
Notes 6: Optimisation

6.1 Local optimisation in one dimension
Given a real-valued function, f(x), of a single scalar variable, optimization is the task of finding
values of x for which f(x) is extremal. That is to say, we seek values of x at which f �(x) = 0. These
correspond to maxima and minima. It is sufficient to consider only methods for finding minima since
maxima can be found be finding minima of −f(x). General optimisation problems can be divided into
two classes: local and global. The distincion rests with whether we are required to find local or global
extrema of the function to be optimised. As we shall see, local optimisation is relatively easy. Global
optimisation on the other hand is usually very hard. In one-dimension there is a simple procedure
for finding local minima (which actually generalises quite well to higher dimensions): evaluate the
local gradient and "go downhill" until you can’t go downhill any more (to within a pre-specified error
tolerance of course). If a local minimum exists such a procedure cannot fail to find it.

6.1.1 Golden section search - a bracketing-and-bisection method

Let us begin by adapting the bracketing-and-bisection method of finding roots of f(x) to the problem
of finding local minima. In one dimension, a root is said to be bracketed by the ordered triple (a, b, c)
if f(b) < f(a) and f(b) < f(c). “Ordered” means that a < b < c. Starting from a bracketing
triple (a0, b0, c0), the idea is to generate successive refinements of the bracketing triple (a, b, c) until
c − b < �tol where �tol is the pre-specified error tolerance. One refinement strategy would be to
evaluate f(x) at the midpoints, x1 and x2 of the two respective subintervals, (a, b) and (b, c), test
which of the sub-intervals (a, x1, b), (x1, b, x2) and (b, x2, c) is itself a bracketing subinterval and then
set the refinied interval equal to the one which passes this test. This would reduce the bracketing
interval by a (fixed) factor of 1/2 at each step but requires two evaluations of the function f(x) per
step. It turns out that it is possible to devise a refinement algorithm which requires only a single
evaluation of f(x) per step which retains the attractive property of reducing the bracketing interval by
a fixed amount per step. This algorithm is known as the golden section search. The price to be paid
for fewer function evaluations is that we can no longer reduce the size of the bracketing interval by
a factor of 1/2 at each step but only by a factor of (1 +

√
5)/2 ≈ 0.618. The efficiency savings in the

reduced number of function evaluations usually more than compensate for the slightly slower rate of
interval shrinkage (the convergence is still exponentially fast).

The idea of the golden section search is as follows. At each successive refinement, we pick a new
point, x, in the larger of the two intervals (a, b) and (b, c), evaluate f(x) and use it to decide how to
shrink the interval. The possible options are sketched in Fig. 6.1. Let us suppose that we choose x to
be in the interval (b, c) (Case 1 in Fig. 6.1). After evaluation of f(x) the new bracketing triple is either
(a, b, x) or (b, x, c). The size of the new bracketing triple will be either x− a or c− b. We require these
two lengths to be equal. The reasoning behing this is the following: if they were not not equal, the
rate of convergence could be slowed down in the case of a run of bad luck which causes the longer
of the two to be selected consecutively. Therefore we chose

x− a = c− b ⇒ x = a− b+ c. (6.1)

Note that

b < x ⇒ b < a− b+ c

⇒ b− a < c− b

⇒ x is in the larger of the two sub-intervals.

43

MA934 Numerical Methods Notes 6

Figure 6.1: Map of possible refinements of a bracketing triple (a, b, c) in the context of the golden
section search algorithm for finding a minimum of a function of a single variable.

Figure 6.2: Interval width as a function of number of iterations, n, for Golden Section search applied
to the function f(x) = x−1 ex which has a local minimum at x = 1. The theoretical convergence rate,
(φ− 1)n, (where φ = (1 +

√
5)/2 is the Golden Mean) is shown by the solid line.

Notes 6: Optimisation

MA934 Numerical Methods Notes 6

It remains to decide where to choose x within the interval (b, c). A naive suggestion would be to
choose x to be the midpoint of (b, c). This, it turns out, would destroy the property that the interval
shrinks by a fixed factor at each iteration. We characterise the "shape" of a bracketing triple by the
ratio

w =
c− b

c− a
(6.2)

which measures the proportion of the bracketing interval filled up by the second sub-interval. Obvi-
ously the proportion filled by the first sub-interval is

1− w =
b− a

c− a
. (6.3)

In order to ensure that the interval shrinks by a fixed factor at each iteration, the geometry of the
refined triple should be the same as that of the current triple. Therefore if the new interval is (b, x, c),
we require that

c− x

c− b
= w.

Using Eqs. (6.1), (6.2) and (6.3) we get

w =
c− (a− b+ c)

c− b
=

b− a

c− b
=

b−a
c−a
c−b
c−a

=
1− w

w
. (6.4)

Rearranging this gives a quadratic equation or the shape ratio, w:

w2 + w − 1 = 0 ⇒ w =

√
5− 1

2
. (6.5)

The appearance of the so-called "Golden mean", φ = (
√
5 + 1)/2, in this equation gives the method

its name. You might ask what happens if the new interval had been (a, b, x)? It is almost the same. If
we define the shape ratio to be

w =
x− b

x− a
,

we get the quadratic w2−2w+1 = 0 which has only the single root w = 1. This is not a valid outcome.
However, we can simply swap the order of the large and small subinterval by requiring that

w =
b− a

x− a
,

and this again returns the Golden mean, Eq. (6.5).
We must not forget that we could have chosen x to be in the interval (a, b) (Case 2 in Fig. 6.1). In

this case, a similar argument (left as an exercise) shows that we need b − a > c − b (i.e. x is again
in the larger of the two subintervals) and the new interval is either (a, b, x) or (b, x, c) and the shape
ratio w which preserves the geometry is again the Golden mean, Eq. (6.5). Gathering together these
findings, the algorithm for finding the minimum is the following:

Notes 6: Optimisation

MA934 Numerical Methods Notes 6

w = (
√
5− 1)/2;

while c− a > �tol do
if |c− b| > |b− a| then

x = b+ (1− w) (c− b);
if f(b) < f(x) then

(a, b, c) = (a, b, x);
else

(a, b, c) = (b, x, c);
end

else
x = b− (1− w) (b− a);
if f(b) < f(x) then

(a, b, c) = (x, b, c);
else

(a, b, c) = (a, x, b);
end

end
end

6.1.2 Optimisation by parabolic interpolation

The golden section search is in a sense a worst case algorithm which assumes nothing about the
function being minimised except that it has a minumum. In many situations, the function f(x) is
continuous and differentiable. In this case, the function can be well approximated near its minimum by
a second order Taylor expansion which is parabolic in nature. Given a bracketing triple, (a, b, c), one
can fit a quadratic through the three points (a, f(a)), (b, f(b)) and (c, f(c)). By analytically calculating
the point at which this parabola reaches its minimum one can step to the minimum of the function
(or very close to it) in a single step. Using Eq. (3.1) one can show that the value of x for which this
parabola is a minimum is

x = b− 1

2

(b− a)2 [f(b)− f(a)]− (b− c)2 [f(b)− f(a)]

(b− a) [f(b)− f(c)]− (b− c) [f(b)− f(a)]
. (6.6)

The value of f(x∗) can then be used, as in the Golden section search to define a refined bracketing
triple. This is referred to as parabolic minimisation and can yield very fast convergence for smooth
functions. In practice, Eq. (6.6) can be foiled if the points happen to become collinear or happen to
hit upon a parabolic maximum. Therefore parabolic minimisation algorithms usually need to perform
additional checking and may resort to bisection if circumstances require.

6.2 Local optimisation in higher dimensions
Searching for local extrema in higher dimensional spaces is obviously more difficult than in one
dimension but it does not suffer from the general intractability of higher dimensional root-finding which
we mentioned in Sec. 4.2. The reason is because the concept of "going downhill" generalises to
higher dimensions via the local gradient operator. Therefore, one always has at least the possibility to
take steps in the right direction. Higher dimension optimisation algorithms can be grouped according
to whether or not they require explicit evaluation of the local gradient of the function to be minimised.

6.2.1 A derivative-free method: Nelder-Mead downhill simplex algorithm

Computing derivatives of multivariate functions can be complicated and expensive. The Nelder-Mead
algorithm is a derivative-free method for nonlinear multivariate optimisation which works remarkably
well on a large variety of problems, including non-smooth functions (since it doesn’t require deriva-
tives). It is conceptually and geometrically very simple to understand and to use even if it can be a
bit slow. Everyone should know about this algorithm!

A simplex is a special polytope of N + 1 vertices in N dimensions. Examples of simplices include
a line segment on a line, a triangle on a plane, a tetrahedron in three-dimensional space and so
forth. The idea of the Nelder-Mead algorithm is to explore the search space using a simplex. The

Notes 6: Optimisation

MA934 Numerical Methods Notes 6

function to be minimised is evaluated on each of the vertices of the simplex. By comparing the values
of the function on the vertices, the simplex can get a sense of which direction is downhill even in
high dimensional spaces. At each step in the algorithm is uses some geometrical rules to generate
test points, evaluates the objective function at these test points and uses the results to define a new
simplex which has moved downhill with respect to the original. For this reason the algorithm is often
called the downhill simplex algorithm or the amoeba method. The idea is best conveyed from a movie:
see [2]

The simplest way to generate test points is to replace the worst point with a point reflected through
the centroid of the remaining N points. If this point is better than the best current point then we throw
away the previous worst point and update with the new one:

This reflects the simplex through the centroid in a direction which goes downhill. In this picture,
and those below, we assume that the highest value of f is attained on the vertex v2 and the lowest
value of f is attained on the vertex v3. The vertices of the new simplex which have changed during
a move are denoted with tildes. If the point obtained by reflection of the worst vertex through the
centroid isn’t much better than the previous value then we shrink the simplex towards the best point:

These two moves, which preserve the shape of the simplex, constituted the earliest variant of the
downhill simplex method designed by Spendley, Hext and Himsworth in [3]. Nelder and Mead added
two additional moves [4], expansion and contraction:

These additional moves allow the simplex to change shape and to “squeeze through” narrow
holes. The algorithm is stopped when the volume of the simplex gets below a predefined threshold,
�tol. For a full discussion of the method see [1, chap. 10] or [5].

6.2.2 A derivative method: the conjugate gradient algorithm

In this section we consider methods for minimising f(x) with x = (x1, x2 . . . xn) ∈ Rn which make
use of the gradient of f(x). That is, we can evaluate ∇f(x) at any point x. Recall that the gradient

Notes 6: Optimisation

MA934 Numerical Methods Notes 6

Figure 6.3: Path followed by the Method of Steepest Descent (right path) and Conjugate Gradient
Method (left path) during the minimisation of a quadratic function in two dimensions containing a long
narrow(ish) valley.

operator is simply the vector of partial derivatives:

∇f(x) =

�
∂f

∂x1
(x),

∂f

∂x2
(x), . . .

∂f

∂xn
(x)

�
.

The gradient of f at x points in the direction in which f increases most quickly. Therefore −∇f(x)
points in the direction in which f decreases most quickly. The ability to calculate the gradient therefore
means that we always know which direction is “downhill”.

The concept of line minimisation allows us to think of minimisation problems in multiple dimen-
sions in terms of repeated one-dimensional minimisations. Given a point x and a vector u, the line
minimiser of f from x in the direction u is the point x∗ = x+ λmin u where

λmin = argmin
λ

f(x+ λu).

The important point is that this is a one-dimensional minimisation over λ which can be done, for
example, using the golden section search described in Sec. 6.1. Evaluating f(x + λmin u) gives the
minimum value of f along the line in Rn parameterised by x+λu. A potential strategy for minimising
a function in Rn is to perform sequential line minimisations in different directions until the value of
f(x) stops decreasing. This strategy will work but for it to work well we need to find a “good” set of
directions in which to perform the line minimisations.

How should we choose the next direction after each line minimisation? This is where being able
to compute the gradient is very useful. Firstly we remark that if x∗ is a line minimiser of f in the
direction u, then the gradient of f at x∗, ∇f(x∗), must be perpendicular to u. If this were not the case
then the directional derivative of f in the direction of u at xv∗ would not be zero and x∗ would not be
a line minimum. Therefore, after we arrive at a line minimum, x∗, −∇f(x∗), points directly downhill
from x∗ and provides a natural choice of direction for the next line minimisation. Iterating this process
gives a method known as the Method of Steepest Descent.

Notes 6: Optimisation

MA934 Numerical Methods Notes 6

While the Method of Steepest Descent works well for many functions it can be slow to converge.
The problem with this method is visualised in Fig. 6.3. Since the method is forced to make right-
angled turns, it can be very inefficient at making its way to the bottom of narrow valleys. This is
illustrated by the (blue) path on the right side of Fig. 6.3. It would be better to allow the algorithm to
make steps in directions which are not parallel to the local gradient as in the left path in Fig. 6.3. We
are then back to our original question of how to choose the direction for the next step. It turns out that
a very good choice is to select the new direction in such a way that the infinitessimal change in the
gradient is parallel to the local gradient (or perpendicular to the direction along which we have just
minimised). This leads to a method known as the Conjugate Gradient Algorithm.

Underlying this algorithm is the assumption that the function to be approximated can be approxi-
mated by a quadratic form centred on some (fixed) point p. The point p should be thought of as the
origin of the coordinate system. Before discussing the method in detail, let us explore some con-
sequences of this assumption. The approximating quadratic form is determined by the multivariate
Taylor’s Theorem:

f(p+ x) ≈ f(p) +

n−1�

i=0

xi
∂f

∂xi
(p) +

1

2

n−1�

i=0

n−1�

j=0

xixj
∂2f

∂xi∂xj
(p)

= c− b · x+
1

2
x ·A · x, (6.7)

where
b = −∇f(p)

and the matrix A has components

Aij =
∂f

∂xi∂xj
(p).

A is known as the Hessian matrix of f at p. To the extent that the approximation in Eq. (6.7) is valid,
the gradient of f at x is

∇f(p+ x) = A · x− b. (6.8)

The infinitessimal variation in the gradient as we move in some direction is therefore

δ(∇f) = A · (δx). (6.9)

Let us now return to the discussion of how to choose directions for line minimisation. Suppose
that we have just done a minimisation in the direction u. We wish to choose a new direction v such
that the change in gradient upon going in the direction v is perpendicular to u. From Eq. (6.9), we
see that

u · δ(∇f) = 0

⇒ u ·A · (δx) = 0.

Hence v should point in the direction of this variation δ(x) such that

u ·A · v = 0. (6.10)

Vectors u and v satisfying this condition are said to be conjugate with respect to the Hessian matrix,
A. Note the difference with the Method of Steepest Descent which selected v such that u · v = 0.
The conjugate gradient method constructs a sequence of directions, each of which is conjugate to
all previous directions and solves the line minimisations analytically along these direction (this is
possible since we are minimising along a section of a quadratic form). A procedure for doing this
was provided by Fletcher and Reeves [6]. It works by constructing two sequences of vectors, starting
from an arbitrary initial vector h0 = g0, using the recurrence relations

gi+1 = gi − λiA · hi (6.11)

hi+1 = gi+1 + γihi

Notes 6: Optimisation

MA934 Numerical Methods Notes 6

where

λi =
gi · hi

hi ·A · hi
(6.12)

γi =
gi+1 · gi+1

gi · gi
.

For each i = 0 . . . n− 1, the vectors constructed in this way have the properties

hi ·A · hj = 0

gi · gj = 0

gi · hj = 0

for each j < i. In particular, the hi are mutually conjugate as we required. These formulae are not
supposed to be obvious. The proofs of these statements are out of scope but we might try to look at
them when we come to the linear algebra section of the module. For those who are curious see [7].
The result is a very efficient algorithm for finding minima of functions in multiple dimensiona which
has been adapted to myriad uses since its discovery.

The“fly in the ointment” in this discussion is the fact that we are assuming throughout that we
know the Hessian matrix, A, whereas we actually do not. This is where the real magic comes in: it is
possible to contruct the vectors in Eq. (6.11) without knowing A by exploiting the fact that we have the
ability do line minimisations (for example using the golden section search). This is done as follows:

• suppose we are at a point pi and set gi = −∇f(pi).
• given a direction hi we move along this direction to the line minimum of f in the direction hi

from pi and define pi+1 to be this line minimiser.
• now set gi+1 = −∇f(pi+1).
• it turns out that the vector gi+1 constructed in this way is the same as the one obtained from the

construction Eqs. (6.11) and (6.12)! Note that the next direction, hi+1, is constructed from gi+1.
To see why this works, we use Eq. (6.8). According to the above prescription

gi = −∇f(pi) = b−A · pi (6.13)

gi+1 = −∇f(pi+1) = b−A · pi+1 (6.14)

where pi+1 is the line minimiser of f in the direction hi from pi:

pi+1 = pi + λminhi, (6.15)

for some value of λmin which we will need to find. Substituting Eq. (6.15) into Eq. (6.14) we find

gi+1 = b−A · (pi + λminhi)

= b−A · pi − λminA · hi

= gi − λminA · hi.

This is the vector given in Eq. (6.11) provided that λmin has the correct value. To find λmin we note
that since pi+1 is a line minimum in the direction hi we have

0 = ∇f(pi+1) · hi = gi+1 · hi.

Substituting our value for gi+1 into this relation we have

(gi − λminA · hi) · hi = 0 ⇒ λmin =
gi · hi

hi ·A · hi

which is exactly what is required by Eq. (6.12). We have therefore constructed the set of directions,
gi and hi required by the Conjugate Gradient Algorithm, Eqs. (6.11) and (6.12), without making
reference to the Hessian matrix A!

Notes 6: Optimisation

MA934 Numerical Methods Notes 6

Bibliography
[1] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical

recipes: The art of scientific computing (3rd ed.). Cambridge University Press, New York, NY,
USA, 2007.

[2] Nelder-mead method, 2014. http://en.wikipedia.org/wiki/Nelder-Mead_method#
mediaviewer/File:Nelder_Mead2.gif.

[3] W. Spendley, G. R. Hext, and F. R. Himsworth. Sequential application of simplex designs in
optimisation and evolutionary operation. Technometrics, 4(4):441–461, 1962.

[4] J. A. Nelder and R. Mead. A simplex method for function minimization. The Computer Journal,
7(4):308–313, 1965.

[5] S. Singer and J. Nelder. Nelder-mead algorithm. Scholarpedia, 4(7):2928, 2009. http://www.
scholarpedia.org/article/Nelder-Mead_algorithm.

[6] R. Fletcher and C. M. Reeves. Function minimization by conjugate gradients. The Computer
Journal, 7(2):149–154, 1964.

[7] Jonathan Richard Shewchuk. An introduction to the conjugate gradient method
without the agonizing pain, 1994. http://www.cs.cmu.edu/~quake-papers/
painless-conjugate-gradient.pdf.

Notes 6: Optimisation

