roots. This is simple but clever work-around goes
by the grandiose name of inverse quadratic interpolation.

The Lagrange interpolating polynomial through the points (f(ai), ai), (f(xi), xi) and (f(bi), bi) is
obtained from Eq. (3.1):

x =
ai [y − f(xi)][y − f(bi)]

[f(ai)− f(xi)][f(ai)− f(bi)]
+

xi [y − f(ai)][y − f(bi)]

[f(xi)− f(ai)][f(xi)− f(bi)]
+

bi [y − f(ai)][y − f(xi)]

[f(bi)− f(ai)][f(bi)− f(xi)]
.

(4.3)
Evaluating it at y = 0 gives the next best guess for the position of the root:

xi+1 =
ai f(xi) f(bi)

[f(ai)− f(xi)][f(ai)− f(bi)]
+

xi f(ai) f(bi)

[f(xi)− f(ai)][f(xi)− f(bi)]
+

bi f(ai) f(xi)

[f(bi)− f(ai)][f(bi)− f(xi)]
.

(4.4)
The bracketing interval is then reduced in size as before by testing the sign of f(xi+1).

Note that it is possible with this procedure to generate a value for xi+1 which lies outside the
interval [ai, bi]. If this happens, one can resort to a simple bisection of the interval as before. Brent’s
method combines inverse quadratic interpolation with some checks on proposed refinements of the
position of the root and some information about previous estimates of the position, using bisection
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when necessary, to produce a method which is typically even faster to converge. See [1, chap. 9] for
full details. Brent’s method is usually the method of choice for generic root-finding problems in one
dimension. The idea of inverse quadratic interpolation will come in useful later when we come to the
problem of searching for minima.

4.1.2 Derivative methods: Newton-Raphson method

The Newton-Raphson method is the most famous root-finding algorithm. It is a derivative method: it
requires the ability to evaluate the derivative f �(x) at any point. The basic idea is the following: at
a point, x, which is near to a root, an extrapolation of the tangent line to the curve at x provides an
estimate of the position of the root. This is best illustrated geometrically with a picture:

Mathematically, if we are at a point x which is near to a root, x∗, then we wish to find δ such that
f(x+ δ) = 0. This can be done using Taylor’s Theorem, (3.2.1). If x is near to the root then δ is small
and we can write

0 = f(x+ δ) = f(x) + δ f �(x) +O(δ2).

Neglecting terms of order δ2 and above and solving for δ we obtain

δ = − f(x)

f �(x)
.

Our improved estimate for the position of the root is then x + δ. This process can be iterated. If our
current estimate of the position of the root is xi, then the next estimate is

xi+1 = xi −
f(xi)

f �(xi)
. (4.5)

Starting from an initial guess, x0, the algorithm is the following:
while |f(xi)| > �tol do

δ = − f(xi)
f �(xi)

;
xi+1 = xi + δ;

end
If f �(x) is too difficult (or too expensive) to evaluate analytically for use in Eq. (4.5) then the finite

difference formulae developed in Sec. 3.2.1 can be used. This is generally to be discouraged since
the additional round-off error (recall Fig. 3.5) can badly degrade the accuracy of the algorithm.

The advantage of Newton-Raphson is that it converges very fast. Let us denote the exact position
of the root by x∗ and the distance from the root by �i = xi − x∗. Using Eq. (4.5, we see that

�i+1 = �i −
f(xi)

f �(xi)
. (4.6)

Since �i is supposed to be small we can use Taylor’s Theorem 3.2.1 :

f(x∗ + �i) = f(x∗) + �if
�(x∗) +

1

2
�2i f

��(x∗) +O(�3i )

f �(x∗ + �i) = f �(x∗) + �if
��(x∗) +O(�2i ).
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(A) (B)

Figure 4.1: Some "unfortunate" configurations where the Newton-Raphson algorithm runs into trouble.

Using the fact that x∗ + �i = xi and f(x∗) = 0 we can express the xi-dependent terms in Eq. (4.6) in
terms of �i and the values of the derivatives of f(x) at the root:

f(xi) = �if
�(x∗)

�
1 +

�i
2

f ��(x∗)
f �(x∗)

�
+O(�3i )

f �(xi) = f �(x∗)
�
1 + �i

f ��(x∗)
f �(x∗)

�
+O(�2i )

Substituting these into Eq. (4.6) and keeping only leading order terms in �i we see that

�i+1 = �2i
f ��(x∗)
2 f �(x∗)

.

Newton-Raphson iteration therefore converges super-exponentially fast.
The disadvantage of the Newton-Raphson method is that, unlike the bracketing-and-bisection

method, it is not guaranteed to converge even if you start near to a bracketed root. Fig. 4.1 shows a
couple of unfortunate cases where the Newton-Raphson iteration would fail to converge. In Fig. 4.1(A)
an iteration of the method happens to hit on an extremum of f(x). Since f �(x) = 0 at an extremum,
Eq. (4.5) puts the next guess at infinity! In Fig. 4.1(B), a symmetry between successive iterations
sends the method into an infinite loop where the iterations alternate between two values either side
of the root.

The potential for complicated dynamics should not come as a surprise to those familiar with the
basics of dynamical systems. Eq. (4.5) generalises immediately to complex-valued functions. The
result is generally a nonlinear iterated map which can lead to very rich dynamics (periodic cycles,
chaos, intermittency etc). For example, Fig. 4.2, shows the basins of attraction in the complex plane
of the roots of the polynomial

f(z) = z3 − 1 = 0 (4.7)

under the dynamics defined by the Newton-Raphson iteration. One of the great pleasures of nonlinear
science is the fact that such beauty and complexity can lurk in the seemingly innocuous task of finding
the roots of a simple cubic equation!

4.2 Root-finding in higher dimensions
Root finding in higher dimensions means finding solutions of simultaneous nonlinear equations. For
example, in two dimensions, we seek values of x and y which satisfy

f(x, y) = 0

g(x, y) = 0.

There is no analogue to the concept of bracketing a root in higher dimensions. This makes the
process of root finding in higher dimensions very difficult. In order to make a guess about the location
of a root in two dimensions, there is no real substitute for tracing out the zero level curves of each

Notes 4: Finding roots and extremals



MA934 Numerical Methods Notes 4

Figure 4.2: (from Wikipedia) Basins of attraction of the roots of Eq. (4.7) in the complex plane. Points
are coloured according to the number of iterations of Eq. (4.5) required to reach convergence.

function and seeing if they intersect. In dimensions higher than two, the task rapidly starts to seem like
searching for a "needle in a haystack". If, however, one does have some insight as to the approximate
location of a root in order to formulate a reasonable initial guess, the Newton-Raphson method does
generalise to higher dimensions.

Consider the n-dimensional case. We denote the variables by the vector x ∈ Rn. We need n
functions of x to have the possibility of isolated roots. We denote these functions by F0(x) . . .Fn−1(x).
They can be combined into a single vector valued function, F(x). We seek solutions of the vector
equation

F(x) = 0. (4.8)

If the current estimate of the position of the root is xk and we take a step δ then we can expand the
ith component of F (xk + δ) using the multivariate generalisation of Taylor’s Theorem:

Fi(xk + δ) = Fi(xk) +
n−1�

i=0

Jij(xk) δj +O(δ2) (4.9)

where
Jij(x) =

∂Fi

∂xj
(x)

is the (i, j) component of the Jacobian matrix, J, of F evaluated at x. We wish to choose δ so that
xk + δ is as close as possible to being a root. Setting Fi(xk + δ) = 0 in Eq. (4.9) for each i, we
conclude that the components of δ should satisfy the set of linear equations

J(xk) δ = F(xk). (4.10)

This set of linear equations can be solved using standard numerical linear algebra algorithms:

δ = LinearSolve(J(xk),F(xk)). (4.11)

As for Newton-Raphson iteration in one dimension, the next estimate for the position of the root is
xk+1 = xk + δ. We have already seen how the two-dimensional case of Newton-Raphson iteration
for complex-valued functions can already lead to very nontrivial dynamics. In higher dimensions, the
scope for non-convergence becomes even greater. Nevertheless, if one starts close to a root, the
above algorithm usually works.
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