SHORTING NUMBER OF QUESTIONS IN LONG PSYCHOLOGICAL QUESTIONNAIRES

© Capp \& Co Ltd, 2017

THE CONTEXT

THE PROBLEM

I
Are the questions capturing what we want to capture?

Are there redundancy among questions such that we can reduce the size of the test?

THE PROBLEM

I
Are the questions capturing what we want to capture?

II

Are there redundancy among questions such that we can reduce the size of the test?

THE PROBLEM

- Dataset: collection of user responses (~30000)
- In our case the test has 90 questions with 4 possible answers:

1	2	3	4

- Drawbacks?

'ar	$\begin{aligned} & \text { Var } \\ & 4 \end{aligned}$	$\begin{aligned} & \text { Var } \\ & 5 \end{aligned}$	$\begin{array}{\|l} \text { Var } \\ 6 \end{array}$	$\begin{aligned} & \text { Var } \\ & 7 \end{aligned}$	$\begin{aligned} & \text { Var } \\ & 8 \end{aligned}$	$\begin{aligned} & \text { Var } \\ & 9 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Var } \\ 10 \end{array}$	$\begin{array}{\|l\|} \hline \text { Var } \\ 11 \end{array}$	$\begin{array}{\|l\|} \hline \text { Var } \\ 12 \end{array}$	$\begin{aligned} & \text { Var } \\ & 13 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Var } \\ 14 \end{array}$	$\begin{aligned} & \text { Var } \\ & 15 \end{aligned}$	$\begin{aligned} & \text { Var } \\ & 16 \end{aligned}$	$\begin{aligned} & \text { Var } \\ & 17 \end{aligned}$	$\begin{aligned} & \text { Var } \\ & 18 \end{aligned}$	$\begin{aligned} & \text { Var } \\ & 19 \end{aligned}$	$\begin{aligned} & \text { Va } \\ & 20 \end{aligned}$
1	4	4	3	3	1	3	1	3	3	3	4	1	3	1	3	1	
1	1	4	2	2	3	3	2	3	1	1	3	4	3	3	3	2	:
1	1	1	4	3	4	3	3	3	3	2	3	1	3	3	1	1	
2	3	2	1	1	3	1	1	1	3	1	1	1	2	1	3	1	
1	1	2	3	1	3	3	2	1	4	1	1	2	1	3	1	3	
1	2	1	1	3	2	2	2	2	2	3	2	1	1	3	1	1	-
2	3	4	1	1	1	3	3	4	3	3	3	4	2	2	3	2	
1	3	2	1	1	3	3	3	2	3	3	3	1	3	1	1	1	
2	2	1	1	1	1	3	1	3	3	1	2	1	1	3	3	3	
4	3	4	3	2	3	3	2	1	3	3	1	1	3	2	3	3	
2	2	3	3	3	1	3	3	3	3	4	1	1	3	1	1	2	
3	1	1	3	1	3	1	2	3	3	2	3	1	4	4	1	4	
3	3	4	3	1	4	3	3	3	3	3	3	2	4	2	2	1	
2	1	3	3	3	3	3	3	2	3	3	1	1	3	2	3	1	،
1	4	1	2	2	3	3	1	1	3	4	1	1	1	3	1	4	

Drawback: users perceive the scale in different way
Drawback: users tend to choose high values

THE PROBLEM

- Dataset can be mapped into

$$
\{1,2,3,4\}^{90}
$$

- How does it look like?

Drawback: sparse data.

Drawback: data concentrated in few cells
 $\because \cdots \cdots \cdots \cdots \cdots \cdots$ \cdots

 $\because \because \square \cdot \square \cdot \square$ $\square \square \square \square \square \square \square . \square \square \cdot \square$
 $\square \square \square \square^{2} \square \overbrace{0}^{3} \cdot \square{ }^{4} \square$

 M $\because=1$

 $\therefore \dot{\circ} \mathrm{B}$ $\square \square \square \square \square \square \square \square \square \square \square$
 $\% \square \square$

为 $\because \cdots \cdots$
电

HOWTO SOLVE IT

- Divide the problem:

HOWTO SOLVE IT

- Divide the problem:
- I. Find a set of predictors and a set of questions to be predicted

$$
Q=P \dot{\cup} S
$$

HOWTO SOLVE IT

- Divide the problem:
- I. Find a set of predictors and a set of questions to be predicted

$$
Q=P \dot{\cup} S
$$

- 2. Predict P using S

I. FEATURE SELECTION

- First part is a feature selection problem
- Ideally, find P and S automatically
- In reality, divide the problem

I. FEATURE SELECTION

- First part is a feature selection problem
- Ideally, find P and S automatically
- In reality, divide the problem
- Fix one question and find the best subset of predictors

I. FEATURE SELECTION

- First part is a feature selection problem
- Ideally, find P and S automatically
- In reality, divide the problem
- Fix one question and find the best subset of predictors

I. FEATURE SELECTION

	Filter methods
Description	Intrinsic properties of data
Advantages	Computationally simple and fast
Disadvantages	Ignore interaction with the classifier

I. FEATURE SELECTION

I. FEATURE SELECTION

Description

Advantages
Disadvantages

Examples used in our problem

Filter methods

Intrinsic properties of data
Computationally simple and fast
Ignore interaction with the classifier
Correlation-based
Mutual Information \rightarrow

1) Initialization: Set $F \leftarrow$ "initial set of n features"; S \leftarrow "empty set."
2) Computation of the MI with the output class: For each $f_{i} \in$ F, compute $I\left(C ; f_{i}\right)$.
3) Selection of the first feature: Find the feature f_{i} that maximizes $I\left(C ; f_{i}\right)$; set $F \leftarrow F \backslash\left\{f_{i}\right\}$; set $S \leftarrow\left\{f_{i}\right\}$.
4) Greedy selection: Repeat until $|S|=k$.
a) Computation of the MI between variables: For all pairs $\left(f_{i}, f_{s}\right)$ with $f_{i} \in F$ and $f_{s} \in S$, compute $I\left(f_{i} ; f_{s}\right)$, if it is not yet available.
b) Selection of the next feature: Choose the feature $f_{i} \in$ F that maximizes

$$
I\left(C ; f_{i}\right)-\beta \sum_{f_{s} \in S} I\left(f_{s} ; f_{i}\right)
$$

Set $F \leftarrow F \backslash\left\{f_{i}\right\}$; set $S \leftarrow\left\{f_{i}\right\}$.
5) Output the set S containing the selected features.

I. FEATURE SELECTION

Description

Advantages
Disadvantages
Examples used in our problem

Embedded methods

The search of methods is built into the classifier
Include interaction with the classifier
Classifier dependent selection
Random forest
GLM using regularisation

I. FEATURE SELECTION

Description

Advantages
Disadvantages

Examples used in our problem

Embedded methods

The search of methods is built into the classifier

Include interaction with the classifier
Classifier dependent selection
Feature Importance \leftarrow Random forest
GLM using regularisation

I. FEATURE SELECTION

Description

Advantages
Disadvantages

Examples used in our problem

Embedded methods

The search of methods is built into the classifier
Include interaction with the classifier
Classifier dependent selection
Random forest

GLM using regularisation

$$
\min _{w \in \mathbb{R}^{p}} \frac{1}{n}\|\hat{X} w-\hat{Y}\|^{2}+\lambda\left(\alpha\|w\|_{1}+(1-\alpha)\|w\|_{2}^{2}\right), \alpha \in[0,1]
$$

I. BUILDING A GRAPH

I. BUILDING A GRAPH

I. BUILDING A GRAPH

- Goal: find a 'minimal' subgraph with minimum number of predictors

I. BUILDING A GRAPH

- Goal: find a 'minimal' subgraph with minimum number of predictors

I. BUILDING A GRAPH

- Goal: find a 'minimal' subgraph with minimum number of predictors

I. BUILDING A GRAPH

- Goal: find a 'minimal' subgraph with minimum number of predictors

I. BUILDING A GRAPH

- Goal: find a 'minimal' subgraph with minimum number of predictors

I. BUILDING A GRAPH

- Goal: find a 'minimal' subgraph with minimum number of predictors

I. BUILDING A GRAPH

- Goal: find a 'minimal' subgraph with minimum number of predictors

I. BUILDING A GRAPH

- Goal: find a 'minimal' subgraph with minimum number of predictors
- It can be formalised as a matrix problem

I. BUILDING A GRAPH

- For each type of feature selection method we can build one graph

I. FEATURE SELECTION - REVIEW

2. MULTI-CLASSIFICATION SUBPROBLEM

- Different types of models:
- Random model
- Generalised Linear models
- Random forest
- Support Vector Machines (linear kernel)
- Some basic Neural Networks

2. REVIEW

Choose tree
Non-heuristic tree
Heuristic tree
Random tree
Model
Choose model
construction
Fair model
Gaussian linear model
Binomial model
Random forest
Support v. machine

Perform Monte Carlo Cross-
 Validation

For each loop:

1. Simulate the results of the test

Ask N questions to the user
For each of the remaining $90-\mathrm{N}$
questions:
train model (using 70\%) predict answer (using 30\%) calculate error

Finally:
2. Calculate the average error: Answers absolute error

Results

2. RESULTS

- Error vs. number of predictors

- Why are they performing in a similar way?
- Data is too noisy?

2. RESULTS

OTHER APPROACHES

- Entropy!
- Information theory approach (no ML but useful)

$$
H(X)=-\sum_{i=1}^{n} p\left(x_{i}\right) \log p\left(x_{i}\right)
$$

- We want to find redundancy in data
- What is the most redundant set of questions
$-H(X)=0$. High redundancy
- $\mathrm{H}(\mathrm{X})$ max. No redundancy

NEURAL NETWORKS

- Again, space $Q=P \dot{\cup} S$
- Fix s in S
- Classification problem with 4 classes
- We want a 0/I output
- I. 4 NN, one output node for each class
- II. I NN, four output nodes

NEURAL NETWORKS

- Again, space $Q=P \dot{\cup} S$
- Fix s in S
- Classification problem with 4 classes
- We want a 0/I output
- I. 4 NN , one output node for each class
- II. I NN, four output nodes

Problem with unbalanced classes:
zoom-in regions with lower numbers of points (discrete space)

COMMENTS

The problem is still open
Although, there are other steps omitted here that have been useful
If it cannot be solved, how to prove it?

REVIEW OFTHE PROBLEM

- Dataset: collection of user responses (~30000)
- In our case the test has 90 questions with 4 possible answers:

Drawback: sparse data.

Drawback: data concentrated in few cells

Drawback: users perceive the scale in different way

Drawback: users tend to choose high values

$$
Q=P \cup ் S
$$

CONCLUSIONS

Psychological test are relents in industry
Special type of data
How to extend traditional DM techniques to deal with these type of data?

SOME REFERENCES

- Many interesting ones...
[I] (Review FS) Saeys, Y. et al, A review of feature selection techniques in bioinformatics. Bioinformatics, 2007.
[2] (Normalised MI) Estévez, P. et al, Normalized Mutual Information Feature Selection. IEEE Transactions On Neural Networks, 2009.
[3] (Multiclass. NN)
[4] (Unbalanced data)
[5] (high-dimensional NN)

Thank you! Questions?

