Mike's Lab Talk

10am Monday 6th February 2006

Outline of Talk

- First lab talk so hope I reach my audience!
 - PhD students, postdocs, staff
- Purpose of this lab talk:
 - Describe on-going work
 - Describe progress (+ show data)
 - Describe work to do in the short term
- Stuff for the future

On-going Work

- The aim is to get a nice system for looking at protein targeting in chloroplasts
 - Looking in terms of Western blotting and
 - Looking using fluorescence microscopy
- Presently attempting thylakoid imports of James' n-strep-DmsA-YFP (bacterial Tat signal)

Progress

- Since the start of term in October (4 months)
- Setting up in the lab:
 - Collecting equipment and solutions
 - Collecting techniques (cloning and confocal independence left)
- Latest work has been on YFP and chlorophyll in relation to Lorenzo's question at an MCB seminar and Ale's concern about an in vitro import

Fluorescence Microscopy

- Two related questions:
 - Will the background signal be a concern?
 - Will the signal from imported YFP be detectable?

Excitation of YFP

- The 514 nm Argon laser line is the best choice for excitation near the 513 nm excitation max.
 - Could also use the 488 nm Argon laser line as used for GFP
- Measurements are shown that use 488 nm to keep away from the max. emission of 527 nm

Yellow Fluorescent Protein

 The fluorometer (detection at 90 degrees to excitation) suggests the YFP isn't very yellow (is yellow, judging by eye)

Still working on estimation of YFP concentration

- Complicating factors:
 - Buffer is changed from elution buffer to import buffer by dialysis and found to reduce volume from 200 uL to around 75 uL
 - Need to check exact YFP mutant being used (lots of molar extinction coefficients available for various versions – of the order 10⁵ M cm⁻¹)
- Other options include standard protein assays (keeping in mind elution is not pure) or comparison of ECL Western blotting bands with purchased GFP/YFP (expensive)

Chlorophyll in Thylakoids

- Chlorophyll is held by chlorophyll binding proteins in the thylakoid membrane
- Chlorophyll b has an excitation maximum near 488 nm and this could potentially be a problem

Chlorophyll in Thylakoids

- Luckily, chlorophyll is known to emit in the orange-red region; the 650-700 nm region
- So we don't expect a problem (YFP max. emission 527 nm; EYFP even better at red-shifted values – closer to yellow)

Seeing YFP with a Chlorophyll Background

 With the correct filters, chlorophyll is no more trouble than water using 488 nm for excitation

Things to Note

- First tests only (further work will only be useful if YFP localisation is visible under the confocal)
- Measurements made on day after isolation of thylakoids
 - This should actually make the background worse because of damage to the photosynthesis system so chlorophyll is only able to absorb and emit (need to check on a fresh preparation)
- Signal not as smooth due to non-specific optical density of the thylakoid sample (also to check)

Possible Continuations

- Dilutions of fluorescent protein to see behaviour of excitation versus emission
- 3D measurements where the excitation is allowed to vary
- Various combinations pre- and post-import with thylakoids
- All very interesting if successful imports are visible under confocal: academic if not visible

Short Term Plan

- Need to optimize immuno-blotting for YFP after thylakoid import
 - Dot blot needed to optimize antibody concentrations
 - Import volumes may have to be scaled up (12.5 uL thylakoids at 2.0 mg/mL chlorophyll in 100 uL reaction volume)
- Not a problem if it doesn't work straight away as system could be used to try to set up and maintain a delta-pH gradient (useful for reconstituting the Tat system in lipsomes)

Take Home Message

- Going back to the two questions:
 - The chlorophyll background shouldn't mask the YFP signal and
 - The YFP should be detectable (~4 times brighter than EGFP)
 - (but it all depends on the confocal)
- The Sim Aminco 8100 Spectrofluorometer complements use of the confocal for detection of active chromophores (fluorescent proteins and chlorophyll)

Thank you, and good morning!