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1 Introduction

Streptomyces is an antibiotic producing bacteria which is the source of the ma-

jority of antibiotics currently in use [1]. In particular, the Streptomyces coelicolor

(S. coelicolor) genome is of particular interest as it has been fully sequenced [2]

and has a range of secondary metabolites including antibiotic production. S.

coelicolor is formed by a branching filamentous network (as shown in Fig. 1),

known as a mycelium, which is similar to that produced by filamentous fungi [3].

Many other branching structures (e.g. roots of plants and neuron networks) oc-

cur in biology, and simple characterisation of these systems is highly sought after.

Figure 1: Example of hyphal growth in S.coelicolor provided by Dr Paul Herron,

SIPBS, University of Strathclyde.

The protein DivIVA has been found to be essential for growth of S.coelicolor and

to indicate future branch positions [4]. The monomeric form of DivIVA binds

together to form clusters (or foci) at the hyphal tip. These clusters then grow in

size due to this binding process and travel with the tip as the mycelium grows.

When the cluster size reaches xsplit, it may split into two new clusters; the parent

cluster of size xsplit − x0, which will continue to grow and travel with the tip as
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before the splitting event, and the daughter of size x0 which will remain at the

location of the split. The daughter cluster will grow until it reaches size xbranch

and will then be able to form a branch at this location, becoming the parent

cluster of this new tip. However, experimental data suggests that a cluster will

not always split immediately after reaching xsplit, and so a probability of splitting

is assigned after this size has been reached [5],[6]. This behaviour is shown in

Fig. 2 below.

Figure 2: Example of hyphal growth and branching, with cluster at the hyphal

tip which splits at 0:12. The parent cluster continues to travel with the hyphal

tip and the daughter cluster grows until forming a branch at 0:48 and then travels

with this new tip [5].

The minimal model proposed by Howard et al [5] uses experimental data to esti-

mate the parameters involved in this process. In particular the binding parameter,

which is taken as β = 7 × 10−5s−1, represents the rate at which monomeric Di-

vIVA binds onto the clusters, the minimum cluster size for splitting is taken to

be xsplit = 104 molecules and the probability of cluster splitting per unit time is

γ = 10−3s−1. The binding process is modelled as dx
dt

= βx, where x is the cluster

size, which results in exponential growth of the clusters.

This report will propose a growth-fragmentation model to describe the process

described above and outline some properties, and the significance of, the zeroth

and first moments of this model. A numerical method for solving the growth-

fragmentation model will then be proposed and used to evolve the system, and the

accuracy of the numerical method will then be tested by comparing the numerical

solution to a known analytical solution. We can then apply the numerical method

to the described biological problem. The computational results will then be dis-
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cussed, in particular the existence of stable size distributions and the necessary

parameter values to achieve a biologically sound result. Stable size distributions

are of interest as their existence has been shown for growth-fragmentation mod-

els [7] and they allow simple characterisation of the model for comparison with

experimental results.

2 Growth-fragmentation model

This splitting of DivIVA clusters can be described using growth-fragmentation

equations, which are applied to many different areas such as modelling of: cell

division [10], neuron networks [11] and protein polymerization [12]. However,

we believe these growth-fragmentation equations have not been used to model

a branching network such as that produced by the splitting process of DivIVA

in S.coelicolor. We will let the number density of clusters of size x at time t be

denoted by n(x, t). The process of cluster growth and splitting will be modelled

using the following mass-balance equation [7], [8]:

∂

∂t
n(x, t) = − c ∂

∂x
(g(x)n(x, t))

︸ ︷︷ ︸
Growth term

−s(x)n(x, t) + 2

∞∫
0

s(y)p(x, y)n(y, t)dy,

︸ ︷︷ ︸
Splitting terms

(1)

where c > 0 is a constant, g(x) > 0 and n(x, 0) = n0(x). We also assume that

there is no flux at x = 0 and that n(x, t) decreases sufficiently fast that there is

also no flux as x→∞, so that

g(0)n(0, t) = lim
x→∞

g(x)n(x, t) = 0. (2)

The division rate of clusters of size y is given by s(y) and the growth rate by

cg(x). The probability of a cluster of size y splitting into clusters of size x and

y − x is given by p(x, y), and the following assumptions are made about this

quantity [9]:

p(x, y) = 0, ∀x > y, (3)
∞∫
0

p(x, y)dx = 1, (4)
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p(x, y) = p(y − x, y). (5)

We will frequently consider the zeroth moment of the number density n(x, t),

M0(t) =

∞∫
0

n(x, t)dx,

which represents the total number of clusters in the system, and the first moment,

M1(t) =

∞∫
0

xn(x, t)dx,

which represents the total mass of the system.

In the absence of splitting, the total number of clusters will not change, and hence

the zeroth moment will be constant. If s(x) = 0, then (1) simplifies to

∂

∂t
n(x, t) = −c ∂

∂x
(g(x)n(x, t)) . (6)

To show that the zeroth moment, M0, is constant, consider

dM0

dt
=

d

dt

∞∫
0

n(x, t)dx =

∞∫
0

∂

∂t
n(x, t)dx.

Using (6), we have

dM0

dt
= −c

∞∫
0

∂

∂x
(g(x)n(x, t)) dx

= −c [g(x)n(x, t)]∞0 .

Using the boundary conditions (2), we therefore have

dM0

dt
= 0,

and hence M0(t) = M0(0). Therefore, the zeroth moment (number of clusters) is

conserved as expected.

Similarly, in the absence of growth the clusters will continue to split but there

will be no increase in the total mass of the system. Therefore in this situation
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the first moment should remain constant.

To show this, the integral
∞∫
0

xp(x, y)dx must first be evaluated. Using (3) and

integration by parts we have

∞∫
0

xp(x, y)dx =

y∫
0

xp(x, y)dx

=

x x∫
0

p(s, y)ds

y

0

−
y∫

0

x∫
0

p(s, y)dsdx

= y −
y∫

0

y∫
s

p(s, y)dxds

= y −
y∫

0

 y∫
s

dx

 p(s, y)ds

= y −
y∫

0

(y − s)p(y − s, y)ds

= y −
∞∫
0

xp(x, y)dx.

Therefore
∞∫
0

xp(x, y)dx =
y

2
. (7)

In the absence of growth, (1) simplifies to

∂

∂t
n(x, t) = − s(x)n(x, t)

︸ ︷︷ ︸
Death term

+ 2

∞∫
0

s(y)p(x, y)n(y, t)dy

︸ ︷︷ ︸
Birth term

. (8)

Therefore,

dM1

dt
=

d

dt

∞∫
0

xn(x, t)dx

=

∞∫
0

x
∂

∂t
n(x, t)dx

=

∞∫
0

x

−s(x)n(x, t) + 2

∞∫
0

s(y)p(x, y)n(y, t)dy

 dx
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= −
∞∫
0

xs(x)n(x, t)dx+ 2

∞∫
0

x

∞∫
0

s(y)p(x, y)n(y, t)dydx

= −
∞∫
0

xs(x)n(x, t)dx+ 2

∞∫
0

∞∫
0

xs(y)p(x, y)n(y, t)dydx

= −
∞∫
0

xs(x)n(x, t)dx+ 2

∞∫
0

∞∫
0

x

y
ys(y)p(x, y)n(y, t)dydx

= −
∞∫
0

xs(x)n(x, t)dx+ 2

∞∫
0

∞∫
0

x

y
ys(y)p(x, y)n(y, t)dxdy

= −
∞∫
0

ys(y)n(y, t)dy + 2

∞∫
0

ys(y)n(y, t)dy

∞∫
0

x

y
p(x, y)dx

=

∞∫
0

ys(y)n(y, t)dy

2

y

∞∫
0

xp(x, y)dx− 1


=

∞∫
0

ys(y)n(y, t)dy

(
2

y

(
y

2

)
− 1

)
= 0,

and therefore the first moment (total mass) is preserved in the absence of growth.

3 Numerical discretization of model

Although the growth fragmentation equation (1) is linear in n, it is not easy to

find analytical solutions for general functions g(x), s(y)and p(x, y). It is therefore

advantageous to use an appropriate numerical method to solve the system.

To solve (1) numerically, we consider the application of a so called sectional

method. First the total size range of the clusters, [vmin, vmax], is partitioned into

smaller size ranges, [vi, vi+1] (the ith section). All of the cluster sizes in this range

are then represented by a single cluster size xi, where vi < xi < vi+1. A grid of

this type is shown in Fig. 3.
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Figure 3: General grid to be used with numerical technique, where

xi = (vi + vi+1)/2 [13].

3.1 Fixed pivot method for binary splitting

We first consider only the splitting terms, as in (8). When a cluster is created

through splitting, the cluster size does not necessarily correspond exactly to one

of the grid points, xi. This is dealt with by distributing a(x, xi) of the clusters in

(xi, xi+1) to the grid point xi and b(x, xi) of the clusters in (xi−1, xi) to xi, such

that the zeroth and first moments are preserved exactly. Therefore∫ vi+1

vi

dx =

∫ xi+1

xi

a(x, xi)dx+

∫ xi

xi−1

b(x, xi)dx, (9)

and hence,∫ vi+1

vi

n(x, t)dx =

∫ xi+1

xi

a(x, xi)n(x, t)dx+

∫ xi

xi−1

b(x, xi)n(x, t)dx

=

∫ xi+1

xi

a(x, xi)n(x, t)dx+

∫ xi+1

xi

b(x, xi+1)n(x, t)dx

=

∫ xi+1

xi

(a(x, xi) + b(x, xi+1))n(x, t)dx

⇒
∫ ∞
0

n(x, t)dx =

∫ ∞
0

(a(x, xi) + b(x, xi+1))n(x, t)dx.

So for the zeroth moment to be preserved, we require

a(x, xi) + b(x, xi+1) = 1. (10)

Similarly,∫ vi+1

vi

xn(x, t)dx =

∫ xi+1

xi

xia(x, xi)n(x, t)dx+

∫ xi

xi−1

xib(x, xi)n(x, t)dx

=

∫ xi+1

xi

xia(x, xi)n(x, t)dx+

∫ xi+1

xi

xi+1b(x, xi+1)n(x, t)dx

=

∫ xi+1

xi

(xia(x, xi) + xi+1b(x, xi+1))n(x, t)dx

⇒
∫ ∞
0

xn(x, t)dx =

∫ ∞
0

(xia(x, xi) + xi+1b(x, xi+1))n(x, t)dx,
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and therefore for the first moment to be preserved, we must have

xia(x, xi) + xi+1b(x, xi+1) = x. (11)

From (10), we have

b(x, xi+1) = 1− a(x, xi). (12)

Substituting into (11), we get

a(x, xi)xi + (1− a(x, xi))xi+1 = x

⇒ a(x, xi)(xi − xi+1) = x− xi+1,

therefore

a(x, xi) =
x− xi+1

xi − xi+1

=
xi+1 − x
xi+1 − xi

. (13)

Substituting (13) back into (12), we set

b(x, xi+1) =
x− xi
xi+1 − xi

. (14)

If we assume that the cluster sizes are represented solely by the grid points, xi,

the number density can be expressed approximately as:

n(x, t) ≈
M∑
k=1

Nk(t)δ(x− xk), (15)

where δ(x− xk) is Dirac’s delta function such that δ(x− xk) = 0, for all x 6= xk

and

Ni(t) =

vi+1∫
vi

n(x, t)dx (16)

is the number of clusters in the size range (vi, vi+1).

Integrating (8) from vi to vi+1 we get

vi+1∫
vi

∂

∂t
n(x, t)dx = −

vi+1∫
vi

s(x)n(x, t)dx+ 2

vi+1∫
vi

∞∫
0

s(y)p(x, y)n(y, t)dydx

⇒ d

dt

vi+1∫
vi

n(x, t)dx ≈ −
vi+1∫
vi

s(x)
M∑
k=1

Nk(t)δ(x− xk)dx
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+ 2

xi+1∫
xi

a(x, xi)

∞∫
0

s(y)p(x, y)n(y, t)dydx

+ 2

xi∫
xi−1

b(x, xi)

∞∫
0

s(y)p(x, y)n(y, t)dydx

⇒ dNi(t)

dt
≈ −Ni(t)s(xi) + 2

xi+1∫
xi

a(x, xi)

∞∫
0

s(y)p(x, y)
M∑
k=1

Nk(t)δ(y − xk)dydx

+ 2

xi∫
xi−1

b(x, xi)

∞∫
0

s(y)p(x, y)
M∑
k=1

Nk(t)δ(y − xk)dydx

= −Ni(t)s(xi) + 2
M∑
k=1

Nk(t)s(xk)

xi+1∫
xi

a(x, xi)p(x, xk)dx

+ 2
M∑
k=1

Nk(t)s(xk)

xi∫
xi−1

b(x, xi)p(x, xk)dx

=
M∑
k=i

Nk(t)s(xk)

2

xi+1∫
xi

a(x, xi)p(x, xk)dx+ 2

xi∫
xi−1

b(x, xi)p(x, xk)dx

−Ni(t)s(xi)

=
M∑
k=i

Nk(t)s(xk)ηi,k −Ni(t)s(xi), (17)

where

ηi,k = 2

xi+1∫
xi

a(x, xi)p(x, xk)dx+ 2

xi∫
xi−1

b(x, xi)p(x, xk)dx

= 2

xi+1∫
xi

xi+1 − x
xi+1 − xi

p(x, xk)dx+ 2

xi∫
xi−1

x− xi−1
xi − xi−1

p(x, xk)dx. (18)

In the section on numerical results, the midpoint quadrature rule has been used

to approximate the integrals in (18).

3.2 Modified upwind scheme for growth

Similarly to when dealing with the splitting event, we consider only the effect

of growth, as in (6), and aim to accurately evolve the zeroth and first moments

using a numerical scheme. As we have taken g(x) = x, this describes the advection
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equation and hence an upwind scheme is an appropriate numerical method for

this problem. If we integrate (6) from vi to vi+1, then

vi+1∫
vi

∂

∂t
n(x, t)dx = −

vi+1∫
vi

∂

∂x
(cg(x)n(x, t)) dx

⇒ dNi

dt
= −[cg(x)n(x, t)]vi+1

vi
= −c (g(vi+1)n(vi+1, t)− g(vi)n(vi, t)) .

(19)

Here, the use of an upwind differencing scheme rather than e.g. a central dif-

ferencing scheme is important. We wish to evaluate n(vi, t) at one of the grid

points, rather than at a section boundary, vi. To acheive this, information is taken

form the upwind direction, opposite to the direction of advective flow. Hence, as

c > 0 and g(x) > 0, we approximate n(vi, t) by n(xi−1, t) (i.e. at the grid point

to the left of the section boundary we are considering). Therefore, substituting

n(vi, t) = n(xi−1, t) into ( 19), we get

dNi

dt
= −c(g(vi+1)ni(t)− g(vi)ni−1(t)), (20)

where ni(t) = n(xi, t).

To obtain an approximation for ni(t), consider the definition of Ni(t):

Ni(t) =

vi+1∫
vi

n(x, t)dx ≈
vi+1∫
vi

n(xi, t)dx

= n(xi, t)

vi+1∫
vi

dx = (vi − vi+1)ni(t),

and hence

ni(t) ≈
Ni(t)

vi+1 − vi
. (21)

We can now substitute (21) into (20), giving

dNi

dt
≈ −c

(
g(vi+1)Ni(t)

vi+1 − vi
− g(vi)Ni−1(t)

vi − vi−1

)
. (22)

We now consider the zeroth moment,

M0(t) =

∫ ∞
0

n(x, t)dx ≈
L∑
i=1

∫ vi+1

vi

n(x, t)dx

13



=
L∑
i=1

Ni(t),

where L is such that vL+1 = vmax. Therefore,

dM0

dt
=

L∑
i=1

dNi

dt

=
L∑
i=1

−c
(
g(vi+1)Ni(t)

vi+1 − vi
− g(vi)Ni−1(t)

vi − vi−1

)
= −c

(
−g(v1)N0

v1 − v0
+
g(vL+1)NL

vL+1 − vL

)
.

The zeroth moment is expected to evolve according to

dM0

dt
= −cg(vL+1)n(vL+1, t) + cg(v1)n(v1, t). (23)

Therefore, by using the approximation (21) and evaluating the number density

at the right section boundary,

dM0

dt
= −cg(vL+1)NL

vL+1 − vL
) +

cg(v1)N0

v1 − v0
≈ −cg(vL+1)nL(t) + cg(v1)n0(t)

≈ −cg(vL+1)n(vL+1, t) + cg(v1)n(v1, t), (24)

and therefore the zeroth moment evolves as expected, when the number density

is evaluated at the right boundary point of the section.

However, this numerical approximation will not accurately evolve the first mo-

ment. To show this, we must first approximate the first moment:

M1(t) =

∫ ∞
0

xn(x, t)dx

≈
L∑
i=1

∫ vi+1

vi

xin(x, t)dx

=
L∑
i=1

xiNi(t).
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Therefore,

dM1

dt
≈

L∑
i=1

xi
dNi

dt

=
L∑
i=1

−cxi
(
g(vi+1)Ni(t)

vi+1 − vi
− g(vi)Ni−1(t)

vi − vi−1

)

=
cx1g(v1)N0(t)

v1 − v0
− cxLg(vL+1)NL(t)

vL+1 − vL
+ c

L−1∑
i=1

(xi+1 − xi)g(vi+1)Ni(t)

vi+1 − vi

≈ cx1g(v1)n0(t)− cxLg(vL+1)nL(t) + c

L−1∑
i=1

(xi+1 − xi)g(vi+1)ni(t)

≈ −cvL+1g(vL+1)n(vL+1, t) + cv1g(v1)n(v1, t) + c

L−1∑
i=1

(xi+1 − xi)g(vi+1)ni(t),

by evaluating the number density at the right boundary point of the section,

apart from in the summation. Hence, by substituting xi = (vi+1 + vi)/2,

dM1

dt
≈ −cvL+1g(vL+1)n(vL+1, t) + cv1g(v1)n(v1, t) + c

L−1∑
i=1

vi+2 − vi
2

g(vi+1)ni(t)

(25)

The first moment is expected to evolve according to

dM1

dt
= −cvL+1g(vL+1)n(vL+1, t) + cv1g(v1)n(v1, t) + c

L−1∑
i=1

(vi+1 − vi)g(vi+1)ni(t).

(26)

Therefore, by comparing (25) with (26), we see that the first moment is not pre-

served using this scheme unless a uniform grid is being used (i.e. vi+2 − vi =

2(vi+1 − vi)).

To preserve both the zeroth and the first moments without the requirement for

a uniform grid, it is necessary to use a modified upwind scheme[14], [15]:

dNi

dt
= cg(xi−1)

Ni−1

xi − xi−1
− cg(xi)

Ni

xi+1 − xi
. (27)

To show that the zeroth moment is preserved for the modified scheme (27),

dM0

dt
=

L∑
i=1

dNi

dt

15



=
L∑
i=1

cg(xi−1)
Ni−1

xi − xi−1
− cg(xi)

Ni

xi+1 − xi

= cg(x0)
N0

x1 − x0
− cg(xL)

nL

xL+1 − xL

≈ cg(x0)n0
(v1 − v0)
x1 − x0

− cg(xL)nL
vL+1−vL
xL+1 − xL

.

It is necessary here to use an assumption on ghost meshes, so that

xL+1 = xL + (vL+1 − vL)

⇒ xL+1 − xL = vL+1 − vL,

and v1 − v0 = v2 − v1, so that

x0 = x1 − (v1 − v0) = x1 − (v2 − v1)

⇒ x1 − x0 = v1 − v0.

Therefore,
dM0

dt
≈ cg(x0)n(x0, t)− cg(xL)n(xL, t),

and by evaluating the growth and number density at the right boundary points

of the section, we arrive at

dM0

dt
≈ −cg(vL+1)n(vL+1, t) + cg(v1)n(v1, t). (28)

Therefore, by comparing (28) with the expected evolution of the zeroth moment

(23), we once again see that the zeroth moment is preserved.

Similarly, for the first moment

dM1

dt
≈

L∑
i=1

xi
dNi

dt

=
L∑
i=1

cxi

(
g(xi−1)

Ni−1

xi − xi−1
− g(xi)

Ni

xi+1 − xi

)

=
L∑
i=1

cxi

(
g(xi−1)

ni−1(vi − vi−1)
xi − xi−1

− g(xi)
ni(vi+1 − vi)
xi+1 − xi

)

= cx1g(x0)
N0

x1 − x0
− cxLg(xL)

NL

xL+1 − xL
+

L−1∑
i=1

c(xi+1 − xi)g(xi)
Ni

xi+1 − xi
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= cx1g(x0)
N0

x1 − x0
− cxLg(xL)

NL

xL+1 − xL
+

L−1∑
i=1

cg(xi)Ni

= cx1g(x0)
n0(v1 − v0)
x1 − x0

− cxLg(xL)
nL(vL+1 − vL)

xL+1 − xL
+

L−1∑
i=1

cg(xi)ni(vi+1 − vi).

If the assumption on ghost cells is used once again, so that x1 − x0 = v1 − v0,

and xL+1 − xL = vL+1 − vL, and we again evaluate at the right boundary of the

section, apart from x1, which is evaluated at the left boundary of the section v1

as in [14], then we arrive at

dM1

dt
≈ −cvL+1g(vL+1)n(vL+1, t) + cv1g(v1)n(v1, t) + c

L−1∑
i=1

(vi+1 − vi)g(vi+1)ni(t),

(29)

which clearly corresponds exactly to (26), the expected evolution of the first mo-

ment and therefore the first moment is preserved.

As the zeroth and first moments evolve as expected under the modified upwind

scheme (27), it is an appropriate choice for numerically solving the growth terms

in (1). To allow us to solve our original equation (1), the modified upwind scheme

for growth (27) and fixed pivot method for binary splitting (17) must be combined.

3.3 Combined numerical method

To solve (1) the fixed pivot method for splitting and the modified upwind scheme

for growth must be combined to give one numerical scheme

dNi(t)

dt
=

L∑
k=i

Nk(t)s(xk)ηi,k −Ni(t)s(xi) + c

(
g(xi−1)Ni−1(t)

xi − xi−1
− g(xi)Ni(t)

xi+1 − xi

)
, i = 1, · · · , L

⇒ dN

dt
= AN, (30)

where

A =



s1(η1,1 − 1)− cg1
x2−x1

s2η1,2 · · · sLη1,L
cg1

x2−x1
s2(η2,2 − 1)− cg2

x3−x2
· · · sLη2,L

0 cg2
x3−x2

· · · sLη3,L
...

...

0 0 · · · sL(ηL,L − 1)− cgL
xL+1−xL


,
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and si = s(xi), gi = g(xi).

To show that the solution, N(t), of (30) is always non-negative with the choice of

the matrix A as above, we consider the following result [16], [17]: “The solution

of dN
dt

= AN is non-negative iff ai,j ≥ 0 for all j 6= i.”

By considering the structure of the matrix A, this will clearly hold. For all

j < i − 1, ai,j = 0; for j = i − 1, ai,j = cgi−1

xi−xi−1
> 0 as we have assumed

c > 0, g(x) > 0 and xi − xi−1 > 0; and finally for j > i, ai,j = sjηi,j ≥ 0. There-

fore ai,j ≥ 0 for all j 6= i and hence the solution of (30) is non-negative using the

quoted result above. This shows one advantage of using an upwind scheme for

the growth terms; with another choice of differencing scheme, this non-negativity

would not be guaranteed as the negative term currently affecting the diagonal

terms due to growth would instead act on one of the off-diagonal terms.

4 Results

The system of ordinary differential equations describing the evolution of Ni, given

in (30) can be solved numerically. This has been implemented using MATLAB

and the numerical solver ODE45.

4.1 Comparison of numerical method with analytical

solutions of zeroth and first moments

To verify the accuracy of the numerical scheme proposed, the parameters have

been chosen in such a way that analytical solutions of the zeroth and first moments

are known. Hence, by comparing the exact values of the moments with those

predicted using the numerical method, we can verify that the method is accurate.

Taking c = 1, g(x) = x, s(x) = 1,

p(x, y) =
x2(y − x)2Γ(6)

y5Γ(3)2
, (31)
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where Γ(x) is the gamma function. The grid used by the numerical method was

generated on the interval [vmin, vmax] so that

vi = vmin

(
vmax

vmin

) i−1
L

. (32)

Where [vmin, vmax] = [10−6, 300] for this problem. The kernel (31) is plotted in

Fig. 4 and using the exponential initial condition n(x, 0) = e−x, the analytical

solution of the zeroth moment, M0(t) = M0(0)et and the first moment, M1(t) =

M1(0)et [14] can be plotted alongside the numerical solutions.

Figure 4: Breakage kernel, p(x, y), given by (31) to be used for comparison of

numerical and analytical solutions.

The comparison of the analytical and numerical solutions are shown below in

Fig. 5. Clearly the method is performing well for the zeroth moment, but is

slightly overestimating the analytical solution for the first moment. However, by

increasing the number of grid points used in the numerical method, this error is

reduced, as shown in Fig. 6.

By increasing the number of grid points from 60 to 300, the numerical solution

is clearly converging towards the analytical solution. One possible source of this

error is the use of the midpoint quadrature rule to evaluate the integrals involving

p(x, y) for the ηi,j coefficients (18) in the fixed pivot method. This error could

be removed if the ηi,j can be calculated analytically, however this restricts the
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possible choices for the breakage kernel.

Figure 5: Comparison of the numerical and analytical solutions of the normalised

(a) zeroth and (b) first moments using 60 grid points.

Figure 6: Comparison of the numerical and analytical solutions of the (a) zeroth

and (b) first normalised moments using 300 grid points.

4.2 Unimodal kernels

Throughout the remainder of this section, we will focus on the biological problem

discussed previously, and vary the choice of breakage kernel, p(x, y), to analyse
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the affect this has on the cluster size distribution. The values for all the other

parameters used throughout this section are fixed based on the biological problem.

We take c = 7× 10−5 and g(x) = x, which will result in exponential growth and

the rate of growth is the same as the rate of monomeric binding as discussed

earlier. This has been chosen to reflect the expected exponential growth in the

absence of inhibitors such as low nutrient levels. The selection function, s(x), is

taken to be

s(x) =

0, if x < 104,

10−3, otherwise.

This stepwise function has been chosen based on the nature of the observed split-

ting process, as described earlier, whereby the cluster cannot split until it has

reached a certain value, xsplit = 104, and after this size has been reached the

selection function will allow splitting to occur at a uniform rate γ = 10−3. Fur-

thermore, to reduce the error from the numerical method, 300 grid points will

be used throughout with the grid generated as in (32), but here we will take

[vmin, vmax] = [103, 3× 104] and the maximum time is taken to be tmax = 4× 104.

The initial condition is taken to be a normal distribution for n(x, 0), and therefore

for Ni(0), the initial condition is given by

Ni(0) =

∫ vi+1

vi

1√
2πσ

e
−(x−µ)2

2σ2

= −1

2
erf

(
µ− vi+1

σ
√

2

)
+

1

2
erf

(
µ− vi
σ
√

2

)
, (33)

where erf(x) is the error function,

erf(x) =
2√
π

∫ x

0

e−t
2

dt.

The kernels considered here belong to the two-parameter family

p(x, y) =

(
1

x
y

+ b
+

1

1− x
y

+ b
+

2(g − 1)

b+ 0.5

)
I

y
, (34)

with

I =
0.5

ln(1 + b)− ln(b) + g−1
b+0.5

,
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and where g is given by

g =
0.5a

2b(1 + b)(1− a)
.

This kernel is shown, for the parameter choices we will be considering, in Fig. 7

below.

Figure 7: Unimodal kernels for chosen parameter values [8].

First, taking a = 0 and b = 0.01, we expect a large number of clusters near

0 and near xsplit when splitting occurs, and none in between (giving a bimodal

structure) as p(x, y) is large when x
y

is near 0 or near 1. We can plot the zeroth

and first moments (Fig. 8) and the cluster size distribution (Fig. 9).

We can see that the normalised zeroth moment (number of clusters) rapidly in-

creases at a time corresponding to the splitting event being triggered by cluster

sizes greater than xsplit and the first moment evolves exponentially, as would be

expected.

From Fig. 9 we can see that the cluster size distribution is clearly bimodal, with

a peak at a low cluster size, which can be interpreted as the daughter cells, and

a peak near xsplit = 104. The distribution decreases after this point, as we would

expect since the clusters of this size will then have a constant non-zero probabil-

ity of splitting introduced by the selection function s(x). However, the majority

of parent clusters have size greater than xsplit, which is not expected from the

biological observations. When a cluster of size x ≥ xsplit splits, it will create

a daughter cluster of size x0 and a parent cluster of size x − x0. We therefore
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Figure 8: Normalised zeroth and first moments using (34) with a = 0 and

b = 0.01.

Figure 9: Cluster size distribution plotted on a log-log scale and normalised

cluster size distribution for a = 0 and b = 0.01.

expect the size of the parent cluster to generally be less than xsplit, and so would

expect to see two modes at cluster sizes below xsplit, indicating that a unimodal

kernel (34) with a = 0 and b = 0.01 is not an appropriate choice for our biological

problem.

However, we can analyse the cluster size distribution for the existence of a stable
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size distribution by plotting the distribution at a number of equally spaced times

between 0 and tmax. With the current choice of tmax, a stable size distribution is

not yet apparent, however by setting tmax = 1.6× 105, we get

Figure 10: Cluster size distribution plotted on a loglog scale for unimodal kernel

(34) with a = 0 and b = 0.01 at equally distributed times.

Figure 11: Normalised cluster size distribution for unimodal kernel (34) with

a = 0 and b = 0.01 at equally distributed times.

Fig. 10 shows a clear stable size distribution, with an exponential increase in

the number density, while Fig. 11 shows that once a stable size distribution is

reached, the shape of the distribution does not change.
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In an attempt to reduce the chance of small daughter clusters and large parent

clusters after splitting we consider the choice of parameters a = 2 and b = 0.01,

as shown in Fig. 34(b) for which there is a uniform distribution with exceptions

near x
y

= 0 and x
y

= 1, and so there is no mechanism provided by the breakage

kernel to create a difference in size between the daughter and parent clusters.

We can again plot the normalised moments (Fig. 12) and cluster size distribution

(Fig. 13).

The normalised zeroth and first moments behave similarly as to the case with

Figure 12: Normalised zeroth and first moments using kernel (34) with a = 2

and b = 0.01.

a = 0 and b = 0.01, with a rapid increase after the splitting events begin in the

zeroth moment and exponential growth of the first moment.

However, the cluster size distribution shown in Fig. 13 no longer has a bimodal

shape. In the previous case, the choice of breakage kernel appeared to produce

too large a parent cluster after the split, whereas this choice appears to be lack-

ing differentiation in size between the daughter and parent clusters as there is

only one peak, just below xsplit. We can infer from this that the unimodal ker-

nel (34) with a = 2 and b = 0.01 is also not an appropriate choice for our problem.

We can however again look for a stable size distribution by setting tmax = 1.6×105
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Figure 13: Cluster size distribution plotted on a loglog scale and normalised

cluster size distribution for a = 2 and b = 0.01.

and plotting the distribution at evenly distributed times, As for the previous

Figure 14: Cluster size distribution plotted on a loglog scale for unimodal kernel

(34) with a = 2 and b = 0.01 at equally distributed times.

kernel choice, Fig. 14 clearly shows a stable size distribution with exponential

increase in the number density and Fig. 15 shows that the normalised cluster size

distribution remains exactly the same shape once stable.

To find a better fitting kernel, we would like to take some desirable qualities from

these two unimodal kernels, namely that p(x, y) is very low near x
y

= 0 and x
y

= 1,

so that when splitting occurs, the parent cluster should be smaller than xsplit, and
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that p(x, y) is non-zero for some other choices of x
y
.

Figure 15: Normalised cluster size distribution for unimodal kernel (34)with

a = 2 and b = 0.01 at equally distributed times.

4.3 A bimodal kernel

To produce an appropriate size distribution for our problem, we consider a bi-

modal kernel, which is given by

p(x, y) =
1

2
(p1(x, y) + p2(x, y)) , (35)

where

p1(x, y) = f

(
x

y
;µ, σ

)
=

1

σ
√

2π x
y

(
1− x

y

) exp

−
(

logit(x
y
− µ)

)2
2σ2

 , (36)

and

p2(x, y) = f

(
x

y
;−µ, σ

)
=

1

σ
√

2π x
y

(
1− x

y

) exp

−
(

logit(x
y

+ µ)
)2

2σ2

 , (37)

where f(x, µ, σ) is the probability density function of the logit-normal distribution

where logit(x) = ln( x
1−x) and µ and σ are the mean and standard deviation of
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Figure 16: Bimodal kernel (35) created using two logit normal distributions (36)

and (37), with parameters µ = 1 and σ = 0.2.

the variable’s logit. This kernel is plotted in Fig. 16 with µ = 1 and σ = 0.2.

Using the same parameter values for c, g(x) and s(x) as before and generating

the grid as before (32) with [vmin, vmax] = [103, 3 × 104], with the same initial

condition as for the unimodal kernels (33), the normalised moments can be plotted

(Fig. 17). Although the normalised moments do not immediately appear similar

Figure 17: Normalised zeroth and first moments for the bimodal kernel (35) with

µ = 1 and σ = 0.2.

to the results from the unimodal kernels, they can be plotted on a log-linear scale
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(Fig. 18), from which we can see that both the zeroth moment and first moments

are growing exponentially once the splitting event has been triggered.

Figure 18: Normalised zeroth and first moments for the bimodal kernel (35) with

µ = 1 and σ = 0.2 plotted on a log-linear scale.

Figure 19: Cluster size distribution plotted on a loglog scale and normalised

cluster size distribution for the bimodal kernel (35) with µ = 1 and σ = 0.2.

The bimodal kernel (35) produces a bimodal cluster size distribution (Fig. 19),

where one mode represents the daughter clusters and the mode just below xsplit

represents the parent clusters immediately after splitting. There are some clusters

with size greater than xsplit, but the majority larger than this will have split, cre-

ating the two modes. In fact, this cluster size distribution appears to accurately
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describe the biological process, with very few clusters larger than xsplit, and two

modes representing the daughter clusters and the parent clusters after splitting.

We can show that this distribution is a stable size distribution by plotting the

cluster size distribution at a number of evenly spaced times between the initial

time and the final time, tmax. This is shown in Fig. 20 and Fig. 21.

A stable size distribution can be clearly seen here; although the distribution is

Figure 20: Cluster size distribution plotted on a loglog scale for bimodal kernel

(35) with µ = 1 and σ = 0.2 at equally distributed times.

increasing exponentially, this is what is expected from hyphal growth in the ab-

sence of inhibitors such as a lack of nutrients. By normalising the distribution, it

clearly remains exactly the same shape once stable (Fig. 21). The bimodal kernel

(35) reaches a stable size distribution much faster than the unimodal kernels (34),

for which tmax had to be increased to find evidence of a stable size distribution.

5 Conclusions

A growth-fragmentation model describing the binding and splitting process of

DivIVA molecules in S.coelicolor has been proposed, along with an appropriate

sectional numerical method for the model. This numerical method comprises

an upwind scheme for growth and a fixed pivot scheme for splitting. Compari-
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Figure 21: Normalised cluster size distribution for bimodal kernel (35)with µ = 1

and σ = 0.2 at equally distributed times.

son of the numerical method with known analytical solutions has shown that the

method is sufficiently accurate when an appropriate number of grid points is used.

We believe that much of the error is introduced through the use of the midpoint

quadrature rule to evaluate integrals used in the fixed pivot method. Interest-

ing further work could include finding analytical solutions for these integrals and

again comparing the numerical method with analytical solutions when there is

no error introduced through the midpoint rule.

The numerical method was then applied to two unimodal kernels. Although both

of the unimodal kernels produced a stable size distribution in finite time, the

distributions did not appear to replicate the experimental observations of the bi-

ological problem and so the two unimodal kernels are not appropriate choices for

our problem. To find an appropriate kernel choice, desirable properties from the

unimodal kernels were combined into a bimodal kernel. Again, a stable size dis-

tribution was reached in finite time and for the bimodal kernel the time required

for convergence to a stable size ditribution was greatly reduced. Furthermore, by

choosing a bimodal kernel the steady size distribution appears to reflect experi-

mental observations.
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To further develop this model, the effect of nutrient levels could be included

and the existence of a steady state size distribution could be proven analytically

[7]. Additionally, if experimental data on cluster size distributions was to be

gathered from imaging of S.coelicolor growth with the DivIVA protein tagged,

the the steady size distribution could be compared with the size distribution of

the imaged DivIVA clusters. Biologists in the Polarised Growth VIP team are

currently imaging DivIVA clusters, and we hope that cluster size information will

be extracted using image processing techniques to give an accurate distribution

for comparison.

References

[1] http://www.jic.ac.uk/science/molmicro/strept.html Accessed June 1, 2015.

[2] Bentley, S.D., Chater, K.F., Cerdeño-Tárraga, A.-M., Challis, G.L., Thom-
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[4] Flärdh, K. (2010) Cell polarity and the control of apical growth in Strepto-

myces. Current opinion in Microbiology. 13 (6), 758–765.

[5] Richards, D.M., Hempel, A.M., Flärdh, K., Buttner, M.J. & Howard, M.
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